跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/18 12:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡瑞麒
研究生(外文):Ruei-Chi Tsai
論文名稱:BCC相強化多元合金的微結構與機械性質
論文名稱(外文):Microstructure and mechanical properties of multicomponent alloys strengthened by BCC phase
指導教授:蔡銘洪
指導教授(外文):Ming-Hung Tsai
口試委員:葉均蔚汪俊延
口試日期:2017-07-25
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:130
中文關鍵詞:機械性質
外文關鍵詞:mechanical properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:147
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究首先部份蒐集並篩選含介金屬相的多元合金,並探討介金屬相的結構,頻率及成相行為。接著探討以BCC相強化多元合金的可能性。我們在FCC多元合金中添加不同量的Ga元素,透過調控添加元素含量以及時效溫度與時間,改變合金中之BCC析出相的尺寸、體積分率與形貌。期能強化FCC型多元合金但仍維持一定的伸長量。研究結果顯示,在600°C、700°C的時效確實能產生大量BCC析出物,造成顯著強化。在適當條件下可達到不錯的機械性質組合。
First part in this study we collect and filter the multicomponent alloys which has formed intermetallic compounds. And discuss the structure, formed frequency and behavior of the intermetallic compound. Second part we study on the possibility of enhance multicomponent alloys with BCC phase. We try to change the size, volume fraction and morphology of the BCC precipitates. By add variable gallium to FCC type multicomponent alloy, and control the aging temperature or aging time. Expect the elongation of FCC type multicomponent alloy will be maintain, and also get obviously strength improved. According to our research, alloy will get significantly hardening by precipitate massive needle shaped BCC phase at aging temperature 600°C and 700°C. Some alloys will obtain great mechanical properties with appropriate heat treatment.
誌謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 xi
壹、前言 1
貳、文獻回顧 2
2.1 多元合金 2
2.2 多元合金內的四大效應 3
2.3 多晶材料強化機制 8
2.4 析出硬化機制 18
2.5 非契合型、契合型析出硬化 20
2.6 析出硬化型多元合金之金相、結構及機械性質 22
2.7 Al變量多元合金系統 27
2.8合金回顧 32
2.9 BCC相之衍生結構 40
参、研究動機及實驗步驟 46
3.1 研究動機 46
3.2 實驗設計與流程 47
3.3合金製備 50
3.4 熱處理 50
3.5 拉伸試片製備 50
3.6 相與微結構分析 51
3.7 硬度量測 53
3.8 拉伸試驗 54
第三章參考文獻 56
肆、多元合金中介金屬相之統計分析 57
4.1多元合金中的介金屬相 57
4.2 含介金屬相多元合金列表 58
4.3介金屬相之結構與頻率統計 73
4.4 介金屬相種類與元素種類的關係 75
第四章參考文獻 80
伍、以BCC相強化多元合金 84
5.1 簡介 84
5.2鑄造態金相分析 97
5.3 1100°C固溶處理後金相分析 91
5.4 各合金不同時效條件的硬度分析 95
5.5 部份選定合金時效一天後的微結構與機械性質 100
5.6透過調整製程改善機械性質 118
陸、結論 128
柒、未來研究方向 130
第二章參考文獻
1.Yeh, J.W., et al., Advanced Engineering Materials, 2004. 6(5): p. 299-303.
2.葉均蔚, 陳瑞凱, and 林樹均, 工業技術研究所, 2005(224).
3.Zhang, Y., et al., 2014. 61: p. 1-93.
4.Zhang, Y., et al., Advanced Engineering Materials, 2008. 10(6): p. 534-538.
5.Shun, T.-T., L.-Y. Chang, and M.-H. Shiu, Materials Characterization, 2013. 81: p. 92-96.
6.He, J., et al., Acta Materialia, 2016. 102: p. 187-196.
7.Kamikawa, N., et al., Acta Materialia, 2015. 83: p. 383-396.
8.Fleischer, R., Acta metallurgica, 1963. 11(3): p. 203-209.
9.Paufler, P., Th. H. Courtney. McGraw‐Hill Publ. Co., Singapore 1990. 710 Seiten, DM 55.00. ISBN 0‐07‐100680‐X. Crystal Research and Technology, 1992. 27(4): p. 470-470.
10.Toda-Caraballo, I. and P.E. Rivera-Díaz-del-Castillo, Acta Materialia, 2015. 85: p. 14-23.
11.Schuh, C., T. Nieh, and H. Iwasaki, Acta Materialia, 2003. 51(2): p. 431-443.
12.He, J., et al., Acta Materialia, 2014. 62: p. 105-113.
13.Hall, E., Proceedings of the Physical Society. Section B, 1951. 64(9): p. 747.
14.Petch, N., J. of the Iron and Steel Inst., 1953. 174: p. 25-28.
15.Liu, W., et al., Scripta Materialia, 2013. 68(7): p. 526-529.
16.Courtney, T.H., 2005: Waveland Press.
17.He, J., et al., Intermetallics, 2014. 55: p. 9-14.
18.Karolus, M. and E. Łagiewka, Journal of Alloys and Compounds, 2004. 367(1): p. 235-238.
19.Kumari, S., D.K. Singh, and P. Giri, Journal of nanoscience and nanotechnology, 2009. 9(9): p. 5231-5236.
20.Williamson, G. and R. Smallman, III. Philosophical Magazine, 1956. 1(1): p. 34-46.
21.Zhao, Y.H., et al., Acta Materialia, 2004. 52(15): p. 4589-4599.
22.Wen, H., et al., Acta Materialia, 2013. 61(8): p. 2769-2782.
23.Ma, K., et al., Acta Materialia, 2014. 62: p. 141-155.
24.Seidman, D.N., E.A. Marquis, and D.C. Dunand, Acta Materialia, 2002. 50(16): p. 4021-4035.
25.Booth-Morrison, C., D.C. Dunand, and D.N. Seidman, Acta Materialia, 2011. 59(18): p. 7029-7042.
26.Pollock, T. and A. Argon, Acta Metallurgica et Materialia, 1992. 40(1): p. 1-30.
27.Callister, W.D. and D.G. Rethwisch, Vol. 5. 2011: John Wiley & Sons NY.
28.Vengrenovitch, R., Acta metallurgica, 1982. 30(6): p. 1079-1086.
29.Liu, W., et al., Acta Materialia, 2016. 116: p. 332-342.
30.ur Rehman, H., et al., Materials Science and Engineering: A, 2015. 634: p. 202-208.
31.Tsai, K.-Y., M.-H. Tsai, and J.-W. Yeh, Acta Materialia, 2013. 61(13): p. 4887-4897.
32.Guo, S., et al., Journal of applied physics, 2011. 109(10): p. 103505.
33.Tong, C.-J., et al., Metallurgical and Materials Transactions A, 2005. 36(4): p. 881-893.
34.De Boer, F.R., et al., 1988.
35.Singh, S., et al., Acta Materialia, 2011. 59(1): p. 182-190.
36.Wang, F., et al., International Journal of Modern Physics B, 2009. 23(06n07): p. 1254-1259.
37.Tsai, C.-W., et al., Journal of Alloys and Compounds, 2010. 490(1): p. 160-165.
38.Tong, C.-J., et al., Metallurgical and Materials Transactions A, 2005. 36(5): p. 1263-1271.
39.陳宴儀, 國立中興大學材料科學與工程研究所碩士論文, 2016.
40.Ferro, R. and A. Saccone, 2008: Elsevier.
41.http://emaps.mrl.uiuc.edu/default.asp.

第三章參考文獻
1.陳弘穎, 奈米材料的顯微結構分析技術簡介:掃描式電子顯微鏡
2.Dieter, G.E. and D.J. Bacon, Mechanical metallurgy. Vol. 3. 1986: McGraw-hill New York.
3.Gale, W.F. and T.C. Totemeier, Smithells metals reference book. 2003: Butterworth-Heinemann.

第四章參考文獻
1.Hsu, U.S., et al., Materials Science and Engineering: A, 2007. 460: p. 403-408.
2.Zhang, H., Y. He, and Y. Pan, Scripta Materialia, 2013. 69(4): p. 342-345.
3.Lee, C., et al. in 209th Electrochemical Society (ECS) Meeting, Denver, Colorado, USA, May 7-12. 2006.
4.Fang, S., W. Chen, and Z. Fu, Materials & Design (1980-2015), 2014. 54: p. 973-979.
5.Shun, T.-T. and Y.-C. Du, Journal of Alloys and Compounds, 2009. 478(1): p. 269-272.
6.Praveen, S., B.S. Murty, and R.S. Kottada, Materials Science and Engineering: A, 2012. 534: p. 83-89.
7.Zhou, Y.J., et al., Materials Science and Engineering: A, 2007. 454: p. 260-265.
8.Yuhu, F., et al., Rare Metal Materials and Engineering, 2013. 42(6): p. 1127-1129.
9.Manzoni, A.M., et al., Ultramicroscopy, 2015. 159: p. 265-271.
10.Singh, S., et al., Acta Materialia, 2011. 59(1): p. 182-190.
11.Ng, C., et al., Intermetallics, 2012. 31: p. 165-172.
12.Li, C., et al., Materials & Design, 2016. 90: p. 601-609.
13.Chen, M.-R., et al., The Japan Institute of Metals, 2006. 47(5): p. 1395-1401.
14.Chen, M.-R., et al., Metallurgical and Materials Transactions A, 2006. 37(5): p. 1363-1369.
15.Young, K., et al., Journal of Power Sources, 2012. 204: p. 205-212.
16.Wang, Z., et al., Materials Science and Engineering: A, 2015. 627: p. 391-398.
17.Jien-Wei, Y., et al. 2533-2536 DOI: 10.1007/s11661-006-0234-4.
18.Hu, Z., et al., Materials & Design, 2010. 31(3): p. 1599-1602.
19.He, J.Y., et al., Acta Materialia, 2014. 62: p. 105-113.
20.Tsai, M.-H., et al., Materials Research Letters, 2016. 4(2): p. 90-95.
21.Tsai, M.-H., et al., Materials Research Letters, 2013. 1(4): p. 207-212.
22.Juan, C.-C., et al., Intermetallics, 2013. 32: p. 401-407.
23.Ma, S. and Y. Zhang, Materials Science and Engineering: A, 2012. 532: p. 480-486.
24.Gwalani, B., et al., Scripta Materialia, 2016. 123: p. 130-134.
25.Zhang, H., et al., Intermetallics, 2011. 19(8): p. 1130-1135.
26.Wang, L., et al., Materials Chemistry and Physics, 2011. 126(3): p. 880-885.
27.Zhou, Y., et al., Applied physics letters, 2007. 90(18): p. 181904.
28.He, J., et al., Acta Materialia, 2016. 102: p. 187-196.
29.Lee, C.-F. and T.-T. Shun, Materials Characterization, 2016. 114: p. 179-184.
30.Zhang, K., et al., Materials Science and Engineering: A, 2009. 508(1): p. 214-219.
31.Wu, C., et al., Journal of Alloys and Compounds, 2017. 698: p. 761-770.
32.Chen, J., et al., Materials & Design, 2016. 94: p. 39-44.
33.Lee, C.-F. and T.-T. Shun, Metallurgical and Materials Transactions A, 2014. 45(1): p. 191-195.
34.Liu, L., et al., Journal of Alloys and Compounds, 2016. 654: p. 327-332.
35.Liu, L., et al., Materials & Design, 2013. 46: p. 675-679.
36.Zhuang, Y., et al., Materials Science and Engineering: A, 2012. 556: p. 395-399.
37.Mohanty, S., N. Gurao, and K. Biswas, Materials Science and Engineering: A, 2014. 617: p. 211-218.
38.Hsu, C.-Y., et al., Materials Science and Engineering: A, 2011. 528(10): p. 3581-3588.
39.Butler, T., et al., Jom, 2015. 67(1): p. 246-259.
40.Maulik, O., et al., Intermetallics, 2016. 77: p. 46-56.
41.Khanchandani, H., et al., Advanced Powder Technology, 2016. 27(1): p. 289-294.
42.Guo, S., C. Ng, and C.T. Liu, Journal of Alloys and Compounds, 2013. 557: p. 77-81.
43.Choudhuri, D., et al., Scripta Materialia, 2017. 127: p. 186-190.
44.Pi, J.-H., et al., Journal of Alloys and Compounds, 2011. 509(18): p. 5641-5645.
45.Baker, I., et al., Journal of Alloys and Compounds, 2016. 656: p. 458-464.
46.Tsai, M.-H., et al., Intermetallics, 2013. 33: p. 81-86.
47.Dong, Y., et al., Materials Letters, 2016. 169: p. 62-64.
48.Dong, Y., et al., Journal of Alloys and Compounds, 2013. 573: p. 96-101.
49.Lin, C.-W., et al., Materials Science and Technology, 2015. 31(10): p. 1165-1170.
50.Young, K., et al., Journal of Alloys and Compounds, 2010. 490(1): p. 282-292.
51.Chen, H., et al., Journal of Alloys and Compounds, 2016. 661: p. 206-215.
52.Chang, H.-W., et al., Thin Solid Films, 2008. 516(18): p. 6402-6408.
53.Stepanov, N., et al., Materials Letters, 2017. 188: p. 162-164.
54.Yurchenko, N.Y., et al., Materials Characterization, 2016. 121: p. 125-134.
55.Huang, C., et al., Surface and Coatings Technology, 2011. 206(6): p. 1389-1395.
56.Yang, X., et al., JOM, 2014. 66(10): p. 2009-2020.
57.Zhang, Z., et al., Materials & Design, 2016. 108: p. 106-113.
58.Wang, Z., et al., Intermetallics, 2016. 75: p. 79-87.
59.Jensen, J., et al., Scripta Materialia, 2016. 121: p. 1-4.
60.Poletti, M., et al., Journal of Alloys and Compounds, 2016. 655: p. 138-146.
61.Tan, X.-R., et al., Materials & Design, 2016. 109: p. 27-36.
62.Yurchenko, N.Y., et al., Metals, 2016. 6(12): p. 298.
63.Ding, J., et al., Journal of Alloys and Compounds, 2017. 696: p. 345-352.
64.Stepanov, N., et al., Journal of Alloys and Compounds, 2016. 687: p. 59-71.
65.Guo, N., et al., Intermetallics, 2016. 69: p. 74-77.
66.Zhou, Y., et al., Materials Science and Engineering: A, 2007. 454: p. 260-265.
67.Praveen, S., B. Murty, and R.S. Kottada, Materials Science and Engineering: A, 2012. 534: p. 83-89.
68.Wang, X., et al., Intermetallics, 2007. 15(3): p. 357-362.
69.Guo, S., et al., Intermetallics, 2013. 41: p. 96-103.
70.Huo, W.-y., et al., Advances in Materials Science and Engineering, 2015. 2015.
71.Stepanov, N., et al., Journal of Alloys and Compounds, 2015. 628: p. 170-185.
72.Shun, T.-T., L.-Y. Chang, and M.-H. Shiu, Materials Characterization, 2012. 70: p. 63-67.
73.Shun, T.-T., L.-Y. Chang, and M.-H. Shiu, Materials Characterization, 2013. 81: p. 92-96.
74.Tsai, M.-H., A.-C. Fan, and H.-A. Wang, Journal of Alloys and Compounds, 2017. 695: p. 1479-1487.
75.Chou, Y., J. Yeh, and H. Shih, Corrosion Science, 2010. 52(8): p. 2571-2581.
76.Liu, W., et al., Intermetallics, 2015. 60: p. 1-8.
77.Zhang, K. and Z. Fu, Intermetallics, 2012. 22: p. 24-32.
78.Chuang, M.-H., et al., Acta Materialia, 2011. 59(16): p. 6308-6317.
79.Shun, T.-T., L.-Y. Chang, and M.-H. Shiu, Materials Science and Engineering: A, 2012. 556: p. 170-174.
80.Jiang, L., et al., Intermetallics, 2014. 44: p. 37-43.
81.Fu, Z., et al., Materials & Design, 2013. 44: p. 535-539.
82.Shun, T.-T., C.-H. Hung, and C.-F. Lee, Journal of Alloys and Compounds, 2010. 493(1): p. 105-109.
83.Otto, F., et al., Acta Materialia, 2013. 61(7): p. 2628-2638.
84.Cai, Z., et al., Vacuum, 2016. 124: p. 5-10.
85.Liu, L., et al., Materials Science and Engineering: A, 2012. 548: p. 64-68.
86.Samal, S., et al., Materials Science and Engineering: A, 2016. 664: p. 227-235.
87.Kao, Y.-F., et al., international journal of hydrogen energy, 2010. 35(17): p. 9046-9059.
88.Jiang, L., et al., Journal of Alloys and Compounds, 2015. 649: p. 585-590.
89.Jiang, L., et al., Journal of Materials Science & Technology, 2016. 32(3): p. 245-250.
90.Zuo, T., et al., Journal of Magnetism and Magnetic Materials, 2014. 371: p. 60-68.
91.Han, Z., et al., Progress in Natural Science: Materials International, 2015. 25(5): p. 365-369.
92.Jiang, H., et al., Materials & Design, 2016. 109: p. 539-546.
93.Lee, C., et al., Corrosion Science, 2008. 50(7): p. 2053-2060.
94.Kunce, I., M. Polanski, and J. Bystrzycki, International Journal of Hydrogen Energy, 2013. 38(27): p. 12180-12189.
95.Jiang, H., et al., Journal of Materials Engineering and Performance, 2015. 24(12): p. 4594-4600.
96.Fazakas, E., et al., International Journal of Refractory Metals and Hard Materials, 2014. 47: p. 131-138.
97.Senkov, O. and C. Woodward, Materials Science and Engineering: A, 2011. 529: p. 311-320.
98.Senkov, O., et al., Acta Materialia, 2013. 61(5): p. 1545-1557.
99.Takeuchi, A., T. Wada, and Y. Zhang, Intermetallics, 2017. 82: p. 107-115.
100.Guo, N., et al., Journal of Alloys and Compounds, 2016. 660: p. 197-203.
101.Zhang, Y., et al., Materials Letters, 2016. 174: p. 82-85.
102.Wu, Y., et al., Materials & Design, 2015. 83: p. 651-660.
103.Anzorena, M.S., et al., Materials & Design, 2016. 111: p. 382-388.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top