跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2025/01/19 07:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張鈺偉
研究生(外文):Yu-Wei Chang
論文名稱:以反應式濺鍍系統製備p型非晶質鉻碳薄膜合金:不同射頻功率之影響
論文名稱(外文):p-Type amorphous chromium carbon thin film alloys prepared by reactive sputtering system: effect of differentradio-frequency powers
指導教授:薛顯宗
口試委員:蔡健益劉恒睿
口試日期:2017-06-07
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:123
中文關鍵詞:反應式濺鍍系統非晶質碳薄膜
外文關鍵詞:amorphous carbon thin filmsreactive sputtering systemchromium
相關次數:
  • 被引用被引用:0
  • 點閱點閱:130
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本論文藉由反應式濺鍍系統製備p型非晶質鉻碳(a-CrC)薄膜合金,並探討不同射頻功率對a-CrC薄膜合金性質之影響。實驗過程中,以50、100、150、200及250 W等五種射頻功率將a-CrC薄膜合金沉積在n型矽基板上。同時,工作壓力、基板溫度及甲烷/氬氣流量分別設為6 Pa、298 K 和2/10 sccm,並藉由不同沉積時間將a-CrC薄膜合金厚度均固定在100 nm。實驗結果顯示,隨著射頻功率由50增至250 W時,a-CrC薄膜合金沉積速率由47增至67 nm/min。量測結果顯示,當射頻功率由50增加至250 W時,碳氫鍵隨著射頻功率增加而減少,sp2/(sp2+sp3) 碳原子的比例由20增至49.3%,而鉻/碳比由0.001增至1.68。當射頻功率由50增加至250 W時,sp2/sp3碳原子比及鉻/碳比上升,使得光學能隙由2.45下降至0 eV,而電阻率由8.8×10-4下降至2.2×10-5 Ω-m。由電流電壓量測結果顯示,a-CrC/n-Si元件均具有整流特性。隨著射頻功率由50增加至250 W,a-CrC/n-Si元件的串聯電阻、並聯電阻及內建電位均下降,但是逆向飽和電流上升。當射頻功率為150 W時,a-CrC/n-Si元件有最佳的理想因子2.3。
The effect of different radio-frequency (rf) powers on the characteristics of p-type amorphous chromium carbon (a-CrC) thin film alloys prepared by reactive sputtering system is investigated. Five kinds of a-CrC thin film alloys were deposited on n-type silicon (n-Si) with the rf power being 50, 100, 150, 200, and 250 W. The working pressure, substrate temperature, and Ar/CH4 flow rate were kept at 6 Pa , 298 K, 2/10 sccm, respectively. All the thickness of a-CrC thin film alloys were fixed at 100 nm by varying the deposition time. Experimental results indicate that as the rf power increases from 50 to 250 W, the deposition rate of a-CrC thin film alloys increases from 47 to 67 nm/min. The measured results show that the carbon-hydrogen bonds in a-CrC thin film alloys decrease with increasing the rf power from 50 to 250 W. Moreover, the sp2/(sp2+sp3) carbon ratio of a-CrC thin film alloys increases from 20 to 49.3% with increasing the rf power from 50 to 250 W, and the Cr/C ratio also increases from 0.001 to 1.68. The sp2/sp3 carbon ratio and Cr/C ratio of a-CrC thin film alloys increase with increasing the rf power from 50 to 250 W, so the optical band gap decreases from 2.45 to 0 eV and the electrical resistivity decreases from 8.8×104 to 2.2×10-5 Ω-m. The current density-voltage results show that the a-CrC/n-Si devices exhibit the rectify behavior. When the a-CrC films were prepared at the rf power from 50 to 250 W, the series resistance, shunt resistance, and built-in voltage of the a-CrC/n-Si devices decrease, but the reverse saturation current of the a-CrC/n-Si devices increases. As the a-CrC thin film alloy was prepared at the rf power of 150 W, the a-CrC/n-Si device has the best ideality factor of 2.3.
總目錄
摘要 i
Abstract ii
總目錄 iv
圖目錄 viii
表目錄 xii
第一章 緒論 1
1-1 碳材料之介紹 1
1-1-1 碳元素 1
1-1-2 碳元素之同素異形體特性 3
1-2非晶質碳膜沉積法與薄膜沉積介紹 12
1-2-1 非晶質碳膜沉積法 12
1-2-2 薄膜沉積機制 16
1-3非晶質碳膜摻雜改質 20
1-4 pn接面(pn junction)基本原理 22
1-5有關非晶質鉻碳薄膜文獻回顧 24
1-6研究動機及目的 25
1-7論文概述 27
第二章 實驗步驟 29
2-1實驗流程 29
2-2試片準備與前處理 31
2-3鍍膜沉積系統 34
2-3-1反應式濺鍍沉積系統 (Reactive sputtering deposition) 34
2-3-2 鍍金機 (Cressington Scientific Sputter Coater 108auto) 38
2-4 p型非晶質鉻碳薄膜及pn接面二極體製備 40
2-5電漿診斷 44
2-6非晶質鉻碳薄膜微觀結構量測 46
2-6-1場發射掃描式電子顯微鏡 46
2-6-2 X光繞射光譜儀 48
2-6-3傅立葉轉換紅外光光譜儀 52
2-6-4拉曼散射光譜儀 53
2-6-5 X光光電子能譜儀 58
2-7非晶質鉻碳薄膜光學性質量測 60
2-8非晶質鉻碳薄膜電阻率量測 65
2-8-1 串聯式電阻量測 65
2-8-2 四點探針 68
2-9 元件特性量測 70
2-9-1 電流電壓特性量測 70
2-9-2 電容電壓特性量測 71
第三章 結果與討論 72
3-1 電漿診斷分析 72
3-2 薄膜沉積速率 76
3-3 微觀結構 78
3-3-1 場發射掃描式電子顯微鏡(FESEM) 78
3-3-2 X光繞射光譜儀(XRD) 79
3-3-3 傅立葉轉換紅外光光譜儀(FTIR) 80
3-3-4 拉曼散射光譜儀(RSS) 83
3-3-5 X光光電子能譜儀(XPS) 88
3-4 不同射頻功率對非晶質鉻碳薄膜光學性質之影響 93
3-5 不同射頻功率對非晶質鉻碳薄膜電阻率性質之影響 97
3-6 元件特性量測 100
3-6-1 電流密度與電壓特性 100
3-6-2 電容電壓特性 103
3-7 非晶質碳薄膜摻雜不同元素之比較 107
第四章 結論 116
第五章 參考文獻 117
作者簡介 123

[1]J.Robertson, Mater. Sci. Eng. R-Rep., 37 (2002) 129.
[2]R. Sengupta, M. Bhattacharya, S. Bandyopadhyay, A.K. Bhowmick, Prog. Polym. Sci., 36 (2011) 638.
[3]H. Zhu, J. Wei, K. Wang, D. Wu, Sol. Energ. Mater. Sol. Cells, 93 (2009) 1461.
[4]A. Astefanei, O. Núñez, M.T. Galceran, Anal. Chim. Acta., 882 (2015) 1.
[5]D. Haag, H.H. Kung, Top. Catal., 57 (2014) 762.
[6]I.N. Remediakis, M.G. Fyta, C. Mathioudakis, G. Kopidakis, and P.C. Kelires, Diam. Relat. Mat., 16 (2007) 1835.
[7]R.J. King, Geol. Today., 22 (2006) 71.
[8]A. Modabber Asl, P. Kameli, M. Ranjbar, H. Salamati, M. Jannesari, Superlattices Microstruct., 81 (2015) 64.
[9]J. Wang, C. Wang, Y. Liu, L. Cheng, W. Li, Q. Zhang, X. Yang, Appl. Surf. Sci., 340 (2015) 49.
[10]H.W. Kroto, J.R. Heath, S.C. Obrien, R.F. Curl, R.E. Smalley, Nat., 318 (1985) 162.
[11]W. Krätschmer, L.D. Lamb, K. Fostiropoulos, D.R. Huffman, Nat., 347 (1990) 354.
[12]R.C. Haddon, A.F. Hebard, M.J. Rosseinsky, D.W. Murphy, S.J. Duclos, Nat., 350 (1991) 320.
[13]Y. Kawazoe, T. Kondow, K. Ohno, “Clusters and Nanomaterials” , Springer, Heidelberg, Germany (2002).
[14]S. Lijima, Nat., 354 (1991) 56.
[15]V. Kohlschütter, P. Haenni, Z. Anorg. Allg. Chem., 105 (1918) 121.
[16]K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science, 306 (2004) 666.
[17]J.H. Lee, E.K. Lee, W.J. Joo, Y. Jang, B.S. Kim, J.Y. Lim, Science, 344 (2014) 286.
[18]G.P. Veronese, M. Allegrezza, M. Canino, E. Centurioni, L. Ortolani, R.Rizzoli, V. Morandi, C. Summonte, Sol. Energ. Mater. Sol. Cells, 138 (2015) 35.
[19]J.V. Anguita, S.R.P. Silva, W. Young, J. Appl. Phys., 88 (2000) 5175.
[20]R.U.A. Khan, S.R.P. Silva, Diam. Relat. Mater., 10 (2001) 1036.
[21]R.C. Barklie, Diam. Relat. Mater., 10 (2001) 174.
[22]J. Schwan, S. Ulrich, T. Theel, H. Roth, H. Ehrhardt, P. Becker, S.R.P. Silva, J. Appl. Phys., 82 (1997) 6024.
[23]S. Aisenberg, R. Chabot, J. Appl. Phys., 42 (1971) 2953.
[24]L. Holland, S.M. Ojha, Thin Solid Films. 38 (1976) 17.
[25]W. Jacob, W. Möller, Appl. Phys. Lett., 63 (1993) 1771.
[26]R. Gago, Thin Solid Films. 338 (1999) 88.
[27]Y. Hayashi, K. Hagimoto, H. Ebisu, M.K. Kalaga, T. Soga, M. Umeno, T. Jimbo, Jpn. J. Appl. Phys., 39 (2000) 4088.
[28]H.C. Lin, S.T. Shiue, Y.M. Chou, T.C. Wu, Thin Solid Films, 516 (2007) 114.
[29]S.S. Chen, S.T. Shiue, K.J. Cheng, P.Y. Chen, H.Y. Lin, Opt. Eng., 47 (2008) 45005.
[30]E. Tomasella, C. Meunier, S. Mikhailov, Surf. Coat. Technol., 141 (2001) 286.
[31]N.K. Cuong, M. Tahara, N. Yamauchi, T. Sone, Surf. Coat.Technol., 174 (2003) 1024.
[32]Y. Liu, C. Liu, Y. Chen, Y. Tzeng, P. Tso, I. Lin, Diam. Relat. Mater., 13 (2004) 671.
[33]S.R. Jian, T.H. Fang, D.S. Chuu, J. Non-Cryst. Solids, 333 (2004) 291.
[34]G. Fanchini, A. Tagliaferro, B. Popescu, E.A. Davis, J. Non-Cryst. Solids, 299 (2002) 846.
[35]I. Langmuir, Phys. Rev., 33 (1929) 954.
[36]A. Grill, “Cold plasma in materials fabrication: From Fundamentals to Applications”, IEEE Press, New York, U.S.A. 1994.
[37]Z. Sun, C.H. Lin, Y.L. Lee, J.R. Shi, B.K. Tay, X. Shi, J. Appl. Phys., 87 (2000) 8122.
[38]G. Capote, F.L. Freire, L.G. Jacobsohn, G. Mariotto, Diam. Relat. Mater., 13 (2004) 1454.
[39]G. Capote, R. Prioli, P.M. Jardim, A.R. Zanatta, L.G. Jacobsohn, F.L. Freire Jr., J. Non-Cryst. Solids, 338 (2004) 503.
[40]H. Tahara, K. Minami, A. Murai, T. Yasui, T. Yoshikawa, Jpn. J. Appl. Phys., 34 (1995) 1972.
[41]M.L. Hitchman, K.F. Jensen, “Chemical Vapor Deposition”, Academic Press, San Diego, U.S.A. (1993).
[42]C. Wan, X. Zhang, Appl. Phys. Lett., 95 (2009) 22105.
[43]H.C. Hsueh, Y.K. Wang, S. Lee, Surf. Coat. Technol., 231 (2013) 353.
[44]T.S. Chen, S.E. Chiou, S.T. Shiue, Thin Solid Films, 528 (2013) 86.
[45]A. Ilie, O. Harel, N.M.J. Conway, T. Yagi, J. Robertson, W.I. Milne, J. Appl. Phys., 87 (2000) 789.
[46]V.S. Veerasamy, G.A.J. Amaratunga, C.A. Davis, A.E. Timbs, W.I. Miline, D.R. Mackenzie, J. Phys. Condens. Matter., 5 (1993) L169.
[47] W.D. Callister Jr., “Materials Science and Engineering: An Introduction”, John Wiley & Sons, New York, U.S.A. (2007).
[48]X. Chen, Z. Peng, Z. Fu, W. Yue, X. Yu, C. Wang, Surf. Coat. Technol., 204 (2010) 3319.
[49]M. Andersson, J. Högström, S. Urbonaite, A. Furlan, L. Nyholm, U. Jansson, Vacuum., 86 (2012) 1408.
[50]H.Y. Cheng, J.W. Chiou, J.M. Ting, Y. Tzeng, Thin Solid Films. 529 (2013) 164.
[51]K. Nygren, M. Samuelsson, A. Flink, H. Ljungcrantz, Å. Kassman Rudolphi, U. Jansson, Surf. Coat. Technol. 260 (2014) 326.
[52]M. Jelinek, T. Kocourek, J. Zemek, J. Mikšovský, Š. Kubinová, J. Remsa, J. Kopeček, K. Jurek, Mater. Sci. Eng. C., 46 (2015) 381–386.
[53]Wikipedia, https://zh.wikipedia.org/wiki/chromium
[54]B.D. Cullity, S.R. Stock, “Elements of X-ray Diffraction”, Prentice Hall, New Jersey, U.S.A. (2001).
[55]吳崇贊,國立中興大學碩士學位論文,2016.
[56]R. W. Wood, Nat., 122 (1928) 349.
[57]Y. Kawashima, G. Katagiri, Phys. Rev. B., 52 (1995) 10053.
[58]C. Thomsen, S. Reich, , Phys. Rev. Lett., 85 (2000) 5214.
[59]A. C. Ferrari, Diam. Relat. Mater., 11 (2002) 1053.
[60]A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, U. Pöschl, Carbon, 43 (2005) 1731.
[61]H.C. Tsai, D.B. Bogy, M.K. Kundmann, D.K. Veirs, M.R. Hilton, and S.T. Mayer, J. Vac. Sci. Technol., 6 (1988) 2307.
[62]Z. Ning, S. Cheng, S. Yang, Curr. Appl. Phys., 2 (2002) 439.
[63] C. Ye, Z. Ning, S. Cheng, Y. Xin, S. Xu, Diam. Relat. Mater., 13 (2004) 191.
[64]J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi B, 15 (1966) 627.
[65]J. Robertson, J. Non-Cryst. Solids, 198 (1996) 615.
[66]H.C. Hsueh, H.C. Li, D. Chiang, S. Lee, J. Electrochem. Soc., 159 (2012) D77.
[67]“Instruction manual of the Four-point Probe (Model: QT-50)”, Quatek Corporation Limited, Napson Corporation, Japan.
[68]P. Niedzielski, L. Kozak, M. Wachelka, K. Jakubowski, J. Wybieralska, Talanta., 132 (2015) 591.
[69]A. Granier, M. Vervloet, K. Aumaille, C. Vallée, Plasma Sources Sci. Technol., 12 (2003) 89.
[70]L. Wójcik, A. Markowski, Vacuum, 78 (2005) 235.
[71]H.C. Lin, S.T. Shiue, Y.M. Chou, Surf. Coat. Technol., 202 (2008) 5360.
[72]T.S. Chen, S.T. Shiue, Thin Solid Films, 520 (2012) 6765.
[73]J.F. Yu, T.S. Chen, H.C. Lin, S.T. Shiue, Phys. Status Solidi A-Appl. Mat., 207 (2010) 379.
[74]T. Heitz, B. Drévillon, C. Godet, J.E. Bourée, Phys. Rev. B., 58 (1998).
[75]N. Shimodaira, A. Masui, J. Appl. Phys., 92 (2002) 902.
[76]A.C. Ferrari, J. Robertson, Phys. Rev. B., 61 (2000) 14095.
[77]C. Casiraghi, A.C. Ferrari, J. Robertson, Phys. Rev. B, 72 (2005) 1.
[78] C. D. Wagner G.E. Mullenberg, Handbook of X-ray Photoelectron
Spectroscopy, Perkin Elmer Corporation, Minnesota, USA, (1979).
[79]P. Mérel, M. Tabbal, M. Chaker, S. Moisa, J. Margot, Appl. Surf. Sci., 136 (1998) 105.
[80]G. LeDû, N. Celini, F. Bergaya, F. Poncin-Epaillard, Surf. Coat. Technol., 201 (2007) 5815.
[81]J.C. Lascovich, S. Scaglione, Appl. Surf. Sci., 78 (1994) 17.
[82]K.I. Ishibashi, Y. Kimura, M. Niwano1, J. Appl. Phys., 103 (2008) 094507.
[83]洪嘉陽,國立中興大學碩士學位論文,2015.
[84]陳泓均,國立中興大學碩士學位論文,2014.
[85]陳村松,國立中興大學碩博士學位論文,2013.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top