第1章
1. Fujishima, K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238 (1972) 37–38.
2. S.L. Kuo, C.J. Liao, “Photocatalytic disinfection of bacteria by sodium light with smectite catalysts,” Water Qual. Res. J. Canada 41, 4 (2006) 365–374.
3. 田中義身,光觸媒技術研討會,經濟部,2000。
4. Z. Zhang, C.C. Wang, R. Zakria, J.Y. Ying, “Role of particle size in nanocrystalline TiO2-based photocatalysts,” J. Phys. Chem. B 102 (1998) 10871–10878.
5. C.P, Tro, C.M, Zhung, Y.H. Shih, Y.M. Tseng, S.C. Wu, R.A. Doong, “Stability of metal oxide nanoparticles in aqueous solutions,” Water Science & Technology—WST 61, 1 (2010) 127–133.
6. N. Daneshvar, D. Salari, A.R. Khataee, “Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2,” J. Photochem. Photobiol. A Chem. 162, 2-3 (2004) 317–322.
7. J.H. Lim, C.K. Kang, K.K. Kim, I.K. Park, D.K. Hwang, S.J. Park, “UV electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radiofrequency sputtering,” Adv. Mater. 18 (2006) 2720–2724.
8. A.B.G Lansdown, A. Taylor, “A zinc and titanium oxides: Promising UV absorbers but what influence do they have on the intact skin?” Int. J. Cosmet. Sci. 19 (1997) 167–172.
9. M.T. Mohammad, A.A. Hashim, M.H. Al-Maamory, “Highly conductive and transparent ZnO thin films prepared by spray pyrolysis technique,” Mater. Chem. Phys. 99 (2006) 382–387.
10. S.G Kumar, K.S.R.K. Rao, “Zinc oxide based photocatalysis-tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications,” RSC Adv. 5 (2015) 3306–3351.
11. S.G. Kumar, K.S.R.K. Rao, “Polymorphic phase transition among the titania crystal structures using a solution-based approach-from precursor chemistry to nucleation process,” Nanoscale 6 (2014) 11574–11632.
12. X. Li, J. Yu , M. Jaroniec, “Hierarchical photocatalysts,” Chem. Soc. Rev., 45 (2016) 2603–2636.
13. T.G. Smijs, S. Pavel, “Titanium dioxide and zinc oxide nanoparticles in sunscreens: Focus on their safety and effectiveness,” Nanotechnol Sci Appl. 4 (2011) 95–112.
14. C. Seebode, J. Lehmann, S. Emmert, “Photocarcinogenesis and skin cancer prevention strategies,” Anticancer Res. 36 (2016) 1371–1378.
15. S. Tanemura, L. Miao, W. Wunderlich, M. Tanemura, Y. Mori, S. Toh, K. Kaneko, “Fabrication and characterization of anatase/rutile-TiO2 thin films by magnetron sputtering: A review,” Sci. Technol. Adv. Mater. 6 (2005) 11–17.
16. X.W. Sun, H.S. Kwok, “Optical properties of epitaxially grown zinc oxides films on sapphire by pulsed laser deposition,” J. Appl. Phys. 86 (1999) 408–411.
17. R.J. Barnes, R. Molina, J. Xu, P.J. Dobson, I.P. Thompson, “Comparison of TiO2 and ZnO nanoparticles for photocatalytic degradation of methylene blue and the correlated inactivation of gram-positive and gram-negative bacteria,” J. Nanopart. Res. 15 (2013) 1432–1442.
18. H. Tomaszewski, K. Eufinger, H. Poelman, D. Poelman, R.D. Gryse, P.F. Smet, G.B. Marin, “Effect of substrate sodium content on crystallization and photocatalytic activity of TiO2 films prepared by dc magnetron sputtering,” Int. J. Photoenergy 2007 (2007) 1–6. doi:10.1155/2007/95213.
19. W.A. Saywell, “Thermal spray industry continues to develop,” Met. Powder Rep. 51 (1996) 34–37.
20. J. He, M. Ice, S. Dallek, E. J. Lavernia, “Synthesis of nanostructured WC-12 pet Co coating using mechanical milling and high velocity oxygen fuel thermal spraying,” Metall. Mater. Trans. A: Physical Metallurgy and Materials Science 31 (2000) 541–553.
21. B.S. Schorr, K.J. Stein, A.R. Marder, “Characterization of thermal spray coatings,” Mater. Charact. 42 (1999) 93–100.
22. C.C. Berndt, S. Safai, D.R. Marantz, Coating Characteristics, Thermal Spraying: Practice, Theory, and Application, 1st ed., M.L. Thorpe, AWS Committee on Thermal Spraying Press, 1985, pp. 6–12.
23. L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, New York, John Wiley & Sons, 1995, pp.79–82.
24. 蕭威典,熔射覆膜技術,全華科技圖書,2006。
25. E. Pfender, “Fundamental studies associated with the plasma spray process,” Proceedings of the National Thermal Spray Conference, 1987, pp. 1–10.
26. S. Steinhäuser, B. Wielage, U. Hofmann, T. Schnick, A. Ilyuschenko and T. Azarova, “Plasma-sprayed wear-resistant coatings with respect to ecological aspects,” Surface & Coatings Technology 131 (2000) 365–371.
27. E. Dongmo, M. Wenzelburger and R. Gadow, “Analysis and optimization of the HVOF process by combined experimental and numerical approaches,” Surface & Coatings Technology 202 (2008) 4470–4478.
28. J.F. Li, L. Li, F.H. Stott, “Crystallographical analysis of surface layers of refractory ceramics formed using combined flame spray and simultaneous laser treatment,” J. Eur. Ceram. Soc. 24 (2004) 3129–3138.
29. S. Thybo, S. Jensen, J. Johansen, T. Johannessen, O. Hansen, U.J. Quaade, “Flame spray deposition of porous catalysts on surfaces and in microsystems,” J. Catal. 223 (2004) 271–277.
30. Sulzer Metco web, https://www.upc.edu/sct/es/documents_equipament/d_324_id-804-2.pdf, “An Introduction to Thermal Spray,” Aug 6, 2017, p1-24.
31. J.R. Davis (Ed.), “Introduction to Thermal Spray Processing,” Handbook of Thermal Spray Technology, ASM International, Material Park, OH, 2004, pp. 3-13.
32. 王海軍,熱噴塗材料及應用,國防工業出版社,2008。
33. https://goldbook.iupac.org/html/P/PT07446.html, Jul 20, 2017.
34. 李佳欣,二氧化鈦粉體表面吸附鎳之改質研究,碩士論文,逢甲大學,台中,2006。
35. Fujishima, T.N. Rao, D.A. Tryk, “Titanium dioxide photocatalysis”, J. Photoch. Photobio. C: Photochemistry Reviews 1 (2000) 1–21.
36. M. Hayyan, M.A. Hashim, I.M. AlNashef, “Superoxide ion: Generation and chemical implications,” Chem. Rev. 116, 5 (2016) 3029–3085.
37. F.L. Toma, G. Bertrand, S.O. Chwa, D. Klein, H. Liao, C. Meunier, C. Coddet, “Microstructure and photocatalytic properties of nanostructured TiO2 and TiO2–Al coatings elaborated by HVOF spraying for the nitrogen oxides removal,” Mater. Sci. Eng. 417 (2006) 56–62.
38. Y. C. Nah, I. Paramasivam, P. Schmuki, “Doped TiO2 and TiO2 Nanotubes: Synthesis and Applications,” Chem. Phys. Chem. 11 (2010) 2698–2713.
39. H. Sakai, R.X. Cai, R. Baba, K. Hashimoto, Y. Kubota, A. Fujishima, Photocatalytic purification and treatment of water and air: proceedings of the 1st International Conference on TiO2 photocatalytic purification and treatment of water and air, London, Ontario, Canada, 8-13 November, 1992, Ollis, D.F. Ollis and H. Al-Ekabi, Eds., Elsevier, New York, 1993, pp.651–657.
40. S. Jin, F. Shiraishi, “Photocatalytic activities enhanced for decompositions of organic compounds over metal-photodepositing titanium dioxide,” Chem. Eng. J. 97 (2004) 203–211.
41. R.D. Vidic, F.G. Pohland, in: Technology Evaluation Report TE-96-01: Treatment Walls, Ground-Water Remediation Technologies Analysis Center, Pittsburgh, PA, 1996.
42. M. Schiavello, “Some working principles of heterogeneous photocatalysis by semiconductors,” Electrochim. Acta 38 (1993) 11–14.
43. T. Sakta, “Heterogeneous photocatalysis at liquid-solid interfaces,”in Photocatalysis-Fundamentals and Applications, N. Serpone and E. Pelizzetti (ed.), John Wiley&Sons, Inc.,1989.
44. M. Bizarro, A.S.Arzate, I.G. Wilches, J.C. Alonso and A. Ortiz, “Synthesis and characterization of ZnO and ZnO: Al by spray pyrolysis with high photocatalytic properties,” Catal. Today 166 (2011) 129–134.
45. Kafizas, S. Kellici, J.A. Darr, I.P. Parkin, “Titanium dioxide and composite metal/metal oxide titania thin films on glass: A comparative study of photocatalytic activity,” J. Photoch. Photobio. A: Chemistry 204 (2009) 183–190.
46. P. Pawinrat, O. Mekasuwandumrong and J. Panpranot, “Synthesis of Au-ZnO and Pt-ZnO nanocomposites by one-step flame spray pyrolysis and its application for photocatalytic degradation of dyes,” Catal. Commun., 10 (2009) 1380–1385.
47. 曾展?,以貴金屬奈米粒子-氧化鋅奈米柱複合光觸媒分解甲基橙之研究,碩士論文,成功大學,台南,2005。
48. H.Y. Zhu, R. Jiang, Y.Q. Fu, Y.J. Guan, J. Yao, L. Xiao, G.M. Zeng, “Effective photocatalytic decolorization of methyl orange utilizing TiO2/ZnO/chitosan nanocomposite films under simulated solar irradiation,” Desalination 286 (2012) 41–48.
49. F. Ye, A. Ohmori, “The photocatalytic activity and photo-absorption of plasma sprayed TiO2–Fe3O4 binary oxide coatings,” Surface & Coatings Technology 160 (2002) 62–67.
50. Bojinova, R. Kralchevska, I. Poulios, C. Dushkin, “Anatase/rutile TiO2 composites: Influence of the mixing ratio on the photocatalytic degradation of Malachite Green and Orange II in slurry,” Mater. Chem. Phys. 106 (2007) 187–192.
51. F.X. Ye, A. Ohmori, T. Tsumura, K. Nakata, C.J. Li, “Microstructural analysis and photocatalytic activity of plasma-sprayed titania-hydroxyapatite coatings,” J. Therm. Spray Techn. 16 (2007) 776–782.
52. Z.Yi, J. Liu, W. Wei, J. Wang, S.W. Lee, “Photocatalytic performance and microstructure of thermal-sprayed nanostructured TiO2 coatings,” Ceram. Int. 34 (2008) 351–357.
53. M. Bozorgtabar, M. Rahimipour, M. Salehi, “Novel photocatalytic TiO2 coatings produced by HVOF thermal spraying process,” Mater. Lett. 64 (2010) 1173–1175.
54. G.J. Yang, C.J. Li, Y.Y. Wang, C.X. Li, “Dominant microstructural feature over photocatalytic activity of high velocity oxy-fuel sprayed TiO2 coating,” Surface & Coatings Technology 202 (2007) 63–68.
55. J. Colmenares-Angulo, S. Zhao, C. Young, A. Orlov, “The effects of thermal spray technique and post-deposition treatment on the photocatalytic activity of TiO2 coatings,” Surface & Coatings Technology 204 (2009) 423–427.
56. N. Kaneva, I. Stambolova, V. Blaskov, Y. Dimitriev, S. Vassilev, C. Dushkin, “Photocatalytic activity of nanostructured ZnO films prepared by two different methods for the photoinitiated decolorization of malachite green,” J. Alloys Compd. 500 (2010) 252–258.
57. M. Fassier, N. Chouard, C.S. Peyratout, D.S. Smith, H. Riegler, D.G. Kurth , C. Ducroquetz, M.A. Bruneaux, “Photocatalytic activity of oxide coatings on fired clay substrates,” J. Eur. Ceram. Soc. 29 (2009) 565–570.
58. 曾士誠,礦化劑對於水熱法成長氧化鋅奈米桿之影響,碩士論文,台灣科技大學,台北,2009。59. J. Sun, H.T. Wang, J. He, Y. Tian, “Ab initio investigations of optical properties of the high-pressure phases of ZnO,” Phys. Rev. B 71 (2005) 125132 pp.5.
60. J.J. Duan, X.H. Liu, Q.F. Han, X. Wang, “Controlled morphologies and optical properties of ZnO films and their photocatalytic activities,” J. Alloys Compd. 509 (2011) 9255–9263.
61. C.F. Klingshirn, “ZnO: Material, physics and applications,” ChemPhysChem 8 (2007) 782–803.
62. 蔡忠育,氧化鋅薄膜之製備與特性分析,碩士論文,台北科技大學,台北,2009。63. K. Ellmer, A. Klein, 2008 ZnO and Its Applications, In: Transparent conductive ZnO: basics and applications in thin film solar cells, Ellmer, K., Klein, A. & Rech, B., (Ed.), 133, Springer-Verlag Berlin Heidelberg, 3-54073-611-0 Berlin Heidelberg Newyork.
64. 戴念澤,翁文彬,製備摻雜鎵鋁氧化鋅陶瓷靶材以射頻磁控濺鍍系統沉積透明導電薄膜之光電性質研究,龍華科技大學學報第二十七期,2009年6月,65–74。
65. E.M. Levin, “Phase diagrams for ceramists”, American Ceramic Society, Westerville, Ohio, USA, 1964.
66. K. Shirouzu, T. Ohkusa, M. Hotta, N. Enomoto, J. Hojo, “Distribution and solubility limit of Al in Al2O3-doped ZnO sintered body,” J. Ceram. Soc. Jpn. 115, 4 (2007) 254−258.
67. D. Li, H. Haneda, “ZnO: Morphologies of zinc oxide particles and their effects on photocatalysis,” Chemosphere 51 (2003) 129–137.
68. J. Rodríguez , F. Paraguay-Delgado, A. López, Julio Alarcón, W. Estrada, “Synthesis and characterization of ZnO nanorod films for photocatalytic disinfection of contaminated water,” Thin Solid Films 519 (2010) 729–735.
69. M. Tului, F. Arezzo, L. Pawlowski, “Optical properties of plasma sprayed ZnO+Al2O3 coatings,” Surface & Coatings Technology, 179 (2004) 47–55.
70. B.D. Yao, Y.F. Chan, N. Wang, “Formation of ZnO nanostructures by a simple way of thermal evaporation,” Appl. Phys. Lett., 81 (2002) 757–759.
71. W.S. Shi, O. Agyeman, C.N. Xu, “Enhancement of the light emissions from zinc oxide films by controlling the post-treatment ambient,” J. Appl. Phys. 91 (2002) 5640–5645.
72. Y. Chen, D.M. Bagnall, H.J. Koh, K.T. Park, K. Hiraga, Z. Zhu, T. Yao, “Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization,” J. Appl. Phys., 84 (1998) 3912–3918.
73. J.J. Wu, S.C. Li, “Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition,” Adv. Mater., 2002, 14, 215–218.
74. B. Cao, W. Cai, G. Duan, Y. Li, O. Zhao, D. Yu, “A template-free electrochemical deposition route to ZnO nanoneedle arrays and their optical and field emission properties,” Nanotechnology 16 (2005) 2567–2574.
75. X. Liu, X. Wu, H. Cao, R.P.H. Chang, “Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition,” J. Appl. Phys. 95 (2004) 3141–3147.
76. Zubiaga, J. A. Grcía, F. Plazaola, F. Tuomisto, K. Saarinen, J.Z. Pérez, V. Muñoz-Sanjosé, “Correlation between Zn vacancies and photoluminescence emission in ZnO films,” J. Appl. Phys., 99 (2006) 053516–053522.
77. M.S. Oh, S.H. Kim, T.Y. Seong, “Growth of nominally undoped p-type ZnO on Si by pulsed-laser deposition,” Appl. Phys. Lett., 87 (2005) 122103–122105.
78. Y. Zhang, B. Lin, X. Sun, Z. Fu, “Temperature-dependent photoluminescence of nanocrystalline ZnO thin films grown on Si (100) substrates by the sol-gel process,” Appl. Phys. Lett., 86 (2005) 131910–131912.
79. Y. Zhao,Y.U. Kwon, “Templateless hydrothermal synthesis of aligned ZnO nanorods,” Chem. Lett. 33 (2004) 1578–1579.
80. H. Chik, J. Liang, S.G. Cloutier, N. Kouklin, J.M. Xu, “Periodic array of uniform ZnO nanorods by second-order self-assembly,” Appl. Phys. Lett., 84 (2004) 3376–3378.
81. J. Tsujino, N. Homma, T. Sugawara, I. Shimono, Y. Abe, “Preparation of Al-doped ZnO Thin Films by RF Thermal Plasma Evaporation,” Thin Solid Films 407 (2002) 86–91.
82. Y. Ando, S. Tobe, H. Tahara, “Rapid Deposition of Photocatalytic Oxide Film by Liquid Feedstock Injection TPCVD in Open Air,” IEEE Trans. Plasma Sci. 34, 4 (2006) 1229–1234.
83. R. Groenen, E.R. Kieft, J.L. Linden, M.C.M. Van De Sanden, “Optoelectronic properties of expanding thermal plasma deposited textured zinc oxide: effect of aluminum doping,” J. Electron. Mater. 35, 4 (2006) 711–716.
84. Yasutaka, K. Akira, T. Shogo, and T. Hirokazu, “High rate zinc oxide film deposition by atmospheric TPCVD using Ar/Air plasma jets,” Trans. JWRI 37, 1 (2008) 33–37.
85. E. Gaudry, D. Cabaret, P. Sainctavit, C. Brouder, F. Mauri, J. Goulon, A. Rogalev, “Structural relaxations around Ti, Cr and Fe impurities in α-Al2O3 probed by x-ray absorption near edge structure combined with first-principles calculations,” J. Phys. Condens. Matter 17, 36 (2005) 5467–5480.
86. 汪建民,陶瓷技術手冊(下),中華民國產業科技發展協進會,中華民國粉末冶金協會,1996。
87. K. Ramachandran, V. Selvarajan, K.P. Screekumar, “Microstructure, adhesion, microhardness, abrasive wear resistance and electrical resistivity of the plasma sprayed alumina and alumina-titania coatings,” Thin Solid Films 315 (1998) 144–151.
88. D. Goberman, Y.H. Sohn, L. Shaw, “Microstructure development of Al2O3-13 wt.% TiO2 plasma sprayed coatings derived from nanocrystalline powders,” Acta Mater. 50 (2002) 1141–1152.
89. J. Tschirch, R. Dillert, D. BahnemannN, B. Proft, A. Biedermann, B. Goer, “Photodegradation of methylene blue in water, a standard method to determine the activity of photocatalytic coatings?” Res. Chem. Intermed. 34, 4 (2008) 381–392.
90. Y. Zeng. G.F. Cheng, M. Wen, W. Wu, “Effect of external bias voltage and coating thickness on the photocatalytic activity of thermal sprayed TiO2 coating,” Prog. Org. Coat. 61 (2008) 321–325.
91. S. Pyne, G. P. Sahoo, D.K. Bhui, H. Bar, P. Sarkar, S. Samanta, A. Maity, A. Misra, “Enhanced photocatalytic activity of metal coated ZnO nanowires,” Spectrochim. Acta - Part A: Molecular and Biomolecular Spectroscopy 93 (2012) 100–105.
92. C.C. Berndt, S. Safai, D.R. Marantz, Coating Characteristics, Thermal Spraying: Practice, Theory, and Application, 1st ed., M.L. Thorpe, AWS Committee on Thermal Spraying Press, 1985, pp. 29–48.
93. M.H. Huang, S. Mao, H. Feick, H. Yan,Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 8 (2001) 1897–1899.
94. M. Anpo, T. Shima, S. Kodam, Y. Kubokawa. “Photocatalytic hydrogenation of propyne with water on small-particle titania: size quantization effects and reaction intermediates,” J. Phys. Chem. 91, 16 (1987) 4305–4310.
95. J.H. Adair, T. Li, T. kido, K. havey, J. Mecholsky, A. Morrone, D.R. Talham, M.H. Ludwig, L. Wang, “Recent developments in the preparation and properties of nanometer-size spherical and platelet-shaped particles and composite particles,” Mater. Sci. Eng. R23 (1998) 139-242.
96. H. Chen, S.W. Lee, T.H. Kim, B.Y. Hur, “Photocatalytic decomposition of benzene with plasmas prayed TiO2-based coatings on foamed aluminum,” J. Eur. Ceram. Soc. 26 (2006) 2231–2239.
97. G.J. Yang, C.J. Li, F. Han, A. Ohmori, “Microstructure and photocatalytic performance of high velocity oxy-fuel sprayed TiO2 coatings,” Thin Solid Films 466 (2004) 81–85.
98. C. Lee, H. Choi, C. Lee, H. Kim, “Photocatalytic properties of nano-structured TiO2 plasma sprayed coating,” Surface & Coatings Technology 173 (2003) 192–200.
第2章
1. R. Chang, K. Ithisuphalap, and I. Kretzschmar, “Impact of particle shape on electron transport and lifetime in zinc oxide nanorod-based dye-sensitized solar cells,” AIMS Materials Science 3, 1 (2016) 51-65.
2. J.K. Kim, S. Bae, W. Kim, M.J. Jeong, S.H. Lee, C.L. Lee, W.K. Choi, J.Y. Hwang, J.H. Park, D.I. Son, “Nano carbon conformal coating strategy for enhanced photoelectrochemical responses and long-term stability of ZnO quantum dots,” Nano Energy 13 (2015) 258–266.
3. Y. Liu, G. Li, “a new method for producing “lotus effect” on a biomimetic shark skin,” Journal of Colloid and Interface Science 388, 1 (2012) 235-242.
4. P.S. Patil, P.S. Chigare, S.B. Sadale, T. Seth, D.P. Amalnerkar, R.K. Kawar, “Thickness-dependent properties of sprayed iridium oxide thin films,” Mater. Chem. Phys. 80 (2003) 667–675.
5. H.M. Rietveld, “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2 (1969) 65–71.
6. http://teaching.shu.ac.uk/hwb/chemistry/tutorials/molspec/beers1.htm, 2015.05.11.
7. J.G. Che, C.T. Chan, W.E. Jian, T.C. Leung, “Surface atomic atructures, surface energies, and equilibrium crystal shape of molybdenum,” Phys. Rev. B, 57, 3 (1998) 1875–1880.
8. P. Kubelka and F. Munk, “Ein Beitrag zur Optik der Farbanstriche,” Z. Tech. Phys. 12 (1931) 593–601.
9. A. Escobedo Morales, E. Sánchez Mora, U. Pal, “Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures,” Rev. Mex. Fis., S, 53 (2007) 18–22.
10. Yonenaga, “Thermo-mechanical stability of wide-bandgap semiconductors high temperature hardness of SiC, AlN, GaN, ZnO and ZnSe,” Physica B 308-310 (2001) 1150–1152.
11. G.C. Kini, S.L. Biswal, M.S. Wong, “Non-LBL assembly and encapsulation uses of nanoparticle-shelled hollow spheres,”Adv. Polym. Sci., 229 (2010) 175–200.
12. Di Chen, “Design, synthesis and properties of highly functional nanostructured photocatalysts,” Recent Pat. Nanotechnol., 2 (2008) 183–189.
13. A. Kołodziejczak-Radzimska, T. Jesionowski, “Zinc oxide-from synthesis to application: a review,” Materials, 7, 4 (2014) 2833–2881.
14. Z. Li, X. Li, X. Zhang, Y. Qian, “Hydrothermal synthesis and characterization of novel flower-like zinc-doped SnO2 nanocrystals,” J. Cryst. Growth, 291, 1 (2006) 258–261.
15. K. Qi, J. Yang, J. Fu, G. Wang, L. Zhu, G. Liu, W. Zheng, “Morphology-controllable ZnO rings: ionic liquid-assisted hydrothermal synthesis, growth mechanism and photoluminescence, ” CrystEngComm 15, 34 (2013) 6729–6735.
16. M. Ajili, N. Jebbari, N.K. Turki, “Study of physical properties of aluminum doped ZnO sprayed thin layers,” International Renewable Energy Congress, Sousse, Tunisia, 2010, pp. 305–309.
17. X. Chen, W. Guan, G. Fang, X. Z. Zhao, “Influence of substrate temperature and post-treatment on the properties of ZnO:Al thin films prepared by plused laser deposition,” Appl. Surf. Sci. 252 (2005) 1561–1567.
18. C.Y. Su, C.T. Lu, W.T. Hsiao, W.H. Liu, F.S. Shieu, “Evaluation of the microstructural and photocatalytic properties of aluminum-doped zinc oxide coatings deposited by plasma spraying,” Thin Solid Films 544 (2013) 170–174.
19. F. H. Wang, H. P. Chang, C. C. Tseng, C. C. Huang, “Effects of H2 plasma treatment on properties of ZnO-Al thin films prepared by RF magnetron sputtering,” Surf. Coat. Technol. 205 (2011) 5269–5277.
20. J.H. Choy, E.S. Jang, J.H. Won, J.H. Chung, D.J. Jang, Y.W Kim, “Hydrothermal route to ZnO nanocoral reefs and nanofibers,” Appl. Phys. Lett. 84, 2 (2004) 287–289.
21. J.G. Che, C.T. Chan, W.E. Jian, T.C. Leung, “Surface atomic structures, surface energies, and equilibrium crystal shape of molybdenum,” Phys. Rev. B 57, 3 (1998) 1875–1880.
22. J.S. Bendall, G. Visimberg, M. Szachowicz, N.O.V. Plank, S. Romanov, C.M. Sotomayor-Torres, M.E. Welland, “An investigation into the growth conditions and defect states of laminar ZnO nanostructures,” J. Mater. Chem. 18, 43 (2008) 5259–5266.
23. H. Zheng, M. Gruyters, E. Pehlke, R. Berndt, “"Magic" vicinal zinc oxide surfaces,” Phys. Rev. Lett. 111, 8 (2013) 086101-1–086101-5.
24. Dollet, Y. Casaux, M. Matecki, R. Rodriguez-Clemente, “Chemical vapour deposition of polycrystalline AlN films from AlCl3–NH3 mixtures: II — surface morphology and mechanisms of preferential orientation at low-pressure,” Thin Solid Films 406, 1 (2002) 118–131.
25. Y. Dai, Y. Zhang, Y.Q. Bai, Z.L. Wang, “Bicrystalline zinc oxide nanowires,” Chem. Phys. Lett. 375, 1 (2003) 96–101.
26. T.L. Phan, Y. Sun, R. Vincent, “Structural characterization of CVD-grown ZnO nanocombs,” J. Korean Phys. Soc. 59, 1 (2011) 60–64.
27. Y.A. Jeon, K.S. No, Y.S. Yoon, “Effect of hydrogen on the characteristics of ZnO thin films,” ECS – 203rd Meeting of the Electrochemical Society, Paris, France, 2003. (Arcticle published online: 14 April 2014, https://www.electrochem.org/dl/ma/203/pdfs/0340.pdf)
28. J.B. Wu, C.Y. Chen, M.S. Leu, H.Y. Tseng, Y.C. Lu, “Transparent conducting Al-doped ZnO thin films prepared by laser induced high current pulsed arc at low deposition temperature,” Materials Research Society Fall Meeting & Exhibit, Boston, MA, 2010, pp. 1.
29. S.O. Kucheyev, J.E. Bradby, J.S. Williams, C. Jagadish, M.V. Swain, “Mechanical deformation of single-crystal ZnO,” Appl. Phys. Lett., 80, 6 (2002) 956–958.
30. M. Chen, Z.L. Pei, C. Sun, L.S. Wen, X. Wang, “Surface characterization of transparent conductive oxide Al-doped ZnO Films,” J. Cryst. Growth 220, 3 (2000) 254–262.
31. S.S. Liao, H.F. Lin, S.W. Hung, C.T. Hu, “DC thermal plasma synthesis and properties of zinc oxide nanorods,” J. Vac. Sci. Technol. B 24 (3) (2006) 1322–1326.
32. J. Cho, K.H. Yoon, M.S. Oh, and W.K. Choi, “Effects of H2 annealing treatment on photoluminescence and structure of ZnO:Al/Al2O3 grown by radio-frequency Magnetron Sputtering,” J. Electrochem. Soc., 150, 10 (2003) H225–H228.
33. K.M. Reddy, S.V. Manorama, A.R. Reddy, “Band gap studies on anatase titanium dioxide nanoparticles,” Mater. Chem. Phys., 78 (2002) 239–245.
34. R. Pandey, S. Yuldashev, H.D. Nguyen, H.C. Jeon, T.W. Kang, “Fabrication of aluminium doped zinc oxide (AZO) transparent conductive oxide byultrasonic spray pyrolysis,” Curr. Appl. Phys. 12 (2012) S56–S58.
35. A.A. Letailleur, S.Y. Grachev, E. Barthel, E. Sondergard, K. Nomenvo, C.Couteau, S. Mc Murtry, G. Lerondel, E. Charlet, E. Peter, “High efficiency whiteluminescence of alumina doped ZnO,” J. Lumin. Elsevier 131,12 (2011) 2646–2651, http://dx.doi.org/10.1016/j.jlumin.2011.06.044 (hal-00602889).
36. Yildirim, H. Arslan, S. Sonmezo˘glu, “Facile synthesis of cobalt-doped zincoxide thin films for highly efficient visible light photocatalysts,” Appl. Surf. Sci. 390 (2016) 111–121.
37. S. Mondal, S.R. Bhattacharyya, P. Mitra, “Effect of Al doping on microstructure and optical band gap of ZnO thin film synthesized by successive ion layer adsorption and reaction,” Pramana-J. Phys., 80, 2 (2013) 315–326.
38. S.S. Sanjay, R.S. Yadav, A.C. Pandey, “Synthesis of lamellar porous photocatalytic nano ZnO with the help of anionic surfactant,” Adv. Mater. Lett. 4(5) (2013) 378–384.
39. X.Y. Gao, C. Chen, S. Zhang, “Optical properties of aluminum-doped zinc oxidefilms deposited by direct-current pulse magnetron reactive sputtering,” Chin.Phys. B. 23 (3) (2014) 030701-1–030701-5.
40. S. Tachikawa, A. Noguchi, T. Tsuge, M. o Hara, O. Odawara, H. Wada, “Optical properties of ZnO nanoparticles capped with polymers,” Material 4 (6) (2011)1132–1143.
41. N.S. Pesika, K.J. Stebe, P.C. Searson, “Determination of the particle size distribution of quantum nanocrystals from absorbance spectra,” Adv. Mater. 15 (15) (2003) 1289–1291.
42. Y.G. Wang, S.P. Lau, X.H. Zhang, H.H. Hng, H.W. Lee, S.F. Yu, B.K. Tay, “Enhancement of near-band-edge photoluminescence from ZnO films by face-to-face annealing,” J. Cryst. Growth 259 (2003) 335–342.
43. M.C. Jun, S.U. Park, J. H. Koh, “Comparative studies of Al-doped ZnO and Ga-doped ZnO transparent conducting oxide thin films,” Nanoscale Res. Lett., 7 (2012) 639–644.
44. Z. Ghorannevis, M.T. Hosseinnejad, M. Habibi, P. Golmahdi, “Effect of substrate temperature on structural, morphological and optical properties of deposited Al/ZnO films,” J. Theor. Appl. Phys., 9 (2015) 33–38.
45. Walsh, J.L.F.D. Silva, S.H. Wei, “Origins of band-gap renormalization in degenerately doped semiconductors,” Phys. Rev. B, 78 (2008) 075211-1–075211-5.
46. X.D. Li, T. P. Chen, Y. Liu, K. C. Leong, “Evolution of dielectric function of Al-doped ZnO thin films with thermal annealing: effect of band gap expansion and free-electron absorption,” Opt. Express 22, 19 (2014 ) 23086–23093.
47. E.M. Likovich, R. Jaramillo, K.J. Russell, S. Ramanathan, V. Narayanamurti, “Narrow band defect luminescence from Al-doped ZnO probed by scanning tunneling cathodoluminescence,” Appl. Phys. Lett., 99 (2011) 151910-1–151910-3.
48. T.P. Rao, M.C.S. Kumar, “Resistivity stability of Ga doped ZnO thin films with heat treatment in air and oxygen atmospheres,” J Crystallization Process and Technology, 2 (2012) 72–79.
49. S.H. Park, S.E. Park, J.C. Lee, P.K. Song, “Photoluminescence characterization of Al-doped ZnO films deposited by using DC magnetron sputtering,” J. Korean Phys. Soc. 54, 3 (2009) 1344–1347.
50. F. Khan, S. Ameen, M. Song, H.S. Shin, J. Lumin., “Influence of excitation wavelength on photoluminescence spectra of Al doped ZnO films,” J. Lumin. 134 (2013) 160–164.
51. J. Tschirch, R. Dillert, D. Bahnemann, B. Proft, A. Biedermann, B. Goer, “Photodegradation of methylene blue in water, a standard method to determine the activity of photocatalytic coatings?” Res. Chem. Intermed. 34, 4 (2008) 381–392.
52. H. Liu, S. Cheng, J. Zhang, C. Cao, S. Zhang, “Titanium dioxide as photocatalyst on porous nickel: Adsorption and the photocatalytic degradation of sulfosalicylic acid,” Chemosphere, 38, 2 (1999) 283–292.
53. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chem. Rev. 95, 1 (1995) 69–96.
54. A.V. Dijken, E.A. Meulenkamp, D. Vanmaekelbergh, A. Meijerink, “The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation” J. Phys. Chem. B, 104, (2000) 1715–1723.
55. D.S. Tsoukleris, A.I. Kontos, P. Aloupogiannis, P. Falaras, “Photocatalytic properties of screen-printed titania,” Catal. Today, 124, 3 (2007) 110–117.
56. J. Mani, H. Sakeek, S. Habouti, M. Dietze, M. Es-Souni, “Macro–meso-porous TiO2, ZnO and ZnO–TiO2-composite thick films. Properties and application to photocatalysis,” Catal. Sci. Technol., 2 (2012) 379–385.
57. C.G.V.D. Walle, “Hydrogen as a cause of doping in zinc oxides,” Phys. Rev. Lett., 85, 5 (2000) 1012–1015.
58. Q. Kuang, X. Wang, Z. Jiang, Z. Xie, L. Zheng, “High-energy-surface engineered metal oxide micro- and nanocrystallites and their applications,” Acc. Chem. Res. 47, 2 (2014) 308–318.
59. K. Hashimoto, H. Irie, A. Fujishima, “TiO2 photocatalysis: A historical overview and future prospects,” Jpn. J. Appl. Phys., 44, 12 (2005) 8269–8285.
60. P. Zhang, J. Tian, R. Xu, G. Ma, “Hydrophilicity, photocatalytic activity andstability of tetraethyl orthosilicate modified TiO2 film on glazed ceramicsurface,” Appl. Surf. Sci. 266 (2013) 141–147.
61. K.S. Guan, “Relationship between photocatalytic activity hydrophilicity andself cleaning effect of TiO2/SiO2 films,” Surf. Coat. Technol. 191 (2005) 155–160.
62. A.M. Berto, Ceramic tiles: above and beyond traditional applications, J. Eur. Ceram. Soc. 27 (2007) 1607–1613.
63. M. Sun, Z. Chen, Y. Bu, J. Yu, B. Hou, “Effect of ZnO on the corrosion of zinc, Q235 carbon steel and 304 stainless steel under white light illumination,” Corrosion Science, 82 (2014) 77–84.
64. R.J. Barnes, R. Molina, J. Xu, P.J. Dobson, I.P. Thompson, “Comparison of TiO2 and ZnO nanoparticles for photocatalytic degradation of methylene blue and the correlated inactivation of gram-positive and gram-negative bacteria,” J. Nanopart. Res. 15 (2013) 1432–1442.
65. N.C.S. Selvam, J.J. Vijaya, L.J. Kennedy, “Effects of morphology and Zr doping on structural, optical, and photocatalytic properties of ZnO nanostructures,” Ind. Eng. Chem. Res. 51 (2012) 16333–16345.
第3章
1. 徐成武,馬麗雅,周軍師,噴霧造粒系統的工藝原理及提高粉料品質和製備效率的探討,磁性材料及器件,2003年2月,pp.37–41。
2. What is Thermal Spray, www.mecpl.com/pdf-files/what-is-thermal-spray.pdf, Metallizing Equipment Co. Pvt. Ltd., Aug 21, 2017.
3. P. Fauchais, G. Montavon, R.S. Lima, B.R. Marple, “Engineering a new class of thermal spray nano-based microstructures from agglomerated nanostructured particles, suspensions and solutions: An invited review,” J. Phys. D: Applied Physics, IOP Publishing 44, 9 (2011) 93001 -193001-53.
4. P. Chagnon and P. Fauchais, “Thermal Spraying of Ceramics”, Ceramics International 10 (1984) 119–131.
5. H.S. Ingham, A.P. Shepard, Flame Spray Handbook, Vol. III, Metco, Westbury, NY, 1965, pp. 3.
6. C. Lee, H. Choi, C. Lee and H. Kim, “Photocatalytic properties of nano-structured TiO2 plasma sprayed coating,” Surface & Coatings Technology 173 (2003) 192–200.
7. G. Mauer, A. Guignard, R. Vaen, “Plasma spraying of efficient photoactive TiO2 coatings,” Surface and Coatings Technology 220 (2013) 40–43.
8. X. Li, J. Yu , M. Jaroniec, “Hierarchical photocatalysts,” Chem. Soc. Rev., 45 (2016) 2603–2636.
9. M. Tului, F. Arezzo, L. Pawlowski, “Optical properties of plasma sprayed ZnO+Al2O3 coatings,” Surface & Coatings Technology, 179 (2004) 47–55.
10. R. McPherson, “Formation of metastable phases in flame and plasma-prepared alumina,” Journal of Materials Science 8 (1973) 851-858.
11. Elhamidi, A. Elhichou, K. Meziane, A. Almaggoussi, “Investigation of (Mg-Al) co-doped Zinc Oxide Thin Films for Photovoltaic Harvesting Energy Devices,” 2015 3rd International Renewable and Sustainable Energy Conference (IRSEC), Marrakech, Morocco, Dec 10-13, 2015. 10.1109/IRSEC.2015.7454999.
12. S. Moradi, P. Aberoomand Azar, S. Raeis Farshid, S. Abedini Khorrami, M.H. Givianrad, “Synthesis and characterization of Al-TiO2-ZnO and Fe-TiO2-ZnO photocatalyst and their photocatalytic behaviour,” Asian Journal of Chemistry 25, 12 (2013) 6635-6638.
13. B.D Cullity, S.R. Stock, Element of x-ray diffraction, 3rd, Prentice Hall, New Jersey, 2001, p.170.
14. K. Hashimoto, H. Irie, A. Fujishima, “TiO2 photocatalysis: A historical overview and future prospects,” Jpn. J. Appl. Phys., 44, 12 (2005) 8269–8285.
15. S. T. Kochuveedu, Y. H. Jang, Y. J. Jang and D. H. Kim, “Visible light active photocatalysis on block copolymer induced strings of ZnO nanoparticles doped with carbon,” J.Mater. Chem. A 1 (2013) 898–905.
16. Z. Pei, L. Ding, M. Lu, Z. Fan, S. Weng, J. Hu and P. Liu, “Synergistic effect in polyaniline-hybrid defective ZnO with enhanced photocatalytic Activity and Stability,” J. Phys. Chem. C 118 (2014) 9570–9577.
17. N.C.S. Selvam, J.J. Vijaya and L.J. Kennedy, “Effects of morphology and Zr doping on structural, optical, and photocatalytic properties of ZnO nanostructures,” Ind. Eng. Chem. Res. 51 (2012) 16333–16345.
第4章
1. R. McPherson, “Formation of metastable phases in flame and plasma-prepared alumina,” Journal of Materials Science 8 (1973) 851–858.
2. Z. ŁODZIANA, “Density functional simulation of metal oxides: Al2O3 and Fe3O4”, Task Quarterly 8, 4 (2004) 561–572.
3. Sulzer Metco web, https://www.upc.edu/sct/es/documents_equipament/d_324_id-804-2.pdf, “An Introduction to Thermal Spray,” Aug 6, 2017, p1–24.
4. J.R. Davis (Ed.), “Introduction to Thermal Spray Processing,” Handbook of Thermal Spray Technology, ASM International, Material Park, OH, 2004, pp. 3–13.
5. M.U. Schoop, “Early Thermal Spray Application—JTST Historical Patent #22,” JTTEE 10, 1 (2001) 37–39.
6. A. Ohmori, C.J. Li, “Quantitative characterization of the structure of plasma-sprayed Al2O3 coating by using copper electroplating,” Thin Solid Films 201, 2 (1991) 241–252.
7. C.J. Li, A. Ohmori, “Relationships between the microstructure and properties of thermally sprayed deposits,” J. Therm. Spray T. 11, 3 (2002) 365–374.
8. G.J. Li, G.J. Yang, A. Ohmori, “Relationship between particle erosion and lamellar microstructure for plasma-sprayed alumina coatings,” Wear 260, 11–12 (2006) 1166–1172.
9. A. Ohmori, G.J. Li, Y. Arata, “Influence of plasma spray conditions on the structure of Al2O3 coatings,” Trans. Jpn. Weld. Res. Inst. 19, 2 (1990) 259–270.
10. G. Bolelli, V. Cannillo, L. Lusvarghil, T. Manfredini, “Wear behaviour of thermally sprayed ceramic oxide coatings,” Wear 261, 11-12 (2006) 1298–1315.
11. M.A. Zavareh, A.A.D.M. Sarhan, B.B.A. Razak, W.J. Basirun, “Plasma thermal spray of ceramic oxide coating on carbon steel with enhanced wear and corrosion resistance for oil and gas applications,” Ceram Int., 40, 9 (2014) 14267-14277.
12. Y. Zeng. G. F. Cheng, M. Wen, W. Wu, “Effect of external bias voltage and coating thickness on the photocatalytic activity of thermal sprayed TiO2 coating,” Prog. Org. Coat. 61 (2008) 321–325.
13. H. Chen, S. W. Lee, T. H. Kim, B. Y. Hur, “Photocatalytic decomposition of benzene with plasmas prayed TiO2-based coatings on foamed aluminum,” J. Eur. Ceram. Soc. 26 (2006) 2231–2239.
14. G. J. Yang, C.J. Li, F. Han, A. Ohmori, “Microstructure and photocatalytic performance of high velocity oxy-fuel sprayed TiO2 coatings,” Thin Solid Films 466 (2004) 81–85.
15. C. Lee, H. Choi, C. Lee, H. Kim, “Photocatalytic properties of nano-structured TiO2 plasma sprayed coating,” Surface & Coatings Technology 173 (2003) 192–200.
16. G. J. Yang, C.J. Li, F. Han, A. Ohmori, “Microstructure and photocatalytic performance of high velocity oxy-fuel sprayed TiO2 coatings,” Thin Solid Films 466, 1/2 (2004) 81–85.
17. J. Colmenares-Angulo, S. Zhao, C. Young, A. Orlov, “The effects of thermal spray technique and post-deposition treatment on the photocatalytic activity of TiO2 coatings,”Surface & Coatings Technology 204 (2009) 423–427.
18. J. Mani, H. Sakeek, S. Habouti, M. Dietze, M. Es-Souni, “Macro–meso-porous TiO2, ZnO and ZnO–TiO2-composite thick films. Properties and application to photocatalysis,” Catal. Sci. Technol., 2 (2012) 379–385.
19. Y. Ando, S. Tobe, H. Tahara, “Rapid deposition of photocatalytic oxide film by liquid feedstock injection TPCVD in open air,” IEEE Trans. Plasma Sci. 34, 4 (2006) 1229–1234.
20. C.-J. Li, G.-J. Yang, Z. Wang, “Formation of nano-structured TiO2 by flame spraying with liquid feedstock,” Mater. Lett. 57 (2003) 2130–2134.
21. H.M. Ameran, R. Ali, and W.A.W.A. Bakar, “Electrodeposition of metal oxide semiconductor photocatalysts on support for degradation of BTX,” International Conference on Chemical, Environment & Biological Sciences (CEBS-2014) Sept. 17-18, 2014 Kuala Lumpur (Malaysia), pp.178-182.
22. A.S. El-Kalliny, S.F. Ahmed, L.C. Rietveld, P.W. Appel, “Immobilized photocatalyst on stainless steel woven meshes assuring efficient light distribution in a solar reactor,” Drinking Water Eng Sci 7 (2014) 41–52. https://doi.org/10.5194/dwes-7-41-2014.
23. T. Kameyama, “Robust science & technorogy for safe and secure life space -photocatalyst-,” http://www.aist.go.jp/aist_e/research_results/publications/pamphlet/, National Institute of Advanced Industrial Science and Technology (AIST) Web, Aug 12, 2017.
24. S. Krumdieck, S. S. Miya, D. Lee, S. D. Talwar, C. M. Bishop, “Titania-based photocatalytic coatings on stainless steel hospital fixtures,” Phys. Status Solidi. C 12, 7 (2015) 1028–1035.
25. Y. Liu, G. Li, “a new method for producing “lotus effect” on a biomimetic shark skin,” J. Colloid Interface Sci. 388, 1 (2012) 235–242.
26. W.H. Liao, F.S. Shieu, W.T. Hsiao, C.Y. Su, M. S. Leu, “Study of ceramic coatings as a novel optical imaging tracking material using plasma spray method,” Thermal Spray 2009: Expanding Thermal Spray Performance to New Markets and Applications (ASM International), ASM Thermal Spray Society, Materials Park, OH, May 01, 2009, pp. 40–45.
27. X.Q. WEI, “A study on hypoeutectic Sn-Zn alloys as lead-free electronic solders,” Nanchang, Nanchang University, 2006.
28. X.X. Ren, M. Li, D.l. Mao, “Effect of alloying elements on the high-temperature oxidation resistance of Sn-Zn based lead-free solder,” Electronic Components and Materials 23, 11 (2004) 40–44.
29. K.L. Lin, T.P. Liu, “High-temperature oxidation of a Sn-Zn-Al solder,” Oxid. Met. 50, 3/4 (1998) 255–267.
30. X.Q. Wei, H.Z. Hung, L. Zhou, M. Zhang, “Effect of microalloying on wettability, oxidation and solidification morphology of Sn-9Zn alloy,” J. Rare Earth. 23, 2 (2005) 220–223.
31. https://www.doitpoms.ac.uk/tlplib/ellingham_diagrams/printall.php, Aug 8, 2017.
32. H.J.T Ellingham, “Reducibility of oxides and sulfides in metallurgical processes,” J. Soc. Chem. Ind. (London), 63 (1944) 125–133.
33. E.M. Levin, “Phase diagrams for ceramists”, American Ceramic Society, Westerville, Ohio, USA, 1964.
34. M. Tului, F. Arezzo, L. Pawlowski, “Optical properties of plasma sprayed ZnO-Al2O3 coatings,” Surface and Coatings Technology 179 (2004) 47–55.
35. N. A. Toropov, V.P. Barzakovkii, “High-temperature chemistry of silicates and other oxide systems,” Consultants Bureau, New York, 1966, p.92.
36. Y.W. Jang, S. Bang, H. Jeon, J.Y. Lee, “Microstructural characterization at the interface of Al2O3/ZnO/Al2O3 thin films grown by atomic layer deposition,” Phys. Status Solidi B 248, 7 (2011) 1634–1638.
37. G. Lévai , M. Godzsák, T.I. Török, J. Hakl, V. Takáts, A. Csik , K. Vad, G. Kaptay, “Designing the color of hot-dip galvanized steel sheet through destructive light interference using a Zn-Ti liquid metallic bath,” Metall. Mater. Trans. A 47 (2016) 3580–3596.
38. X.S. Li, S.I. Baek, C.S. Oh, S.J. Kim, Y.W. Kim, “Dew-point controlled oxidation of Fe-C-Mn-Al-Si-Cu transformation-induced plasticity-aided steels,” Scr. Metall. 59 (2008) 290–293.
39. P. Drillet, Z. Zermout, D. Bouleau, J.M. Mataigne, “Selective oxidation of IFTi stabilized steels during recrystallization annealing, and steel/Zn reactivity,” Galvatech ’01 (2001) 195-202.
40. P. Souza Santos, H. Souza Santos, S.P. Toledob, “Standard transition aluminas. Electron microscopy studies,” Mat. Res. 3, 4 (2000) 104–114.
41. R.V. Tsyshevsky, A. Zverev, A. Mitrofanov, S.N. Rashkeev, M.M. Kuklja, “Photochemistry of the α-Al2O3-PETN Interface,” Molecules 21, 3 (2016) 289-1–13. doi:10.3390/molecules21030289.
42. Y.D. Ivakin, M.N. Danchevskaya, O.G. Ovchinnikova, G.P. Murav’eva, V.A. Kreisberg, “The kinetics and mechanism of doped corundum structure formation in an water fluid,” Rus. J. Phys. Chem. B 3 (2009) 1019–1034.
43. Z. ŁODZIANA, “Density functional simulation of metal oxides: Al2O3 and Fe3O4”, Task Quarterly 8, 4 (2004) 561–572.
44. R. Georgekutty, M.K. Serry, S.C. Pillai, “A Highly efficient Ag-ZnO photocatalyst: synthesis, properties, and mechanism,” J. Phys. Chem. C 112 (2008) 13563–13570.
45. G. Yang, Z. Yan, T. Xiao, “Preparation and characterization of SnO2/ZnO/TiO2 composite semiconductor with enhanced photocatalytic activity,” Appl. Surf. Sci. 258 (2012) 8704–8712.
46. Z.B. Yu, Y.P. Xie, G.Liu, G.Q. Lu, X.L. Ma, H.M. Cheng, “Self-assembled CdS/Au/ZnO heterostructure induced by surface polar charges for efficient photocatalytic hydrogen evolution,” J. Mater. Chem. A 1 (2013) 2773–2776.
47. E.O. Filatova, A.S. Konashuk, “Interpretation of the changing the band gap of Al2O3 depending on its crystalline form: Connection with different local symmetries,” J. Phys. Chem. C 119 (2015) 20755−20761.
48. J. Gangwar, B.K. Gupta, P. Kumar, S.K. Tripathi, A.K. Srivastava, “Time-resolved and photoluminescence spectroscopy of θ-Al2O3 nanowires for promising fast optical sensor applications,” Dalton Trans. 43,45 (2014) 17034–17043.
49. J. Zhang, J. He, Y. Dong, X. Li, D. Yan, “Microstructure characteristics of Al2O3-13 wt.% TiO2 coating plasma spray deposited with nanocrystalline powders,” J. Mater. Process. Technol. 197, 13 (2008) 31–35.