跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/01/21 12:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉武漢
研究生(外文):Wu-Han Liu
論文名稱:以熱熔射製程製備鋁摻雜氧化鋅厚膜之微結構與特性研究
論文名稱(外文):Microstructure and Characteristics of Al-doped ZnO Thick Films Prepared by Thermal Spraying
指導教授:薛富盛薛富盛引用關係
指導教授(外文):Fuh-Sheng Shieu
口試委員:林景崎李英杰駱榮富呂明生
口試委員(外文):Jing-Chie LinYing-Chieh LeeRong-Fuh LouhMing-Sheng Leu
口試日期:2017-07-25
學位類別:博士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:136
中文關鍵詞:大氣電漿熔射火焰熔射電弧離子鍍膜
外文關鍵詞:APS (atmosphere/air plasma spray)Flame sprayAIP (arc ion plating)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:263
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
光觸媒係屬於高級氧化程序(advanced oxidation processes)中的一環,常見的光觸媒材料為TiO2、ZnO、CdS、WO3、SnO2及Fe2O3等,以TiO2與ZnO最為廣泛研究。由於光觸媒材料應用上最大的困難為光觸媒的固定化技術,利用熔膠凝膠法、濺鍍法或燒鍍法較難製備大面積的塗層。相關研究結果與討論分為三部份來說明,首先本研究係利用大氣電漿熔射(atmosphere/air plasma spray, APS)技術將ZnO-3wt.%Al2O3 (代號I-APS AZO)殼型微米造粒結構之材料噴覆於玻璃基板表面,針對該氧化鋅複合粉末利用UV光(λ = 365 nm)降解亞甲基藍水溶液之光觸媒特性進行研究。研究結果顯示熔射後塗層表面形貌多為奈米結構,電漿熔射I-APS AZO之塗層其表面形貌多為奈米球狀氧化鋅,熔射過程發現較多高表面能結晶面,雖然降低硬度接近理想值c軸晶面之一半,但能有效提高氧化鋅塗層觸媒效率;X射線繞射(XRD)分析顯示熔射I-APS AZO之塗層其特徵峰向右偏移,表示鋁及氫可能有摻雜進氧化鋅結構,並壓縮ZnO純相之晶格。光觸媒特性顯示,經UV光照24 h,能將亞甲基藍水溶液降解為透明水溶液,電漿熔射I-APS AZO塗層光照12 h降解率為61%。綜合分析結果顯示,塗層表面結構與光觸媒材料影響光觸媒降解率,進行降解亞甲基藍(methylene blue, MB)水溶液,厚膜I-APS AZO塗層較薄膜AIP AZO塗層(代號AIP-Ref AZO,其中AIP表示電弧離子鍍膜/arc ion plating製程)效率佳,因為塗層中產生較多高表面能結晶面之ZnO相,會因高濃度氧空缺,形成電子電洞再結合中心之能障,導致其光觸媒效率較佳。
第二部份有關於電漿熔射以自製造粒粉末並沉積在玻璃基材之雙摻雜Al與C之ZnO鍍膜(代號II-APS AZO),其厚度只有有13 μm,對應商用造粒粉末所製備之I-APS AZO 鍍膜,II-APS AZO在玻璃基板之膜層厚度,於噴塗相同趟數下,它的噴塗效率明顯較低。II-APS AZO鍍層結晶性,低於它的造粒餵粉狀態,且顯示為無織構性。高倍率下之II-APS AZO鍍層的表面型態顯示與I-APS AZO鍍層並不同(例如無發現奈米棒型態在Al,C:AZO試片上),這結果強化解釋I-APS AZO鍍層在該電漿製程所製備出具新穎之層次結構(hierarchical morphology)。這些特性促使光觸媒特性優異,並高於先前所述之AIP-Ref AZO與TiO2 sprayer試片。另外,由於II-APS AZO試片以未除膠之PVA黏結劑當成C源模板,經電漿噴塗而成為Al與C雙摻雜之ZnO鍍層,經相同光觸媒測試條件下,光觸媒效率比I-APS AZO高出一倍。
最後部份是關於火焰熔射(Flame spray) F-AZO-Al2O3沉積在AISI 304不銹鋼基板之實驗,鍍膜厚度隨添加Al2O3含量(由F-30AO、F-50AO變化至F-70AO)增加而增加。而純火焰熔射Al2O3沉積在304不銹鋼基板(F-Al2O3,代號F-AO),鍍膜厚度接近700 µm。SEM表面型態顯示奈米群顆粒聚集在微米顆粒上,並且黏結其上,這種奈米群顆粒可以幫助催化反應,特別在F-50AO (added 50 wt.% Al2O3)試片上發現有奈米與微米薄板(nano- and microplatelet morphology)之型態顆粒簇立於塗層表面。火焰熔射F-AZO-Al2O3試片顯示為多相沉積,而I-APS AZO與II-APS AZO試片顯示僅為wurzite相之ZnO沉積。這個多相反應使F-AZO-Al2O3試片之能隙隨當添加越多Al2O3 (由30 wt.%變化至70 wt.%),具有藍偏移,並使之具有良好之光觸媒特性。
F-AZO-Al2O3試片經過72 h亞甲基藍浸泡並以UV光照射實驗中,顯示也有著相同近100%光觸媒效率(photocatalytic efficiency),然而試片F- Al2O3 僅有30%光觸媒效率。特別是光照前6 h時,F-50AO試片之光觸媒效率快於F-30AO試片與F-70AO試片。對比F-AZO,F-70AO與F-AO (pure Al2O3)試片,顯示F-30AO試片與F-50AO試片3次循環測試實驗(cycling test of photocatalytic efficiency),3次曲線均呈現穩定之趨勢。這結果顯示Al2O3一定含量(i.e., 50 wt.%)對AZO試片之光觸媒效果有正面幫助,另外F-AZO-Al2O3試片均有近140°之接觸角,顯示為疏水性(hydrophobic),疏水性材料在光觸媒自清潔應用極為廣泛。
The aim of this study is to prepare the aluminum zinc oxide (AZO) coating onto glass and AISI 304 stainless steel substrates by thermal spraying, respectively. The research is mainly divided into three sections. The first two sections are related to plasma spraying AZO coating onto the glass substrate by using commercial agglomeration (I-APS AZO sample) and home-made agglomeration (II-APS AZO sample) feedstock powders. In plasma spraying with home-made agglomeration feedstock powder, a novel approach is applied and the chemical decomposed reaction from adhesive agent (polyvinyl acetate, PVA) of home-made agglomeration feedstock powder into plasma jet was started, carbon was then produced and doped into AZO coating. PVA was used as carbon source template in the feedstock powder, II-APS AZO sample thus had two dopant elements of Al and C. The final section is related to flame spraying AZO coating onto the AISI 304 stainless steel substrate by using of mixing aluminum oxide and aluminum zinc oxide. Here, Al2O3 was used as catalytic carrier and Al doping source. F-AZO-AO samples included F-AZO, F-30AO, F-50AO, and F-70AO samples. The composition of Al2O3 powder was 30 wt.% (F-30AO sample), 50 wt.% (F-50AO sample), and 70 wt.% (F-70AO sample). Those powders were added to mix with AZO powder in 3D mixer, respectively. And the mixed powder fed into flame jet to react with its own inside AZO powder and then deposited on 304 stainless steel substrates. All AZO samples were used as photocatalysts for the degradation of methylene blue (MB) dye chosen as an organic water pollutant soultion.
In the first section, AZO was deposited on a glass substrate using plasma spraying technique. Hierarchical nanostructured morphology is observed, for the first time, in plasma spraying coatings. Nanorod and nanosphere adhere to micro spherical particle to form hierarchical structure, however, is only reported by chemical synthesis method. Through XRD and SEM analysis, it is found that the morphology of coating can improve the formation of defects greatly. After UV-A light testing, photocatalytic efficiency of degradation methylene blue coating was analyzed using UV-Vis spectrometer. Combined with photoluminescence and X-ray photoelectron spectroscopy analysis, the results indicates that I-APS AZO coating is with good enhanced photocatalytic properties. This phenomenon suggests that I-APS AZO crystallites consist of multiple facets with high surface-energy planes. The measured water contact angle of about 7° indicates that I-APS AZO coating is with high hydrophilic characteristic and has very good practical applications in industry. This study thus paves a new way for environmental pollution control. In the second section, the research of II-APS AZO feedstock powder with agglomeration for spray drying experiment is further conducted to understand the surface morphology differences between I-APS AZO and II-APS AZO coating during plasma spraying process. The microstructure and shape of I-APS AZO coating with hierarchical characteristic is quite different from that of II-APS AZO coating with nano particle agglomeration. And, this hierarchical nanostructured morphology of the thicker I-APS AZO film also results in lower contact angle. However, the photocatalytic efficient of II-APS AZO coating is almost twice higher than that of I-APS AZO coating due to the carbon added into II-APS AZO sample.
In the final section, F-AO (pure Al2O3) coating sample was identified by XRD and its coating consists of lower temperature Al2O3 phase (e.g., γ-Al2O3, θ-Al2O3) and their energy gaps are lower than that of α-Al2O3. Catalytic property of these low temperature Al2O3 phases is rather good. Therefore, F-AZO-AO samples are with almost the same photocatalytic efficiency (near 98%) after 72 h test. The energy gap of I-APS AZO sample is decreased, whereas the energy gap of the F-AZO-AO samples (from F-AO, F-30AO and F-50AO transfer to F-70AO) is inecreased. From SEM and X-ray photoelectron spectroscopy analysis, the results shows that the F-AZO-AO coatings at appropriate amount of Al2O3 are with good enhanced photocatalytic properties. In addition, F-50AO (added with 50 wt.% Al2O3) sample is found to with a nano- and microplatelet morphology in its coating, comparing with F-30AO (added with 30 wt.% Al2O3) and F-70AO (added with 70 wt.% Al2O3) samples. The measured water contact angle of about 140° indicates that F-AZO-AO coatings is with high hydrophobic characteristic and thus has very good practical applications in self-cleaning industry.
摘要.................................i
ABSTRACT.............................iii
目錄.................................vi
表目錄...............................ix
圖目錄...............................x
第1章 緒論............................1
1.1. 前言.............................1
1.2. 文獻回顧.........................2
1.2.1. ZnO材料特性....................2
1.2.2. 熔射技術原理...................3
1.2.3. 電漿熔射技術...................5
1.2.4. 火焰熔射技術...................6
1.2.5. 熔射材料與應用.................9
1.2.6. 光觸媒簡介.....................10
1.3. 研究動機.........................23
1.3.1. 研究目的.......................23
1.3.2. 研究內容.......................25
1.4. 參考資料.........................26
第2章 電漿熔射商用鋁摻雜氧化鋅粉末與其塗層之製備並探討其塗層微結構以及降解亞甲基藍之光催化性能研究....................................33
2.1. 前言.............................33
2.2. 實驗方法與步驟...................34
2.3. 結果與討論.......................40
2.3.1. OM與SEM分析....................40
2.3.2. X-ray相分析與XPS分析...........42
2.3.3. UV-vis DRS 與PL分析............47
2.3.4. 光觸媒分析與親疏水分析.........52
2.3.5. 白光下AZO塗層之抗菌分析........55
2.3.6. 本實驗製造AZO層次塗層之構想....................................56
2.3.7. 結論............. .............57
2.4. 參考資料.........................74
第3章 自製鋁摻雜氧化鋅熔射粉末及其電漿熔射塗層之製備並探討其塗層微結構以及降解亞甲基藍之光催化性能研究....................................79
3.1. 前言.............................79
3.2. 實驗方法與步驟...................82
3.3. 自製熔射粉末與塗層分析...........83
3.3.1. 結論...........................95
3.3.2. 參考資料.......................96
第4章 火焰熔射商用鋁摻雜氧化鋅粉末與其塗層之製備並探討其塗層微結構以及降解亞甲基藍之光催化性能研究...........98
4.1.1. 前言......................................98
4.1.2. 實驗方法與步驟............................104
4.1.3. 火焰熔射塗層分析..........................106
4.1.4. 結論......................................128
4.1.5. 參考文獻..................................129
第5章 總結.......................................133
電漿熔射商業粉末與塗層分析.......................133
電漿熔射自製造粒粉末與塗層分析...................133
火焰熔射自製造粒粉末與塗層分析...................134
第1章
1. Fujishima, K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238 (1972) 37–38.

2. S.L. Kuo, C.J. Liao, “Photocatalytic disinfection of bacteria by sodium light with smectite catalysts,” Water Qual. Res. J. Canada 41, 4 (2006) 365–374.

3. 田中義身,光觸媒技術研討會,經濟部,2000。

4. Z. Zhang, C.C. Wang, R. Zakria, J.Y. Ying, “Role of particle size in nanocrystalline TiO2-based photocatalysts,” J. Phys. Chem. B 102 (1998) 10871–10878.

5. C.P, Tro, C.M, Zhung, Y.H. Shih, Y.M. Tseng, S.C. Wu, R.A. Doong, “Stability of metal oxide nanoparticles in aqueous solutions,” Water Science & Technology—WST 61, 1 (2010) 127–133.

6. N. Daneshvar, D. Salari, A.R. Khataee, “Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2,” J. Photochem. Photobiol. A Chem. 162, 2-3 (2004) 317–322.

7. J.H. Lim, C.K. Kang, K.K. Kim, I.K. Park, D.K. Hwang, S.J. Park, “UV electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radiofrequency sputtering,” Adv. Mater. 18 (2006) 2720–2724.

8. A.B.G Lansdown, A. Taylor, “A zinc and titanium oxides: Promising UV absorbers but what influence do they have on the intact skin?” Int. J. Cosmet. Sci. 19 (1997) 167–172.

9. M.T. Mohammad, A.A. Hashim, M.H. Al-Maamory, “Highly conductive and transparent ZnO thin films prepared by spray pyrolysis technique,” Mater. Chem. Phys. 99 (2006) 382–387.

10. S.G Kumar, K.S.R.K. Rao, “Zinc oxide based photocatalysis-tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications,” RSC Adv. 5 (2015) 3306–3351.

11. S.G. Kumar, K.S.R.K. Rao, “Polymorphic phase transition among the titania crystal structures using a solution-based approach-from precursor chemistry to nucleation process,” Nanoscale 6 (2014) 11574–11632.

12. X. Li, J. Yu , M. Jaroniec, “Hierarchical photocatalysts,” Chem. Soc. Rev., 45 (2016) 2603–2636.

13. T.G. Smijs, S. Pavel, “Titanium dioxide and zinc oxide nanoparticles in sunscreens: Focus on their safety and effectiveness,” Nanotechnol Sci Appl. 4 (2011) 95–112.

14. C. Seebode, J. Lehmann, S. Emmert, “Photocarcinogenesis and skin cancer prevention strategies,” Anticancer Res. 36 (2016) 1371–1378.

15. S. Tanemura, L. Miao, W. Wunderlich, M. Tanemura, Y. Mori, S. Toh, K. Kaneko, “Fabrication and characterization of anatase/rutile-TiO2 thin films by magnetron sputtering: A review,” Sci. Technol. Adv. Mater. 6 (2005) 11–17.

16. X.W. Sun, H.S. Kwok, “Optical properties of epitaxially grown zinc oxides films on sapphire by pulsed laser deposition,” J. Appl. Phys. 86 (1999) 408–411.

17. R.J. Barnes, R. Molina, J. Xu, P.J. Dobson, I.P. Thompson, “Comparison of TiO2 and ZnO nanoparticles for photocatalytic degradation of methylene blue and the correlated inactivation of gram-positive and gram-negative bacteria,” J. Nanopart. Res. 15 (2013) 1432–1442.

18. H. Tomaszewski, K. Eufinger, H. Poelman, D. Poelman, R.D. Gryse, P.F. Smet, G.B. Marin, “Effect of substrate sodium content on crystallization and photocatalytic activity of TiO2 films prepared by dc magnetron sputtering,” Int. J. Photoenergy 2007 (2007) 1–6. doi:10.1155/2007/95213.

19. W.A. Saywell, “Thermal spray industry continues to develop,” Met. Powder Rep. 51 (1996) 34–37.

20. J. He, M. Ice, S. Dallek, E. J. Lavernia, “Synthesis of nanostructured WC-12 pet Co coating using mechanical milling and high velocity oxygen fuel thermal spraying,” Metall. Mater. Trans. A: Physical Metallurgy and Materials Science 31 (2000) 541–553.
21. B.S. Schorr, K.J. Stein, A.R. Marder, “Characterization of thermal spray coatings,” Mater. Charact. 42 (1999) 93–100.

22. C.C. Berndt, S. Safai, D.R. Marantz, Coating Characteristics, Thermal Spraying: Practice, Theory, and Application, 1st ed., M.L. Thorpe, AWS Committee on Thermal Spraying Press, 1985, pp. 6–12.

23. L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, New York, John Wiley & Sons, 1995, pp.79–82.

24. 蕭威典,熔射覆膜技術,全華科技圖書,2006。

25. E. Pfender, “Fundamental studies associated with the plasma spray process,” Proceedings of the National Thermal Spray Conference, 1987, pp. 1–10.

26. S. Steinhäuser, B. Wielage, U. Hofmann, T. Schnick, A. Ilyuschenko and T. Azarova, “Plasma-sprayed wear-resistant coatings with respect to ecological aspects,” Surface & Coatings Technology 131 (2000) 365–371.

27. E. Dongmo, M. Wenzelburger and R. Gadow, “Analysis and optimization of the HVOF process by combined experimental and numerical approaches,” Surface & Coatings Technology 202 (2008) 4470–4478.

28. J.F. Li, L. Li, F.H. Stott, “Crystallographical analysis of surface layers of refractory ceramics formed using combined flame spray and simultaneous laser treatment,” J. Eur. Ceram. Soc. 24 (2004) 3129–3138.

29. S. Thybo, S. Jensen, J. Johansen, T. Johannessen, O. Hansen, U.J. Quaade, “Flame spray deposition of porous catalysts on surfaces and in microsystems,” J. Catal. 223 (2004) 271–277.

30. Sulzer Metco web, https://www.upc.edu/sct/es/documents_equipament/d_324_id-804-2.pdf, “An Introduction to Thermal Spray,” Aug 6, 2017, p1-24.

31. J.R. Davis (Ed.), “Introduction to Thermal Spray Processing,” Handbook of Thermal Spray Technology, ASM International, Material Park, OH, 2004, pp. 3-13.

32. 王海軍,熱噴塗材料及應用,國防工業出版社,2008。

33. https://goldbook.iupac.org/html/P/PT07446.html, Jul 20, 2017.

34. 李佳欣,二氧化鈦粉體表面吸附鎳之改質研究,碩士論文,逢甲大學,台中,2006。

35. Fujishima, T.N. Rao, D.A. Tryk, “Titanium dioxide photocatalysis”, J. Photoch. Photobio. C: Photochemistry Reviews 1 (2000) 1–21.

36. M. Hayyan, M.A. Hashim, I.M. AlNashef, “Superoxide ion: Generation and chemical implications,” Chem. Rev. 116, 5 (2016) 3029–3085.

37. F.L. Toma, G. Bertrand, S.O. Chwa, D. Klein, H. Liao, C. Meunier, C. Coddet, “Microstructure and photocatalytic properties of nanostructured TiO2 and TiO2–Al coatings elaborated by HVOF spraying for the nitrogen oxides removal,” Mater. Sci. Eng. 417 (2006) 56–62.

38. Y. C. Nah, I. Paramasivam, P. Schmuki, “Doped TiO2 and TiO2 Nanotubes: Synthesis and Applications,” Chem. Phys. Chem. 11 (2010) 2698–2713.

39. H. Sakai, R.X. Cai, R. Baba, K. Hashimoto, Y. Kubota, A. Fujishima, Photocatalytic purification and treatment of water and air: proceedings of the 1st International Conference on TiO2 photocatalytic purification and treatment of water and air, London, Ontario, Canada, 8-13 November, 1992, Ollis, D.F. Ollis and H. Al-Ekabi, Eds., Elsevier, New York, 1993, pp.651–657.

40. S. Jin, F. Shiraishi, “Photocatalytic activities enhanced for decompositions of organic compounds over metal-photodepositing titanium dioxide,” Chem. Eng. J. 97 (2004) 203–211.

41. R.D. Vidic, F.G. Pohland, in: Technology Evaluation Report TE-96-01: Treatment Walls, Ground-Water Remediation Technologies Analysis Center, Pittsburgh, PA, 1996.

42. M. Schiavello, “Some working principles of heterogeneous photocatalysis by semiconductors,” Electrochim. Acta 38 (1993) 11–14.

43. T. Sakta, “Heterogeneous photocatalysis at liquid-solid interfaces,”in Photocatalysis-Fundamentals and Applications, N. Serpone and E. Pelizzetti (ed.), John Wiley&Sons, Inc.,1989.

44. M. Bizarro, A.S.Arzate, I.G. Wilches, J.C. Alonso and A. Ortiz, “Synthesis and characterization of ZnO and ZnO: Al by spray pyrolysis with high photocatalytic properties,” Catal. Today 166 (2011) 129–134.

45. Kafizas, S. Kellici, J.A. Darr, I.P. Parkin, “Titanium dioxide and composite metal/metal oxide titania thin films on glass: A comparative study of photocatalytic activity,” J. Photoch. Photobio. A: Chemistry 204 (2009) 183–190.

46. P. Pawinrat, O. Mekasuwandumrong and J. Panpranot, “Synthesis of Au-ZnO and Pt-ZnO nanocomposites by one-step flame spray pyrolysis and its application for photocatalytic degradation of dyes,” Catal. Commun., 10 (2009) 1380–1385.

47. 曾展?,以貴金屬奈米粒子-氧化鋅奈米柱複合光觸媒分解甲基橙之研究,碩士論文,成功大學,台南,2005。

48. H.Y. Zhu, R. Jiang, Y.Q. Fu, Y.J. Guan, J. Yao, L. Xiao, G.M. Zeng, “Effective photocatalytic decolorization of methyl orange utilizing TiO2/ZnO/chitosan nanocomposite films under simulated solar irradiation,” Desalination 286 (2012) 41–48.

49. F. Ye, A. Ohmori, “The photocatalytic activity and photo-absorption of plasma sprayed TiO2–Fe3O4 binary oxide coatings,” Surface & Coatings Technology 160 (2002) 62–67.

50. Bojinova, R. Kralchevska, I. Poulios, C. Dushkin, “Anatase/rutile TiO2 composites: Influence of the mixing ratio on the photocatalytic degradation of Malachite Green and Orange II in slurry,” Mater. Chem. Phys. 106 (2007) 187–192.

51. F.X. Ye, A. Ohmori, T. Tsumura, K. Nakata, C.J. Li, “Microstructural analysis and photocatalytic activity of plasma-sprayed titania-hydroxyapatite coatings,” J. Therm. Spray Techn. 16 (2007) 776–782.

52. Z.Yi, J. Liu, W. Wei, J. Wang, S.W. Lee, “Photocatalytic performance and microstructure of thermal-sprayed nanostructured TiO2 coatings,” Ceram. Int. 34 (2008) 351–357.

53. M. Bozorgtabar, M. Rahimipour, M. Salehi, “Novel photocatalytic TiO2 coatings produced by HVOF thermal spraying process,” Mater. Lett. 64 (2010) 1173–1175.

54. G.J. Yang, C.J. Li, Y.Y. Wang, C.X. Li, “Dominant microstructural feature over photocatalytic activity of high velocity oxy-fuel sprayed TiO2 coating,” Surface & Coatings Technology 202 (2007) 63–68.

55. J. Colmenares-Angulo, S. Zhao, C. Young, A. Orlov, “The effects of thermal spray technique and post-deposition treatment on the photocatalytic activity of TiO2 coatings,” Surface & Coatings Technology 204 (2009) 423–427.

56. N. Kaneva, I. Stambolova, V. Blaskov, Y. Dimitriev, S. Vassilev, C. Dushkin, “Photocatalytic activity of nanostructured ZnO films prepared by two different methods for the photoinitiated decolorization of malachite green,” J. Alloys Compd. 500 (2010) 252–258.

57. M. Fassier, N. Chouard, C.S. Peyratout, D.S. Smith, H. Riegler, D.G. Kurth , C. Ducroquetz, M.A. Bruneaux, “Photocatalytic activity of oxide coatings on fired clay substrates,” J. Eur. Ceram. Soc. 29 (2009) 565–570.

58. 曾士誠,礦化劑對於水熱法成長氧化鋅奈米桿之影響,碩士論文,台灣科技大學,台北,2009。

59. J. Sun, H.T. Wang, J. He, Y. Tian, “Ab initio investigations of optical properties of the high-pressure phases of ZnO,” Phys. Rev. B 71 (2005) 125132 pp.5.

60. J.J. Duan, X.H. Liu, Q.F. Han, X. Wang, “Controlled morphologies and optical properties of ZnO films and their photocatalytic activities,” J. Alloys Compd. 509 (2011) 9255–9263.

61. C.F. Klingshirn, “ZnO: Material, physics and applications,” ChemPhysChem 8 (2007) 782–803.

62. 蔡忠育,氧化鋅薄膜之製備與特性分析,碩士論文,台北科技大學,台北,2009。

63. K. Ellmer, A. Klein, 2008 ZnO and Its Applications, In: Transparent conductive ZnO: basics and applications in thin film solar cells, Ellmer, K., Klein, A. & Rech, B., (Ed.), 133, Springer-Verlag Berlin Heidelberg, 3-54073-611-0 Berlin Heidelberg Newyork.

64. 戴念澤,翁文彬,製備摻雜鎵鋁氧化鋅陶瓷靶材以射頻磁控濺鍍系統沉積透明導電薄膜之光電性質研究,龍華科技大學學報第二十七期,2009年6月,65–74。

65. E.M. Levin, “Phase diagrams for ceramists”, American Ceramic Society, Westerville, Ohio, USA, 1964.

66. K. Shirouzu, T. Ohkusa, M. Hotta, N. Enomoto, J. Hojo, “Distribution and solubility limit of Al in Al2O3-doped ZnO sintered body,” J. Ceram. Soc. Jpn. 115, 4 (2007) 254−258.

67. D. Li, H. Haneda, “ZnO: Morphologies of zinc oxide particles and their effects on photocatalysis,” Chemosphere 51 (2003) 129–137.

68. J. Rodríguez , F. Paraguay-Delgado, A. López, Julio Alarcón, W. Estrada, “Synthesis and characterization of ZnO nanorod films for photocatalytic disinfection of contaminated water,” Thin Solid Films 519 (2010) 729–735.

69. M. Tului, F. Arezzo, L. Pawlowski, “Optical properties of plasma sprayed ZnO+Al2O3 coatings,” Surface & Coatings Technology, 179 (2004) 47–55.

70. B.D. Yao, Y.F. Chan, N. Wang, “Formation of ZnO nanostructures by a simple way of thermal evaporation,” Appl. Phys. Lett., 81 (2002) 757–759.

71. W.S. Shi, O. Agyeman, C.N. Xu, “Enhancement of the light emissions from zinc oxide films by controlling the post-treatment ambient,” J. Appl. Phys. 91 (2002) 5640–5645.

72. Y. Chen, D.M. Bagnall, H.J. Koh, K.T. Park, K. Hiraga, Z. Zhu, T. Yao, “Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization,” J. Appl. Phys., 84 (1998) 3912–3918.

73. J.J. Wu, S.C. Li, “Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition,” Adv. Mater., 2002, 14, 215–218.

74. B. Cao, W. Cai, G. Duan, Y. Li, O. Zhao, D. Yu, “A template-free electrochemical deposition route to ZnO nanoneedle arrays and their optical and field emission properties,” Nanotechnology 16 (2005) 2567–2574.

75. X. Liu, X. Wu, H. Cao, R.P.H. Chang, “Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition,” J. Appl. Phys. 95 (2004) 3141–3147.

76. Zubiaga, J. A. Grcía, F. Plazaola, F. Tuomisto, K. Saarinen, J.Z. Pérez, V. Muñoz-Sanjosé, “Correlation between Zn vacancies and photoluminescence emission in ZnO films,” J. Appl. Phys., 99 (2006) 053516–053522.

77. M.S. Oh, S.H. Kim, T.Y. Seong, “Growth of nominally undoped p-type ZnO on Si by pulsed-laser deposition,” Appl. Phys. Lett., 87 (2005) 122103–122105.

78. Y. Zhang, B. Lin, X. Sun, Z. Fu, “Temperature-dependent photoluminescence of nanocrystalline ZnO thin films grown on Si (100) substrates by the sol-gel process,” Appl. Phys. Lett., 86 (2005) 131910–131912.

79. Y. Zhao,Y.U. Kwon, “Templateless hydrothermal synthesis of aligned ZnO nanorods,” Chem. Lett. 33 (2004) 1578–1579.

80. H. Chik, J. Liang, S.G. Cloutier, N. Kouklin, J.M. Xu, “Periodic array of uniform ZnO nanorods by second-order self-assembly,” Appl. Phys. Lett., 84 (2004) 3376–3378.

81. J. Tsujino, N. Homma, T. Sugawara, I. Shimono, Y. Abe, “Preparation of Al-doped ZnO Thin Films by RF Thermal Plasma Evaporation,” Thin Solid Films 407 (2002) 86–91.

82. Y. Ando, S. Tobe, H. Tahara, “Rapid Deposition of Photocatalytic Oxide Film by Liquid Feedstock Injection TPCVD in Open Air,” IEEE Trans. Plasma Sci. 34, 4 (2006) 1229–1234.

83. R. Groenen, E.R. Kieft, J.L. Linden, M.C.M. Van De Sanden, “Optoelectronic properties of expanding thermal plasma deposited textured zinc oxide: effect of aluminum doping,” J. Electron. Mater. 35, 4 (2006) 711–716.

84. Yasutaka, K. Akira, T. Shogo, and T. Hirokazu, “High rate zinc oxide film deposition by atmospheric TPCVD using Ar/Air plasma jets,” Trans. JWRI 37, 1 (2008) 33–37.

85. E. Gaudry, D. Cabaret, P. Sainctavit, C. Brouder, F. Mauri, J. Goulon, A. Rogalev, “Structural relaxations around Ti, Cr and Fe impurities in α-Al2O3 probed by x-ray absorption near edge structure combined with first-principles calculations,” J. Phys. Condens. Matter 17, 36 (2005) 5467–5480.

86. 汪建民,陶瓷技術手冊(下),中華民國產業科技發展協進會,中華民國粉末冶金協會,1996。

87. K. Ramachandran, V. Selvarajan, K.P. Screekumar, “Microstructure, adhesion, microhardness, abrasive wear resistance and electrical resistivity of the plasma sprayed alumina and alumina-titania coatings,” Thin Solid Films 315 (1998) 144–151.

88. D. Goberman, Y.H. Sohn, L. Shaw, “Microstructure development of Al2O3-13 wt.% TiO2 plasma sprayed coatings derived from nanocrystalline powders,” Acta Mater. 50 (2002) 1141–1152.

89. J. Tschirch, R. Dillert, D. BahnemannN, B. Proft, A. Biedermann, B. Goer, “Photodegradation of methylene blue in water, a standard method to determine the activity of photocatalytic coatings?” Res. Chem. Intermed. 34, 4 (2008) 381–392.

90. Y. Zeng. G.F. Cheng, M. Wen, W. Wu, “Effect of external bias voltage and coating thickness on the photocatalytic activity of thermal sprayed TiO2 coating,” Prog. Org. Coat. 61 (2008) 321–325.

91. S. Pyne, G. P. Sahoo, D.K. Bhui, H. Bar, P. Sarkar, S. Samanta, A. Maity, A. Misra, “Enhanced photocatalytic activity of metal coated ZnO nanowires,” Spectrochim. Acta - Part A: Molecular and Biomolecular Spectroscopy 93 (2012) 100–105.

92. C.C. Berndt, S. Safai, D.R. Marantz, Coating Characteristics, Thermal Spraying: Practice, Theory, and Application, 1st ed., M.L. Thorpe, AWS Committee on Thermal Spraying Press, 1985, pp. 29–48.

93. M.H. Huang, S. Mao, H. Feick, H. Yan,Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 8 (2001) 1897–1899.

94. M. Anpo, T. Shima, S. Kodam, Y. Kubokawa. “Photocatalytic hydrogenation of propyne with water on small-particle titania: size quantization effects and reaction intermediates,” J. Phys. Chem. 91, 16 (1987) 4305–4310.

95. J.H. Adair, T. Li, T. kido, K. havey, J. Mecholsky, A. Morrone, D.R. Talham, M.H. Ludwig, L. Wang, “Recent developments in the preparation and properties of nanometer-size spherical and platelet-shaped particles and composite particles,” Mater. Sci. Eng. R23 (1998) 139-242.

96. H. Chen, S.W. Lee, T.H. Kim, B.Y. Hur, “Photocatalytic decomposition of benzene with plasmas prayed TiO2-based coatings on foamed aluminum,” J. Eur. Ceram. Soc. 26 (2006) 2231–2239.

97. G.J. Yang, C.J. Li, F. Han, A. Ohmori, “Microstructure and photocatalytic performance of high velocity oxy-fuel sprayed TiO2 coatings,” Thin Solid Films 466 (2004) 81–85.

98. C. Lee, H. Choi, C. Lee, H. Kim, “Photocatalytic properties of nano-structured TiO2 plasma sprayed coating,” Surface & Coatings Technology 173 (2003) 192–200.
第2章
1. R. Chang, K. Ithisuphalap, and I. Kretzschmar, “Impact of particle shape on electron transport and lifetime in zinc oxide nanorod-based dye-sensitized solar cells,” AIMS Materials Science 3, 1 (2016) 51-65.

2. J.K. Kim, S. Bae, W. Kim, M.J. Jeong, S.H. Lee, C.L. Lee, W.K. Choi, J.Y. Hwang, J.H. Park, D.I. Son, “Nano carbon conformal coating strategy for enhanced photoelectrochemical responses and long-term stability of ZnO quantum dots,” Nano Energy 13 (2015) 258–266.

3. Y. Liu, G. Li, “a new method for producing “lotus effect” on a biomimetic shark skin,” Journal of Colloid and Interface Science 388, 1 (2012) 235-242.

4. P.S. Patil, P.S. Chigare, S.B. Sadale, T. Seth, D.P. Amalnerkar, R.K. Kawar, “Thickness-dependent properties of sprayed iridium oxide thin films,” Mater. Chem. Phys. 80 (2003) 667–675.

5. H.M. Rietveld, “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2 (1969) 65–71.

6. http://teaching.shu.ac.uk/hwb/chemistry/tutorials/molspec/beers1.htm, 2015.05.11.

7. J.G. Che, C.T. Chan, W.E. Jian, T.C. Leung, “Surface atomic atructures, surface energies, and equilibrium crystal shape of molybdenum,” Phys. Rev. B, 57, 3 (1998) 1875–1880.

8. P. Kubelka and F. Munk, “Ein Beitrag zur Optik der Farbanstriche,” Z. Tech. Phys. 12 (1931) 593–601.

9. A. Escobedo Morales, E. Sánchez Mora, U. Pal, “Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures,” Rev. Mex. Fis., S, 53 (2007) 18–22.

10. Yonenaga, “Thermo-mechanical stability of wide-bandgap semiconductors high temperature hardness of SiC, AlN, GaN, ZnO and ZnSe,” Physica B 308-310 (2001) 1150–1152.

11. G.C. Kini, S.L. Biswal, M.S. Wong, “Non-LBL assembly and encapsulation uses of nanoparticle-shelled hollow spheres,”Adv. Polym. Sci., 229 (2010) 175–200.

12. Di Chen, “Design, synthesis and properties of highly functional nanostructured photocatalysts,” Recent Pat. Nanotechnol., 2 (2008) 183–189.

13. A. Kołodziejczak-Radzimska, T. Jesionowski, “Zinc oxide-from synthesis to application: a review,” Materials, 7, 4 (2014) 2833–2881.

14. Z. Li, X. Li, X. Zhang, Y. Qian, “Hydrothermal synthesis and characterization of novel flower-like zinc-doped SnO2 nanocrystals,” J. Cryst. Growth, 291, 1 (2006) 258–261.

15. K. Qi, J. Yang, J. Fu, G. Wang, L. Zhu, G. Liu, W. Zheng, “Morphology-controllable ZnO rings: ionic liquid-assisted hydrothermal synthesis, growth mechanism and photoluminescence, ” CrystEngComm 15, 34 (2013) 6729–6735.

16. M. Ajili, N. Jebbari, N.K. Turki, “Study of physical properties of aluminum doped ZnO sprayed thin layers,” International Renewable Energy Congress, Sousse, Tunisia, 2010, pp. 305–309.

17. X. Chen, W. Guan, G. Fang, X. Z. Zhao, “Influence of substrate temperature and post-treatment on the properties of ZnO:Al thin films prepared by plused laser deposition,” Appl. Surf. Sci. 252 (2005) 1561–1567.

18. C.Y. Su, C.T. Lu, W.T. Hsiao, W.H. Liu, F.S. Shieu, “Evaluation of the microstructural and photocatalytic properties of aluminum-doped zinc oxide coatings deposited by plasma spraying,” Thin Solid Films 544 (2013) 170–174.

19. F. H. Wang, H. P. Chang, C. C. Tseng, C. C. Huang, “Effects of H2 plasma treatment on properties of ZnO-Al thin films prepared by RF magnetron sputtering,” Surf. Coat. Technol. 205 (2011) 5269–5277.

20. J.H. Choy, E.S. Jang, J.H. Won, J.H. Chung, D.J. Jang, Y.W Kim, “Hydrothermal route to ZnO nanocoral reefs and nanofibers,” Appl. Phys. Lett. 84, 2 (2004) 287–289.

21. J.G. Che, C.T. Chan, W.E. Jian, T.C. Leung, “Surface atomic structures, surface energies, and equilibrium crystal shape of molybdenum,” Phys. Rev. B 57, 3 (1998) 1875–1880.

22. J.S. Bendall, G. Visimberg, M. Szachowicz, N.O.V. Plank, S. Romanov, C.M. Sotomayor-Torres, M.E. Welland, “An investigation into the growth conditions and defect states of laminar ZnO nanostructures,” J. Mater. Chem. 18, 43 (2008) 5259–5266.

23. H. Zheng, M. Gruyters, E. Pehlke, R. Berndt, “"Magic" vicinal zinc oxide surfaces,” Phys. Rev. Lett. 111, 8 (2013) 086101-1–086101-5.

24. Dollet, Y. Casaux, M. Matecki, R. Rodriguez-Clemente, “Chemical vapour deposition of polycrystalline AlN films from AlCl3–NH3 mixtures: II — surface morphology and mechanisms of preferential orientation at low-pressure,” Thin Solid Films 406, 1 (2002) 118–131.

25. Y. Dai, Y. Zhang, Y.Q. Bai, Z.L. Wang, “Bicrystalline zinc oxide nanowires,” Chem. Phys. Lett. 375, 1 (2003) 96–101.

26. T.L. Phan, Y. Sun, R. Vincent, “Structural characterization of CVD-grown ZnO nanocombs,” J. Korean Phys. Soc. 59, 1 (2011) 60–64.

27. Y.A. Jeon, K.S. No, Y.S. Yoon, “Effect of hydrogen on the characteristics of ZnO thin films,” ECS – 203rd Meeting of the Electrochemical Society, Paris, France, 2003. (Arcticle published online: 14 April 2014, https://www.electrochem.org/dl/ma/203/pdfs/0340.pdf)

28. J.B. Wu, C.Y. Chen, M.S. Leu, H.Y. Tseng, Y.C. Lu, “Transparent conducting Al-doped ZnO thin films prepared by laser induced high current pulsed arc at low deposition temperature,” Materials Research Society Fall Meeting & Exhibit, Boston, MA, 2010, pp. 1.

29. S.O. Kucheyev, J.E. Bradby, J.S. Williams, C. Jagadish, M.V. Swain, “Mechanical deformation of single-crystal ZnO,” Appl. Phys. Lett., 80, 6 (2002) 956–958.

30. M. Chen, Z.L. Pei, C. Sun, L.S. Wen, X. Wang, “Surface characterization of transparent conductive oxide Al-doped ZnO Films,” J. Cryst. Growth 220, 3 (2000) 254–262.

31. S.S. Liao, H.F. Lin, S.W. Hung, C.T. Hu, “DC thermal plasma synthesis and properties of zinc oxide nanorods,” J. Vac. Sci. Technol. B 24 (3) (2006) 1322–1326.

32. J. Cho, K.H. Yoon, M.S. Oh, and W.K. Choi, “Effects of H2 annealing treatment on photoluminescence and structure of ZnO:Al/Al2O3 grown by radio-frequency Magnetron Sputtering,” J. Electrochem. Soc., 150, 10 (2003) H225–H228.

33. K.M. Reddy, S.V. Manorama, A.R. Reddy, “Band gap studies on anatase titanium dioxide nanoparticles,” Mater. Chem. Phys., 78 (2002) 239–245.

34. R. Pandey, S. Yuldashev, H.D. Nguyen, H.C. Jeon, T.W. Kang, “Fabrication of aluminium doped zinc oxide (AZO) transparent conductive oxide byultrasonic spray pyrolysis,” Curr. Appl. Phys. 12 (2012) S56–S58.

35. A.A. Letailleur, S.Y. Grachev, E. Barthel, E. Sondergard, K. Nomenvo, C.Couteau, S. Mc Murtry, G. Lerondel, E. Charlet, E. Peter, “High efficiency whiteluminescence of alumina doped ZnO,” J. Lumin. Elsevier 131,12 (2011) 2646–2651, http://dx.doi.org/10.1016/j.jlumin.2011.06.044 (hal-00602889).

36. Yildirim, H. Arslan, S. Sonmezo˘glu, “Facile synthesis of cobalt-doped zincoxide thin films for highly efficient visible light photocatalysts,” Appl. Surf. Sci. 390 (2016) 111–121.

37. S. Mondal, S.R. Bhattacharyya, P. Mitra, “Effect of Al doping on microstructure and optical band gap of ZnO thin film synthesized by successive ion layer adsorption and reaction,” Pramana-J. Phys., 80, 2 (2013) 315–326.

38. S.S. Sanjay, R.S. Yadav, A.C. Pandey, “Synthesis of lamellar porous photocatalytic nano ZnO with the help of anionic surfactant,” Adv. Mater. Lett. 4(5) (2013) 378–384.

39. X.Y. Gao, C. Chen, S. Zhang, “Optical properties of aluminum-doped zinc oxidefilms deposited by direct-current pulse magnetron reactive sputtering,” Chin.Phys. B. 23 (3) (2014) 030701-1–030701-5.

40. S. Tachikawa, A. Noguchi, T. Tsuge, M. o Hara, O. Odawara, H. Wada, “Optical properties of ZnO nanoparticles capped with polymers,” Material 4 (6) (2011)1132–1143.

41. N.S. Pesika, K.J. Stebe, P.C. Searson, “Determination of the particle size distribution of quantum nanocrystals from absorbance spectra,” Adv. Mater. 15 (15) (2003) 1289–1291.

42. Y.G. Wang, S.P. Lau, X.H. Zhang, H.H. Hng, H.W. Lee, S.F. Yu, B.K. Tay, “Enhancement of near-band-edge photoluminescence from ZnO films by face-to-face annealing,” J. Cryst. Growth 259 (2003) 335–342.

43. M.C. Jun, S.U. Park, J. H. Koh, “Comparative studies of Al-doped ZnO and Ga-doped ZnO transparent conducting oxide thin films,” Nanoscale Res. Lett., 7 (2012) 639–644.

44. Z. Ghorannevis, M.T. Hosseinnejad, M. Habibi, P. Golmahdi, “Effect of substrate temperature on structural, morphological and optical properties of deposited Al/ZnO films,” J. Theor. Appl. Phys., 9 (2015) 33–38.

45. Walsh, J.L.F.D. Silva, S.H. Wei, “Origins of band-gap renormalization in degenerately doped semiconductors,” Phys. Rev. B, 78 (2008) 075211-1–075211-5.

46. X.D. Li, T. P. Chen, Y. Liu, K. C. Leong, “Evolution of dielectric function of Al-doped ZnO thin films with thermal annealing: effect of band gap expansion and free-electron absorption,” Opt. Express 22, 19 (2014 ) 23086–23093.

47. E.M. Likovich, R. Jaramillo, K.J. Russell, S. Ramanathan, V. Narayanamurti, “Narrow band defect luminescence from Al-doped ZnO probed by scanning tunneling cathodoluminescence,” Appl. Phys. Lett., 99 (2011) 151910-1–151910-3.

48. T.P. Rao, M.C.S. Kumar, “Resistivity stability of Ga doped ZnO thin films with heat treatment in air and oxygen atmospheres,” J Crystallization Process and Technology, 2 (2012) 72–79.

49. S.H. Park, S.E. Park, J.C. Lee, P.K. Song, “Photoluminescence characterization of Al-doped ZnO films deposited by using DC magnetron sputtering,” J. Korean Phys. Soc. 54, 3 (2009) 1344–1347.

50. F. Khan, S. Ameen, M. Song, H.S. Shin, J. Lumin., “Influence of excitation wavelength on photoluminescence spectra of Al doped ZnO films,” J. Lumin. 134 (2013) 160–164.

51. J. Tschirch, R. Dillert, D. Bahnemann, B. Proft, A. Biedermann, B. Goer, “Photodegradation of methylene blue in water, a standard method to determine the activity of photocatalytic coatings?” Res. Chem. Intermed. 34, 4 (2008) 381–392.

52. H. Liu, S. Cheng, J. Zhang, C. Cao, S. Zhang, “Titanium dioxide as photocatalyst on porous nickel: Adsorption and the photocatalytic degradation of sulfosalicylic acid,” Chemosphere, 38, 2 (1999) 283–292.

53. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chem. Rev. 95, 1 (1995) 69–96.

54. A.V. Dijken, E.A. Meulenkamp, D. Vanmaekelbergh, A. Meijerink, “The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation” J. Phys. Chem. B, 104, (2000) 1715–1723.

55. D.S. Tsoukleris, A.I. Kontos, P. Aloupogiannis, P. Falaras, “Photocatalytic properties of screen-printed titania,” Catal. Today, 124, 3 (2007) 110–117.

56. J. Mani, H. Sakeek, S. Habouti, M. Dietze, M. Es-Souni, “Macro–meso-porous TiO2, ZnO and ZnO–TiO2-composite thick films. Properties and application to photocatalysis,” Catal. Sci. Technol., 2 (2012) 379–385.

57. C.G.V.D. Walle, “Hydrogen as a cause of doping in zinc oxides,” Phys. Rev. Lett., 85, 5 (2000) 1012–1015.

58. Q. Kuang, X. Wang, Z. Jiang, Z. Xie, L. Zheng, “High-energy-surface engineered metal oxide micro- and nanocrystallites and their applications,” Acc. Chem. Res. 47, 2 (2014) 308–318.

59. K. Hashimoto, H. Irie, A. Fujishima, “TiO2 photocatalysis: A historical overview and future prospects,” Jpn. J. Appl. Phys., 44, 12 (2005) 8269–8285.

60. P. Zhang, J. Tian, R. Xu, G. Ma, “Hydrophilicity, photocatalytic activity andstability of tetraethyl orthosilicate modified TiO2 film on glazed ceramicsurface,” Appl. Surf. Sci. 266 (2013) 141–147.

61. K.S. Guan, “Relationship between photocatalytic activity hydrophilicity andself cleaning effect of TiO2/SiO2 films,” Surf. Coat. Technol. 191 (2005) 155–160.

62. A.M. Berto, Ceramic tiles: above and beyond traditional applications, J. Eur. Ceram. Soc. 27 (2007) 1607–1613.

63. M. Sun, Z. Chen, Y. Bu, J. Yu, B. Hou, “Effect of ZnO on the corrosion of zinc, Q235 carbon steel and 304 stainless steel under white light illumination,” Corrosion Science, 82 (2014) 77–84.

64. R.J. Barnes, R. Molina, J. Xu, P.J. Dobson, I.P. Thompson, “Comparison of TiO2 and ZnO nanoparticles for photocatalytic degradation of methylene blue and the correlated inactivation of gram-positive and gram-negative bacteria,” J. Nanopart. Res. 15 (2013) 1432–1442.

65. N.C.S. Selvam, J.J. Vijaya, L.J. Kennedy, “Effects of morphology and Zr doping on structural, optical, and photocatalytic properties of ZnO nanostructures,” Ind. Eng. Chem. Res. 51 (2012) 16333–16345.
第3章
1. 徐成武,馬麗雅,周軍師,噴霧造粒系統的工藝原理及提高粉料品質和製備效率的探討,磁性材料及器件,2003年2月,pp.37–41。

2. What is Thermal Spray, www.mecpl.com/pdf-files/what-is-thermal-spray.pdf, Metallizing Equipment Co. Pvt. Ltd., Aug 21, 2017.

3. P. Fauchais, G. Montavon, R.S. Lima, B.R. Marple, “Engineering a new class of thermal spray nano-based microstructures from agglomerated nanostructured particles, suspensions and solutions: An invited review,” J. Phys. D: Applied Physics, IOP Publishing 44, 9 (2011) 93001 -193001-53.

4. P. Chagnon and P. Fauchais, “Thermal Spraying of Ceramics”, Ceramics International 10 (1984) 119–131.

5. H.S. Ingham, A.P. Shepard, Flame Spray Handbook, Vol. III, Metco, Westbury, NY, 1965, pp. 3.

6. C. Lee, H. Choi, C. Lee and H. Kim, “Photocatalytic properties of nano-structured TiO2 plasma sprayed coating,” Surface & Coatings Technology 173 (2003) 192–200.

7. G. Mauer, A. Guignard, R. Vaen, “Plasma spraying of efficient photoactive TiO2 coatings,” Surface and Coatings Technology 220 (2013) 40–43.

8. X. Li, J. Yu , M. Jaroniec, “Hierarchical photocatalysts,” Chem. Soc. Rev., 45 (2016) 2603–2636.

9. M. Tului, F. Arezzo, L. Pawlowski, “Optical properties of plasma sprayed ZnO+Al2O3 coatings,” Surface & Coatings Technology, 179 (2004) 47–55.

10. R. McPherson, “Formation of metastable phases in flame and plasma-prepared alumina,” Journal of Materials Science 8 (1973) 851-858.

11. Elhamidi, A. Elhichou, K. Meziane, A. Almaggoussi, “Investigation of (Mg-Al) co-doped Zinc Oxide Thin Films for Photovoltaic Harvesting Energy Devices,” 2015 3rd International Renewable and Sustainable Energy Conference (IRSEC), Marrakech, Morocco, Dec 10-13, 2015. 10.1109/IRSEC.2015.7454999.

12. S. Moradi, P. Aberoomand Azar, S. Raeis Farshid, S. Abedini Khorrami, M.H. Givianrad, “Synthesis and characterization of Al-TiO2-ZnO and Fe-TiO2-ZnO photocatalyst and their photocatalytic behaviour,” Asian Journal of Chemistry 25, 12 (2013) 6635-6638.
13. B.D Cullity, S.R. Stock, Element of x-ray diffraction, 3rd, Prentice Hall, New Jersey, 2001, p.170.

14. K. Hashimoto, H. Irie, A. Fujishima, “TiO2 photocatalysis: A historical overview and future prospects,” Jpn. J. Appl. Phys., 44, 12 (2005) 8269–8285.

15. S. T. Kochuveedu, Y. H. Jang, Y. J. Jang and D. H. Kim, “Visible light active photocatalysis on block copolymer induced strings of ZnO nanoparticles doped with carbon,” J.Mater. Chem. A 1 (2013) 898–905.

16. Z. Pei, L. Ding, M. Lu, Z. Fan, S. Weng, J. Hu and P. Liu, “Synergistic effect in polyaniline-hybrid defective ZnO with enhanced photocatalytic Activity and Stability,” J. Phys. Chem. C 118 (2014) 9570–9577.

17. N.C.S. Selvam, J.J. Vijaya and L.J. Kennedy, “Effects of morphology and Zr doping on structural, optical, and photocatalytic properties of ZnO nanostructures,” Ind. Eng. Chem. Res. 51 (2012) 16333–16345.
第4章
1. R. McPherson, “Formation of metastable phases in flame and plasma-prepared alumina,” Journal of Materials Science 8 (1973) 851–858.

2. Z. ŁODZIANA, “Density functional simulation of metal oxides: Al2O3 and Fe3O4”, Task Quarterly 8, 4 (2004) 561–572.

3. Sulzer Metco web, https://www.upc.edu/sct/es/documents_equipament/d_324_id-804-2.pdf, “An Introduction to Thermal Spray,” Aug 6, 2017, p1–24.

4. J.R. Davis (Ed.), “Introduction to Thermal Spray Processing,” Handbook of Thermal Spray Technology, ASM International, Material Park, OH, 2004, pp. 3–13.

5. M.U. Schoop, “Early Thermal Spray Application—JTST Historical Patent #22,” JTTEE 10, 1 (2001) 37–39.

6. A. Ohmori, C.J. Li, “Quantitative characterization of the structure of plasma-sprayed Al2O3 coating by using copper electroplating,” Thin Solid Films 201, 2 (1991) 241–252.

7. C.J. Li, A. Ohmori, “Relationships between the microstructure and properties of thermally sprayed deposits,” J. Therm. Spray T. 11, 3 (2002) 365–374.

8. G.J. Li, G.J. Yang, A. Ohmori, “Relationship between particle erosion and lamellar microstructure for plasma-sprayed alumina coatings,” Wear 260, 11–12 (2006) 1166–1172.

9. A. Ohmori, G.J. Li, Y. Arata, “Influence of plasma spray conditions on the structure of Al2O3 coatings,” Trans. Jpn. Weld. Res. Inst. 19, 2 (1990) 259–270.

10. G. Bolelli, V. Cannillo, L. Lusvarghil, T. Manfredini, “Wear behaviour of thermally sprayed ceramic oxide coatings,” Wear 261, 11-12 (2006) 1298–1315.

11. M.A. Zavareh, A.A.D.M. Sarhan, B.B.A. Razak, W.J. Basirun, “Plasma thermal spray of ceramic oxide coating on carbon steel with enhanced wear and corrosion resistance for oil and gas applications,” Ceram Int., 40, 9 (2014) 14267-14277.
12. Y. Zeng. G. F. Cheng, M. Wen, W. Wu, “Effect of external bias voltage and coating thickness on the photocatalytic activity of thermal sprayed TiO2 coating,” Prog. Org. Coat. 61 (2008) 321–325.

13. H. Chen, S. W. Lee, T. H. Kim, B. Y. Hur, “Photocatalytic decomposition of benzene with plasmas prayed TiO2-based coatings on foamed aluminum,” J. Eur. Ceram. Soc. 26 (2006) 2231–2239.

14. G. J. Yang, C.J. Li, F. Han, A. Ohmori, “Microstructure and photocatalytic performance of high velocity oxy-fuel sprayed TiO2 coatings,” Thin Solid Films 466 (2004) 81–85.

15. C. Lee, H. Choi, C. Lee, H. Kim, “Photocatalytic properties of nano-structured TiO2 plasma sprayed coating,” Surface & Coatings Technology 173 (2003) 192–200.

16. G. J. Yang, C.J. Li, F. Han, A. Ohmori, “Microstructure and photocatalytic performance of high velocity oxy-fuel sprayed TiO2 coatings,” Thin Solid Films 466, 1/2 (2004) 81–85.

17. J. Colmenares-Angulo, S. Zhao, C. Young, A. Orlov, “The effects of thermal spray technique and post-deposition treatment on the photocatalytic activity of TiO2 coatings,”Surface & Coatings Technology 204 (2009) 423–427.

18. J. Mani, H. Sakeek, S. Habouti, M. Dietze, M. Es-Souni, “Macro–meso-porous TiO2, ZnO and ZnO–TiO2-composite thick films. Properties and application to photocatalysis,” Catal. Sci. Technol., 2 (2012) 379–385.

19. Y. Ando, S. Tobe, H. Tahara, “Rapid deposition of photocatalytic oxide film by liquid feedstock injection TPCVD in open air,” IEEE Trans. Plasma Sci. 34, 4 (2006) 1229–1234.

20. C.-J. Li, G.-J. Yang, Z. Wang, “Formation of nano-structured TiO2 by flame spraying with liquid feedstock,” Mater. Lett. 57 (2003) 2130–2134.

21. H.M. Ameran, R. Ali, and W.A.W.A. Bakar, “Electrodeposition of metal oxide semiconductor photocatalysts on support for degradation of BTX,” International Conference on Chemical, Environment & Biological Sciences (CEBS-2014) Sept. 17-18, 2014 Kuala Lumpur (Malaysia), pp.178-182.

22. A.S. El-Kalliny, S.F. Ahmed, L.C. Rietveld, P.W. Appel, “Immobilized photocatalyst on stainless steel woven meshes assuring efficient light distribution in a solar reactor,” Drinking Water Eng Sci 7 (2014) 41–52. https://doi.org/10.5194/dwes-7-41-2014.

23. T. Kameyama, “Robust science & technorogy for safe and secure life space -photocatalyst-,” http://www.aist.go.jp/aist_e/research_results/publications/pamphlet/, National Institute of Advanced Industrial Science and Technology (AIST) Web, Aug 12, 2017.

24. S. Krumdieck, S. S. Miya, D. Lee, S. D. Talwar, C. M. Bishop, “Titania-based photocatalytic coatings on stainless steel hospital fixtures,” Phys. Status Solidi. C 12, 7 (2015) 1028–1035.

25. Y. Liu, G. Li, “a new method for producing “lotus effect” on a biomimetic shark skin,” J. Colloid Interface Sci. 388, 1 (2012) 235–242.

26. W.H. Liao, F.S. Shieu, W.T. Hsiao, C.Y. Su, M. S. Leu, “Study of ceramic coatings as a novel optical imaging tracking material using plasma spray method,” Thermal Spray 2009: Expanding Thermal Spray Performance to New Markets and Applications (ASM International), ASM Thermal Spray Society, Materials Park, OH, May 01, 2009, pp. 40–45.

27. X.Q. WEI, “A study on hypoeutectic Sn-Zn alloys as lead-free electronic solders,” Nanchang, Nanchang University, 2006.

28. X.X. Ren, M. Li, D.l. Mao, “Effect of alloying elements on the high-temperature oxidation resistance of Sn-Zn based lead-free solder,” Electronic Components and Materials 23, 11 (2004) 40–44.

29. K.L. Lin, T.P. Liu, “High-temperature oxidation of a Sn-Zn-Al solder,” Oxid. Met. 50, 3/4 (1998) 255–267.

30. X.Q. Wei, H.Z. Hung, L. Zhou, M. Zhang, “Effect of microalloying on wettability, oxidation and solidification morphology of Sn-9Zn alloy,” J. Rare Earth. 23, 2 (2005) 220–223.

31. https://www.doitpoms.ac.uk/tlplib/ellingham_diagrams/printall.php, Aug 8, 2017.

32. H.J.T Ellingham, “Reducibility of oxides and sulfides in metallurgical processes,” J. Soc. Chem. Ind. (London), 63 (1944) 125–133.

33. E.M. Levin, “Phase diagrams for ceramists”, American Ceramic Society, Westerville, Ohio, USA, 1964.

34. M. Tului, F. Arezzo, L. Pawlowski, “Optical properties of plasma sprayed ZnO-Al2O3 coatings,” Surface and Coatings Technology 179 (2004) 47–55.

35. N. A. Toropov, V.P. Barzakovkii, “High-temperature chemistry of silicates and other oxide systems,” Consultants Bureau, New York, 1966, p.92.

36. Y.W. Jang, S. Bang, H. Jeon, J.Y. Lee, “Microstructural characterization at the interface of Al2O3/ZnO/Al2O3 thin films grown by atomic layer deposition,” Phys. Status Solidi B 248, 7 (2011) 1634–1638.

37. G. Lévai , M. Godzsák, T.I. Török, J. Hakl, V. Takáts, A. Csik , K. Vad, G. Kaptay, “Designing the color of hot-dip galvanized steel sheet through destructive light interference using a Zn-Ti liquid metallic bath,” Metall. Mater. Trans. A 47 (2016) 3580–3596.

38. X.S. Li, S.I. Baek, C.S. Oh, S.J. Kim, Y.W. Kim, “Dew-point controlled oxidation of Fe-C-Mn-Al-Si-Cu transformation-induced plasticity-aided steels,” Scr. Metall. 59 (2008) 290–293.

39. P. Drillet, Z. Zermout, D. Bouleau, J.M. Mataigne, “Selective oxidation of IFTi stabilized steels during recrystallization annealing, and steel/Zn reactivity,” Galvatech ’01 (2001) 195-202.

40. P. Souza Santos, H. Souza Santos, S.P. Toledob, “Standard transition aluminas. Electron microscopy studies,” Mat. Res. 3, 4 (2000) 104–114.

41. R.V. Tsyshevsky, A. Zverev, A. Mitrofanov, S.N. Rashkeev, M.M. Kuklja, “Photochemistry of the α-Al2O3-PETN Interface,” Molecules 21, 3 (2016) 289-1–13. doi:10.3390/molecules21030289.

42. Y.D. Ivakin, M.N. Danchevskaya, O.G. Ovchinnikova, G.P. Murav’eva, V.A. Kreisberg, “The kinetics and mechanism of doped corundum structure formation in an water fluid,” Rus. J. Phys. Chem. B 3 (2009) 1019–1034.

43. Z. ŁODZIANA, “Density functional simulation of metal oxides: Al2O3 and Fe3O4”, Task Quarterly 8, 4 (2004) 561–572.

44. R. Georgekutty, M.K. Serry, S.C. Pillai, “A Highly efficient Ag-ZnO photocatalyst: synthesis, properties, and mechanism,” J. Phys. Chem. C 112 (2008) 13563–13570.

45. G. Yang, Z. Yan, T. Xiao, “Preparation and characterization of SnO2/ZnO/TiO2 composite semiconductor with enhanced photocatalytic activity,” Appl. Surf. Sci. 258 (2012) 8704–8712.

46. Z.B. Yu, Y.P. Xie, G.Liu, G.Q. Lu, X.L. Ma, H.M. Cheng, “Self-assembled CdS/Au/ZnO heterostructure induced by surface polar charges for efficient photocatalytic hydrogen evolution,” J. Mater. Chem. A 1 (2013) 2773–2776.

47. E.O. Filatova, A.S. Konashuk, “Interpretation of the changing the band gap of Al2O3 depending on its crystalline form: Connection with different local symmetries,” J. Phys. Chem. C 119 (2015) 20755−20761.

48. J. Gangwar, B.K. Gupta, P. Kumar, S.K. Tripathi, A.K. Srivastava, “Time-resolved and photoluminescence spectroscopy of θ-Al2O3 nanowires for promising fast optical sensor applications,” Dalton Trans. 43,45 (2014) 17034–17043.

49. J. Zhang, J. He, Y. Dong, X. Li, D. Yan, “Microstructure characteristics of Al2O3-13 wt.% TiO2 coating plasma spray deposited with nanocrystalline powders,” J. Mater. Process. Technol. 197, 13 (2008) 31–35.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top