跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.88) 您好!臺灣時間:2024/12/04 14:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡佩蓉
研究生(外文):Pei-Jung Tsai
論文名稱:以電化學法在氮化鈦電極上沉積銅鈷奈米粒子並應用於葡萄糖感測之研究
論文名稱(外文):Electrodeposition of Cu-Co Nanoparticles on TiN Thin Film Electrodes for Glucose Sensing Applications
指導教授:呂福興
指導教授(外文):Fu-Hsing Lu
口試委員:段維新黃嘉宏楊家榮
口試委員(外文):Wei-Hsing TuanJia-Hong HuangChia-Jung Yang
口試日期:2017-07-18
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:88
中文關鍵詞:銅鈷奈米粒子氮化鈦非酵素型葡萄糖感測
外文關鍵詞:Cu-Co nanoparticlestitanium nitridenon-enzyme glucose sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:188
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
本研究以氮化鈦(TiN)作為葡萄糖感測之電極,並沉積Cu-Co雙金屬奈米粒子,利用雙官能的特性,提升非酵素型葡萄糖感測應用的靈敏度,此具新穎價值。利用非平衡直流磁控濺鍍法製備TiN薄膜,藉由調控鍍著參數影響薄膜的表面形貌與電阻率,探討電極性質對生成Cu-Co奈米粒子之影響,並比較Cu-Co奈米粒子形貌和大小對非酵素型葡萄糖感測的效果,進一步比較改變硫酸銅/硫酸鈷溶液比例對於Cu-Co奈米粒子及非酵素型葡萄糖感測的影響。
以不同形貌/不同電阻率之角錐狀高電阻率氮化鈦(PHR-TiN)及顆粒狀低電阻率氮化鈦(GLR-TiN),與不同形貌/相近電阻率之角錐狀氮化鈦(P-TiN)及顆粒狀氮化鈦(G-TiN)進行比較,反應電壓為-1 V,沉積30秒,在改變硫酸銅/硫酸鈷溶液比例下,不論在不同形貌/不同電阻率或是不同形貌/相近電阻率氮化鈦結果中,都能生成Cu-Co奈米粒子,但電流密度結果中,顆粒狀氮化鈦皆高於角錐狀氮化鈦,而電流密度亦能表示為反應速率,因此,推測是因為顆粒狀表面較為平坦,有較多的成核位置,使反應速率較快,而角錐狀是先在角錐與角錐間成核,成核點較少,使Cu-Co奈米粒子反應較慢,氮化鈦表面形貌對於Cu-Co的生長較電阻率影響大。
探討改變硫酸銅/硫酸鈷溶液濃度比例對於沉積Cu-Co奈米粒子形貌、銅鈷含量比,以及應用於非酵素型葡萄糖感測之影響。在本實驗結果中,TiN形貌為影響Cu-Co形貌及對葡萄糖感測靈敏度的主要因素,在溶液濃度[Cu/(Cu+Co)]sol.=0.5時,葡萄糖感測最佳,以角錐狀氮化鈦為反應電極所沉積之Cu-Co奈米粒子尺寸為43±23 nm,其葡萄糖感測靈敏度為1473±23 μA/cm2․mM,而在顆粒狀氮化鈦為反應電極所沉積的Cu-Co奈米粒子尺寸為50±14 nm,其葡萄糖感測靈敏度為1646±64 μA/cm2․mM;研究中,Cu奈米粒子尺寸為97±30 nm,葡萄糖感測靈敏度為767±39 μA/cm2․mM,Cu-Co奈米粒子的葡萄糖感測靈敏度優於Cu奈米粒子,雙金屬奈米粒子確實能提升葡萄糖感測靈敏度。
This study focuses on the non-enzymatic glucose sensing and the deposition of Cu-Co bimetallic nanoparticles on titanium nitride (TiN) electrodes. The sensitivity of non-enzymatic glucose sensing was promoted by Cu-Co nanoparticles with bifunctional properties. The TiN thin films were deposited by DC unbalanced magnetron reactive sputtering. We discuss effect of the films with different surface morphologies and resistivity by varying the deposition parameters. Then, the Cu-Co nanoparticles were influenced by electrode properties, and compared to their different shapes and sizes for the non-enzymatic glucose sensing. To compare the ratio of CuSO4/CoSO4 solution on Cu-Co nanoparticles and the non-enzymatic glucose sensing, we changed the concentration of CuSO4/CoSO4 solution into different ratio.
The comparison between the different morphologies/different resistivity TiN and the different morphologies/similar resistivity TiN, including high resistivity pyramidal (PHR-TiN), low resistivity granular (GLR-TiN), and pyramidal (P-TiN), granular (G-TiN) structures, respectively. No matter what the solution concentration ratio of CuSO4/CoSO4 is, the Cu-Co nanoparticles were deposited not only on the different morphologies/different resistivity TiN but also the different morphologies/similar resistivity TiN under a potentiostatic mode with -1 V and an applied time with 30 s. The current density of the granular TiN was higher than the pyramidal one, and the current density can be expressed as the reaction rate. It might be the granular TiN with more flat surface so that would have more nucleation sites. The nanoparticles on pyramidal TiN are between the two pyramids with less nucleation sites. The result indicates that the growth of Cu-Co nanoparticles with more influence on the surface morphology of TiN than resistivity.
We investigated the effect of non-enzymatic glucose sensing with different Cu-Co nanoparticles and the content ratio of Cu and Co by changing the concentration of CuSO4/CoSO4 solution. According to the experiment results, the morphologies of TiN are the main factor to cause the different type of morphologies of Cu-Co nanoparticles and the sensitivity of glucose sensing. When the solution concentration [Cu/(Cu+Co)]sol. was 0.5, the sensitivity of glucose sensing was the best. The Cu-Co nanoparticle sizes and the sensitivities of glucose sensing were 43±23 nm/1473±23 μA/cm2․mM for pyramidal TiN (P-TiN) and 50±14 nm/1646±64 μA/cm2․mM for granular TiN (G-TiN). In this study, Cu nanoparticle sizes were 97±30 nm and sensitivities of glucose sensing were 767±39 μA/cm2․mM. As the results, the Cu-Co nanoparticles sensitivities of glucose sensing were better than the Cu nanoparticles, and the bimetallic nanoparticles can promote the sensitivities of glucose sensing.
誌謝 i
摘要 ii
Abstract iii
目次 v
表目次 vii
圖目次 viii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究目的 3
第二章 理論背景與文獻回顧 4
2.1 電化學原理 4
2.1.1 伏安法 5
2.1.2 安培法 7
2.2 葡萄糖感測原理及現況發展 8
2.3 奈米金屬應用於非酵素型葡萄糖感測之文獻回顧 10
2.3.1 Co及含Co之雙金屬奈米粒子應用於葡萄糖感測 10
2.3.2 Cu及含Cu之雙金屬奈米粒子應用於葡萄糖感測 12
2.4 以TiN為電極控制金屬奈米粒子應用於葡萄糖感測之文獻回顧 18
第三章 實驗方法 20
3.1 實驗流程 20
3.2 TiN/Si電極製備 21
3.3 電化學法沉積Cu-Co奈米粒子於TiN電極 22
3.4 Cu-Co奈米粒子應用於葡萄糖感測 23
3.5 分析儀器 23
3.5.1 電化學分析儀 23
3.5.2 X光繞射分析儀 23
3.5.3 場發射掃描式電子顯微鏡 / X光能量散射光譜儀 24
3.5.4 四點探針 24
3.5.5 場發射穿透式電子顯微鏡 25
第四章 結果 26
4.1 TiN/Si基材分析 26
4.2 以電化學法於TiN/Si沉積Cu-Co奈米粒子 30
4.2.1 不同形貌/不同電阻率之TiN/Si電極 30
4.2.2 不同形貌/相近電阻率之TiN/Si電極 42
4.3 葡萄糖感測 52
4.3.1 以不同形貌/不同電阻率TiN沉積之Cu-Co奈米粒子 52
4.3.2 以不同形貌/相近電阻率TiN沉積之Cu-Co奈米粒子 58
第五章 討論 65
5.1 以不同形貌/電阻率TiN沉積之Cu-Co微結構與成分分析 65
5.2 葡萄糖感測影響因子 72
5.2.1 TiN之形貌與電阻率 72
5.2.2 電解液中硫酸銅/硫酸鈷溶液比例 77
第六章 結論 82
參考文獻 83
[1]Y. Song, R. Peng, D.K. Hensley, P.V. Bonnesen, L. Liang, Z. Wu, H.M. Meyer, M. Chi, C. Ma, B.G. Sumpter, A.J. Rondinone, “High-selectivity electrochemical conversion of CO2 to ethanol using a copper nanoparticle/N-doped graphene electrode,” ChemistrySelect 1 (2016) 1.
[2]J. Wang, C. Liu, J. Li, R. Luo, X. Sun, J. Shen, W. Han, L. Wang, “In-situ incorporation of iron-copper bimetallic particles in electrospun carbon nanofibers as an efficient Fenton catalyst,” Appl. Catal. B-Environ. 207 (2017) 316.
[3]G. Polino, R. Abbel, S. Shanmugam, G.J.P. Bex, R. Hendriks, F. Brunetti, A.D. Carlo, R. Andriessen, Y. Galagan, “A benchmark study of commercially available copper nanoparticle inks for application in organic electronic devices,” Org. Electron. 34 (2016) 130.
[4]X. Hu, T. Liu, Y. Zhuang, W. Wang, Y. Li, W. Fan, Y. Huang, “Recent advances in the analytical applicstions of copper nanoclusters,” Trends Anal. Chem. 77 (2016) 66.
[5]X.Q. Liao, R.Y. Li, Z.J. Li, X.L. Sun, Z.P. Wang, J.K. Liu, “Fast synthesis of copper nanoclustars through the use of hydrogen peroxide additive and the application for fluorescent detection of Hg+ in water samples,” New J. Chem. 39 (2015) 5240.
[6]J. Feng, Y. Ju, J. Liu, H. Zhang, X. Chen, “Polyethyleneimine-templated copper nanoclusters via ascorbic acid reduction approach as ferric ion sensor,” Anal. Chim. Acta 854 (2015) 153.
[7]N. Goswami, A. Giri, M.S. Bootharaju, P.L. Xavier, T. Pradeep, S.K. Pal, “Copper quantum clusters in protein matrix: potential sensor of Pb2+ ion,” Anal. Chem 83 (2011) 9676.
[8]D. Li, B. Li, S.I. Yang, “A selsective fluorescence turn-on sensing system for evaluation of Cu2+ polluted water based on ultra-fast formation of fluorescent copper nanoclusters,” Anal. Methods 7 (2015) 2278.
[9]H. Zhang, Z. Lin, X. Su, “Label-free detection of exonuclease III by using dsDNA-templated copper nanoparticles as fluorescent probe,” Talanta 131 (2015) 59.
[10]F. Xu, H. Shi, X. He, K. Wang, D. He, Q. Guo, Z. Qing, L. Yan, X. Ye, D. Li, J. Tang, “Concatemeric dsDNA-templated copper nanoparticles strategy with improved sensitivity and stability based on rolling circle replication and its application in microRAN detection,” Anal. Chem. 86 (2014) 6976.
[11]W. Wang, F. Leng, L. Zhan, Y. Chang, X.X. Yang, J. Lan, C.Z. Huang, “One-step prepared fluorescent copper nanoclusters for reversible pH-sensing,” Analyst 139 (2014) 2990.
[12]S.M. Hamidi, B. Mosaeii, M. Afsharnia, A. Aftabi, M. Najafi, “Magneto-plasmonic study of aligned Ni, Co and Ni/Co multilayer in polydimethylsiloxane as magnetic field sensor,” J. Magn. Magn. Mater. 417 (2016) 413.
[13]N. Hui, J. Wang, “Electrodeposited honeycomb-like cobalt nanostructures on graphene oxide doped polypyrrole nanocomposite for high performance enzymeless glucose sensing,” J. Electroanal. Chem. 798 (2017) 9.
[14]S. Xu, M. Wang, L. Qiao, J. Bing, Q. Zou, Y. Zhao, “Enhancing the sintering ability of TiNx by introduction of nitrogen vacancy defects,” Ceram. Int. 41 (2015) 9514.
[15]J.-E. Sundgren, “Structure and properties of TiN coatings,” Thin Solid Films 128 (1985) 21.
[16]M.-H. Chan, F.-H. Lu, “Air-based deposition of conductive nitride thin films by sputtering,” J. Electrochem. Soc. 158 (6) (2011) 75.
[17]Y. Haldorai, S.-K. Hwang, A.-I. Gopalan, Y.S. Huh, Y.-K. Han, W. Voit, G. S.-Anand, K.-P. Lee, “Direct electrochemistry of cytochrome c immobilized on titanium nitride/multi-walled carbon nanotube composite for amperometric nitrite biosensor,” Biosens. Bioelectron. 79 (2016) 543.
[18]M. Birkholz, K. E. Ehwald, D. Wolansky, I. Costina, C. B. Kaynak, M. Fröhlich, H. Beyer, A. Kapp, and F. Lisdat, “Corrosion-resistant metal layers from a CMOS process for bioelectronic applications,” Surf. Coat. Technol. 204 (2010) 2055.
[19]H.-B. Noh, K.-S. Lee, P. Chandra, M.-S. Won, Y.-B. Shim, “Application of a Cu-Co alloy dendrite on glucose and hydrogen peroxide sensors,” Electrochimica Acta 61 (2012) 36.
[20]L. Wang, Y. Zheng, X. Lu, Z. Li, L. Sun, Y. Song, “Dendritic copper-cobalt nanostructures/reduced graphene oxide-chitosan modified glassy carbon electrode for glucose sensing,” Sens. Actuators B Chem. 195 (2014) 1.
[21]楊家榮,以電化學法控制銅和銅銀複合奈米結構之形貌、大小及其在生化感測之應用,國立中興大學材料科學與工程學系博士論文 (2014)。
[22]余忠原,以電化學法在氮化鈦電極上控制鎳奈米粒子形貌與大小並應用於葡萄糖感測器之研究,國立中興大學材料科學與工程學系碩士論文 (2016)。
[23]胡啟章,電化學原理與方法,五南出版社,(2002) p.5。
[24]P.T. Kissinger, W.R. Heineman, “Cyclic Voltammetry,” J. Chem. Educ. 60 (1983) 702.
[25]M.-S. Steiner, A. Duerkop, O.S. Wolfbeis, “Optical methods for sensing glucose,” Chem. Soc. Rev. 40 (2011) 4805.
[26]L.C. Clark, Jr., C. Lyons, “Electrode systems for continuous monitoring in cardiovascular surgery,” Ann. NY Acad. Sci. 102 (1962) 29.
[27]J. Wang, “Electrochemical glucose biosensors,” Chem. Rev. 108 (2008) 814.
[28]S.A. Zaidi, J.H. Shin, “Recent developments in nanostructure based electrochemical glucose sensors,” Talanta 149 (2016) 30.
[29]Y. Sun, H. Buck, T.E. Mallouk, “Combinatorial discovery of alloy electrocatalysts for amperometric glucose sensors,” Anal. Chem. 73 (2001) 1599.
[30]W.-Z. Jia, K. Wang, X.-H. Xia, “Elimination of electrochemical interferences in glucose biosensors,” Trends Anal. Chem. 29 (2010) 306.
[31]S. Cherevko, C.H. Chung, “Gold nanowire array electrode for non-enzymatic voltammetric and amperometric glucose dection,” Sens. Actuators B 142 (2009) 216.
[32]J. Song, L. Xu, R.Q. Xing, W.F. Qin, Q.L. Dai, H.W. Song, “Ag nanoparticles coatrd NiO nanowires hierarchical nanocomposites electrode for nonenzymatic glucose biosensing,” Sens. Actuators B 182 (2013) 675.
[33]Y. Wang, J. Chen, C. Zhou, L. Zhou, Y. Kong, H. Long, S. Zhong, “A novel self-cleaning, non-enzymatic glucose sensor working under a very low applied potential based on a Pt nanoparticle-decorated TiO2 nanotube array electrode,” Electrocheim. Acta 115 (2014) 269.
[34]J.Y. Zheng, Z.L. Quan, C.W. Kim, H.G. Cha, T.W. Kim, W. Shin, K.J. Lee, M.H. Jung, Y.S. Kang, “Vertical cobalt dendrite array films: electrochemical deposition and characterization, glucose oxidation and magnetic properties,” J. Mater. Chem. 22 (2012) 12296.
[35]S. Premlatha, P. Sivasakthi, G.N.K.R. Bapu, “Electrodeposition of a 3D hierarchical porous flower-like cobalt-MWCNT nanocomposite electrode for non-enzymatic glucose sensing,” RSC Adv. 5 (2015) 74374.
[36]L. Wang, X. Lu, Y. Ye, L. Sun, Y. Song, “Nickel-cobalt nanostructures coated reduced graphene oxide nanocomposite electrode for nonenzymatic glucose biosensing,” Electrochim. Acta 114 (2013) 484.
[37]M. Ranjani, Y. Sathishkumar, Y.S. Lee, D.J. Yoo, A.R. Kim, G.Gnana kumar, “Ni-Co alloy nanostructures anchored on mesoporous silica nanoparticles for non-enzymatic glucose sensor applications,” RSC Adv. 5 (2015) 57804.
[38]P.V. Suneesh, V.S. Vargis, T. Ramachandran, B.G. Nair, “Co-Cu alloy nanoparticles decorated TiO2 nanotube arrays for highly sensitive and selective nonenzymatic sensing of glucose,” Sensor Actuator B 215 (2015) 337.
[39]M. Li, L. Liu, Y. Xiong, X. Liu, A. Nsabimana, X. Bo, L. Guo, “Bimetallic MCo (M= Cu, Fe, Ni, and Mn) nanoparticles doped-carbon nanofibers synthetized by electrospinning for nonenzymatic glucose detection,” Sensor Actuator B 207 (2015) 614.
[40]A. Zhao, Z. Zhang, P. Zhang, S. Xiao, L. Wang, Y. Dong, H. Yuan, P. Li, Y. Sun, X. Jiang, F. Xiao, “3D nanoporous gold scaffold supported on graphene paper: Freestanding and flexible electrode with high loading of ultrafine PtCo alloy nanoparticles for electrochemical glucose sensing,” Anal. Chim. Acta 938 (2016) 63.
[41]X. Kang, Z. Mai, X. Zou, P. Cai, J. Mo, “A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode,” Anal. Biochem. 363 (2007) 143.
[42]J. Luo, S. Jiang, H. Zhang, J. Jiang, X. Liu, “A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode,” Anal. Chim. Acta 709 (2012) 47.
[43]B. Wang, Y. Wu, Y. Chen, B. Weng, C. Li, “Flexible paper sensor fabricated via in situ growth of Cu nanoflower on RGO sheets towards amperometrically non-enzymatic detection of glucose,” Sens. Actuators B Chem. 238 (2017) 802.
[44]M. Yuan, A. Liu, M. Zhao, W. Dong, T. Zhao, J. Wang, “Bimetallic PdCu nanoparticle decorated three-dimensional graphene hydrogel for non-enzymatic amperometric glucose sensor,” Sens. Actuators B Chem. 190 (2014) 707.
[45]H. Li, C.-Y. Guo, C.-L. Xu, “A highly sensitive non-enzymatic glucose sensor based on bimetallic Cu-Ag superstructures,” Biosens. Bioelectron. 63 (2015) 339.
[46]楊宗燁、林鴻明、吳泉毅、林中魁,奈米材料之X光吸收光譜檢測與分析,物理雙月刊,廿三卷六期 (2001)。
[47]S.F. Fu, “Fabrication and characterization of Cu-Co alloy nanoparticles via pulsed laser dewetting,” Master’s Thesis, University of Tennessee (2014).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top