[1]Y. Song, R. Peng, D.K. Hensley, P.V. Bonnesen, L. Liang, Z. Wu, H.M. Meyer, M. Chi, C. Ma, B.G. Sumpter, A.J. Rondinone, “High-selectivity electrochemical conversion of CO2 to ethanol using a copper nanoparticle/N-doped graphene electrode,” ChemistrySelect 1 (2016) 1.
[2]J. Wang, C. Liu, J. Li, R. Luo, X. Sun, J. Shen, W. Han, L. Wang, “In-situ incorporation of iron-copper bimetallic particles in electrospun carbon nanofibers as an efficient Fenton catalyst,” Appl. Catal. B-Environ. 207 (2017) 316.
[3]G. Polino, R. Abbel, S. Shanmugam, G.J.P. Bex, R. Hendriks, F. Brunetti, A.D. Carlo, R. Andriessen, Y. Galagan, “A benchmark study of commercially available copper nanoparticle inks for application in organic electronic devices,” Org. Electron. 34 (2016) 130.
[4]X. Hu, T. Liu, Y. Zhuang, W. Wang, Y. Li, W. Fan, Y. Huang, “Recent advances in the analytical applicstions of copper nanoclusters,” Trends Anal. Chem. 77 (2016) 66.
[5]X.Q. Liao, R.Y. Li, Z.J. Li, X.L. Sun, Z.P. Wang, J.K. Liu, “Fast synthesis of copper nanoclustars through the use of hydrogen peroxide additive and the application for fluorescent detection of Hg+ in water samples,” New J. Chem. 39 (2015) 5240.
[6]J. Feng, Y. Ju, J. Liu, H. Zhang, X. Chen, “Polyethyleneimine-templated copper nanoclusters via ascorbic acid reduction approach as ferric ion sensor,” Anal. Chim. Acta 854 (2015) 153.
[7]N. Goswami, A. Giri, M.S. Bootharaju, P.L. Xavier, T. Pradeep, S.K. Pal, “Copper quantum clusters in protein matrix: potential sensor of Pb2+ ion,” Anal. Chem 83 (2011) 9676.
[8]D. Li, B. Li, S.I. Yang, “A selsective fluorescence turn-on sensing system for evaluation of Cu2+ polluted water based on ultra-fast formation of fluorescent copper nanoclusters,” Anal. Methods 7 (2015) 2278.
[9]H. Zhang, Z. Lin, X. Su, “Label-free detection of exonuclease III by using dsDNA-templated copper nanoparticles as fluorescent probe,” Talanta 131 (2015) 59.
[10]F. Xu, H. Shi, X. He, K. Wang, D. He, Q. Guo, Z. Qing, L. Yan, X. Ye, D. Li, J. Tang, “Concatemeric dsDNA-templated copper nanoparticles strategy with improved sensitivity and stability based on rolling circle replication and its application in microRAN detection,” Anal. Chem. 86 (2014) 6976.
[11]W. Wang, F. Leng, L. Zhan, Y. Chang, X.X. Yang, J. Lan, C.Z. Huang, “One-step prepared fluorescent copper nanoclusters for reversible pH-sensing,” Analyst 139 (2014) 2990.
[12]S.M. Hamidi, B. Mosaeii, M. Afsharnia, A. Aftabi, M. Najafi, “Magneto-plasmonic study of aligned Ni, Co and Ni/Co multilayer in polydimethylsiloxane as magnetic field sensor,” J. Magn. Magn. Mater. 417 (2016) 413.
[13]N. Hui, J. Wang, “Electrodeposited honeycomb-like cobalt nanostructures on graphene oxide doped polypyrrole nanocomposite for high performance enzymeless glucose sensing,” J. Electroanal. Chem. 798 (2017) 9.
[14]S. Xu, M. Wang, L. Qiao, J. Bing, Q. Zou, Y. Zhao, “Enhancing the sintering ability of TiNx by introduction of nitrogen vacancy defects,” Ceram. Int. 41 (2015) 9514.
[15]J.-E. Sundgren, “Structure and properties of TiN coatings,” Thin Solid Films 128 (1985) 21.
[16]M.-H. Chan, F.-H. Lu, “Air-based deposition of conductive nitride thin films by sputtering,” J. Electrochem. Soc. 158 (6) (2011) 75.
[17]Y. Haldorai, S.-K. Hwang, A.-I. Gopalan, Y.S. Huh, Y.-K. Han, W. Voit, G. S.-Anand, K.-P. Lee, “Direct electrochemistry of cytochrome c immobilized on titanium nitride/multi-walled carbon nanotube composite for amperometric nitrite biosensor,” Biosens. Bioelectron. 79 (2016) 543.
[18]M. Birkholz, K. E. Ehwald, D. Wolansky, I. Costina, C. B. Kaynak, M. Fröhlich, H. Beyer, A. Kapp, and F. Lisdat, “Corrosion-resistant metal layers from a CMOS process for bioelectronic applications,” Surf. Coat. Technol. 204 (2010) 2055.
[19]H.-B. Noh, K.-S. Lee, P. Chandra, M.-S. Won, Y.-B. Shim, “Application of a Cu-Co alloy dendrite on glucose and hydrogen peroxide sensors,” Electrochimica Acta 61 (2012) 36.
[20]L. Wang, Y. Zheng, X. Lu, Z. Li, L. Sun, Y. Song, “Dendritic copper-cobalt nanostructures/reduced graphene oxide-chitosan modified glassy carbon electrode for glucose sensing,” Sens. Actuators B Chem. 195 (2014) 1.
[21]楊家榮,以電化學法控制銅和銅銀複合奈米結構之形貌、大小及其在生化感測之應用,國立中興大學材料科學與工程學系博士論文 (2014)。[22]余忠原,以電化學法在氮化鈦電極上控制鎳奈米粒子形貌與大小並應用於葡萄糖感測器之研究,國立中興大學材料科學與工程學系碩士論文 (2016)。[23]胡啟章,電化學原理與方法,五南出版社,(2002) p.5。
[24]P.T. Kissinger, W.R. Heineman, “Cyclic Voltammetry,” J. Chem. Educ. 60 (1983) 702.
[25]M.-S. Steiner, A. Duerkop, O.S. Wolfbeis, “Optical methods for sensing glucose,” Chem. Soc. Rev. 40 (2011) 4805.
[26]L.C. Clark, Jr., C. Lyons, “Electrode systems for continuous monitoring in cardiovascular surgery,” Ann. NY Acad. Sci. 102 (1962) 29.
[27]J. Wang, “Electrochemical glucose biosensors,” Chem. Rev. 108 (2008) 814.
[28]S.A. Zaidi, J.H. Shin, “Recent developments in nanostructure based electrochemical glucose sensors,” Talanta 149 (2016) 30.
[29]Y. Sun, H. Buck, T.E. Mallouk, “Combinatorial discovery of alloy electrocatalysts for amperometric glucose sensors,” Anal. Chem. 73 (2001) 1599.
[30]W.-Z. Jia, K. Wang, X.-H. Xia, “Elimination of electrochemical interferences in glucose biosensors,” Trends Anal. Chem. 29 (2010) 306.
[31]S. Cherevko, C.H. Chung, “Gold nanowire array electrode for non-enzymatic voltammetric and amperometric glucose dection,” Sens. Actuators B 142 (2009) 216.
[32]J. Song, L. Xu, R.Q. Xing, W.F. Qin, Q.L. Dai, H.W. Song, “Ag nanoparticles coatrd NiO nanowires hierarchical nanocomposites electrode for nonenzymatic glucose biosensing,” Sens. Actuators B 182 (2013) 675.
[33]Y. Wang, J. Chen, C. Zhou, L. Zhou, Y. Kong, H. Long, S. Zhong, “A novel self-cleaning, non-enzymatic glucose sensor working under a very low applied potential based on a Pt nanoparticle-decorated TiO2 nanotube array electrode,” Electrocheim. Acta 115 (2014) 269.
[34]J.Y. Zheng, Z.L. Quan, C.W. Kim, H.G. Cha, T.W. Kim, W. Shin, K.J. Lee, M.H. Jung, Y.S. Kang, “Vertical cobalt dendrite array films: electrochemical deposition and characterization, glucose oxidation and magnetic properties,” J. Mater. Chem. 22 (2012) 12296.
[35]S. Premlatha, P. Sivasakthi, G.N.K.R. Bapu, “Electrodeposition of a 3D hierarchical porous flower-like cobalt-MWCNT nanocomposite electrode for non-enzymatic glucose sensing,” RSC Adv. 5 (2015) 74374.
[36]L. Wang, X. Lu, Y. Ye, L. Sun, Y. Song, “Nickel-cobalt nanostructures coated reduced graphene oxide nanocomposite electrode for nonenzymatic glucose biosensing,” Electrochim. Acta 114 (2013) 484.
[37]M. Ranjani, Y. Sathishkumar, Y.S. Lee, D.J. Yoo, A.R. Kim, G.Gnana kumar, “Ni-Co alloy nanostructures anchored on mesoporous silica nanoparticles for non-enzymatic glucose sensor applications,” RSC Adv. 5 (2015) 57804.
[38]P.V. Suneesh, V.S. Vargis, T. Ramachandran, B.G. Nair, “Co-Cu alloy nanoparticles decorated TiO2 nanotube arrays for highly sensitive and selective nonenzymatic sensing of glucose,” Sensor Actuator B 215 (2015) 337.
[39]M. Li, L. Liu, Y. Xiong, X. Liu, A. Nsabimana, X. Bo, L. Guo, “Bimetallic MCo (M= Cu, Fe, Ni, and Mn) nanoparticles doped-carbon nanofibers synthetized by electrospinning for nonenzymatic glucose detection,” Sensor Actuator B 207 (2015) 614.
[40]A. Zhao, Z. Zhang, P. Zhang, S. Xiao, L. Wang, Y. Dong, H. Yuan, P. Li, Y. Sun, X. Jiang, F. Xiao, “3D nanoporous gold scaffold supported on graphene paper: Freestanding and flexible electrode with high loading of ultrafine PtCo alloy nanoparticles for electrochemical glucose sensing,” Anal. Chim. Acta 938 (2016) 63.
[41]X. Kang, Z. Mai, X. Zou, P. Cai, J. Mo, “A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode,” Anal. Biochem. 363 (2007) 143.
[42]J. Luo, S. Jiang, H. Zhang, J. Jiang, X. Liu, “A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode,” Anal. Chim. Acta 709 (2012) 47.
[43]B. Wang, Y. Wu, Y. Chen, B. Weng, C. Li, “Flexible paper sensor fabricated via in situ growth of Cu nanoflower on RGO sheets towards amperometrically non-enzymatic detection of glucose,” Sens. Actuators B Chem. 238 (2017) 802.
[44]M. Yuan, A. Liu, M. Zhao, W. Dong, T. Zhao, J. Wang, “Bimetallic PdCu nanoparticle decorated three-dimensional graphene hydrogel for non-enzymatic amperometric glucose sensor,” Sens. Actuators B Chem. 190 (2014) 707.
[45]H. Li, C.-Y. Guo, C.-L. Xu, “A highly sensitive non-enzymatic glucose sensor based on bimetallic Cu-Ag superstructures,” Biosens. Bioelectron. 63 (2015) 339.
[46]楊宗燁、林鴻明、吳泉毅、林中魁,奈米材料之X光吸收光譜檢測與分析,物理雙月刊,廿三卷六期 (2001)。[47]S.F. Fu, “Fabrication and characterization of Cu-Co alloy nanoparticles via pulsed laser dewetting,” Master’s Thesis, University of Tennessee (2014).