跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/18 16:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊智鈞
研究生(外文):Zhi-Jun Yang
論文名稱:以介電泳法製備矽奈米線元件於氣體感測之應用
論文名稱(外文):Silicon Nanowire Device Fabricated by Dielectrophoresis Method for Gas Sensor Applications
指導教授:許薰丰
指導教授(外文):Hsun-Feng Hsu
口試委員:王秋燕呂國彰
口試委員(外文):Chiu-Yen WangKuo-Chang Lu
口試日期:2017-06-09
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:89
中文關鍵詞:矽奈米線電場誘發介電泳氣體感測器
外文關鍵詞:silicon nanowiredielectrophoresisgas sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:109
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著人們環保意識的抬頭與醫療進步,半導體之氣體感測元件,其具有高反應性、低花費、製程簡易等優勢。因此近年來十分受到注目。其中,矽奈米線感被大量應用在多種整合元件上。因為一維矽奈米結構有強的氣體感測能力,且感測的氣體種類多元,因此許多學者元件設計採用單根矽或是陣列奈米線的方式,來作為氣體感測元件。
本實驗利用奈米球微影術與金屬輔助化學蝕刻法製備出矽奈米線陣列後,藉由介電泳的方式製備出不同排列狀態的矽奈米線元件,並探討這些奈米線排列元件對氣體感測效果的影響。
研究結果顯示,由奈米球微影術與金屬輔助化學蝕刻法,可以藉由不同的蝕刻時間來成長出不同長度但直徑均勻的矽奈米線。之後利用介電泳排線,以交流電源供應經由電壓和頻率的控制,可以將奈米線排列成平行結構和交錯結構。感測一氧化氮部分,由於交錯排列元件有一奈米線交錯位置的接觸能障會因吸附氣體後導致接觸能障下降與電子穿隧距離大幅縮短造成電流值變化大,因此不管是反應性、反應時間或回復時間都比平行排列元件來的優異,並使用高密度交錯元件,在100 ℃下,反應性大幅上升。
Semiconductor gas sensors have been paid great attention owing to their high sensitivity, low cost and simple manufacturing processes. Silicon nanowire (SiNW) is one of the optimal building blocks for gas sensing devices because of its high sensing performance. Two types of devices, SiNW vertical and parallel to the substrate, have been used in gas sensing devices.
In this study, SiNWs were fabricated by metal-assisted-chemical etching combined with nanosphere lithography and subsequently used as building blocks for parallel and crossed arrangement SiNW-based devices using alternating current (AC) dielectrophoresis alignment across Pt electrodes. The effect of SiNW arrangement type on gas sensing devices were investigated.
The results show that SiNWs with uniform diameter were fabricated and their length can be tuned by etching time in the metal-assisted chemical etching process. Parallel and crossed arrangement SiNW-based devices were achieved by adjusting the frequency and the peak-peak voltage of AC electrical field in the dielectrophoresis alignment process. For gas sensing, the crossed arrangement SiNW-based devices exhibit higher sensitivity, less response and recovery time then the parallel ones. As expose the crossed arrangement SiNW-based device to nitrogen monoxide (NO) the barrier width at a nanometer size gap as the tunneling junction between two nanowires drastically decreased due to NO absorbing at the gap. The tunneling current increased obviously and thus high sensitivity was obviously.
目錄
摘要 i
Abstract ii
目錄 iii
表目錄 vii
圖目錄 viii
第一章 前言 1
第二章 文獻回顧 3
2-1一氧化氮感測 3
2-2奈米線氣體感測 4
2-2-1金屬氧化物半導體奈米線 4
2-2-2矽奈米線 5
2-3奈米線元件架構 6
2-3-1垂直式奈米線元件 6
2-3-2平行式奈米線元件 7
2-3-3奈米線交錯結構感測元件 8
2-4奈米球微影術 10
2-4-1簡介 10
2-4-2奈米球自組裝機制 11
2-4-3奈米球自組裝技術 11
2-5反應式離子蝕刻奈米球縮小術 14
2-6矽奈米線製備方法 15
2-6-1由下而上法 15
2-6-2由上而下法 17
2-7電場誘發排列矽奈米線 19
2-7-1電泳力 20
2-7-2介電泳力 21
2-8研究動機 24
第三章 實驗方法與步驟 26
3-1矽奈米線製作 26
3-1-1矽基片前處理 26
3-1-2玻璃基片前處理 26
3-1-3奈米球自組裝排列 27
3-1-4奈米球尺寸縮減 27
3-1-5銀金屬濺鍍 27
3-1-6化學溶液蝕刻 28
3-1-7奈米線溶液製備 28
3-2感測元件製作與量測電性 29
3-2-1交流電場排列矽奈米線 29
3-2-2氣體感測元件熱處理 30
3-2-3氣體感測實驗 30
3-3實驗儀器 30
3-3-1感應耦合式電漿蝕刻系統 30
3-3-2精密離子蝕刻鍍膜系統 31
3-3-3場發射掃描式電子顯微鏡 31
3-3-4高解析穿透式電子顯微鏡 31
3-3-5任意波型產生器 31
3-3-6電源供應器 31
第四章 結果與討論 32
4-1矽奈米線製備與結果 32
4-1-1奈米球微影術 32
4-1-2金屬輔助化學蝕刻法 33
4-2電場誘發矽奈米線排列 35
4-2-1施加不同電場偏壓之影響 35
4-2-2施加不同電場頻率之影響 36
4-3矽奈米線氣體感測器對NO氣體感測性質 39
4-3-1熱處理對感測性質的影響 39
4-3-2不同溫度對感測性質的影響 40
4-3-3不同濃度對感測性質的影響 44
4-3-4不同線密度對感測性質的影響 45
第五章 結論 46
第六章 參考文獻 79
[2-1] J. K. Robinson, M. J. Bollinger, J. W. Birks, “Luminol/H2O2 Chemiluminescence Detector for the Analysis of Nitric Oxide in Exhaled Breath”, Analytical Chemistry 71 (1999) 5131-5136.
[2-2] H. H. Lu, C. Y. Lin, T. C. Hsiao, “Electrical Properties of Single and Multiple Poly (3, 4-ethylenedioxythiophene) Nanowires for Sensing Nitric Oxide Gas”, Analytica Chimica Acta 640 (2009) 68–74.
[2-3] Z. X. Cai, H. Y. Li, X. N. Yang, X. Guo, “NO Sensing by Single Crystalline WO3 Nanowires”, Sensors and Actuators B 219 (2015) 346–353.
[2-4] K. Q. Peng, X. Wang, S. T. Lee, “Gas Sensing Properties of Single Crystalline Porous Silicon Nanowires”, Applied Physics Letters 95 (2009) 243112.
[2-5] X. Chen, C. K. Y. Wong, C. A. Yuan, “Nanowire-based Gas Sensors”, Sensors and Actuators B 177 (2013) 178–195.
[2-6] A. Cao, E. J. R. Sudhölter, L. C. P. M. de Smet, “Silicon Nanowire‐Based Devices for Gas-Phase Sensing”, Sensors 14 (2014) 245-271.
[2-7] A. A. Talin, L. L. Hunter, F. Léonard, B. Rokad, “Large area, Dense Silicon Nanowire Srray Chemical Sensors”, Applied Physics Letters 89 (2006) 153102.
[2-8] M. C. McAlpine, H. Ahmad, D. Wang, J. R. Heath, “Highly Ordered Nanowire Arrays on Plastic Substrates for Ultrasensitive Flexible Chemical Sensors”, Nature Materials 6 (2007) 379–384.
[2-9] J. S. Noh, H. Kim, B. S. Kim, E. Lee, H. H. Cho, W. Lee, “High-performance Vertical Hydrogen Sensors Using Pd-coated Rough Si Nanowires”, Journal of Materials Chemistry 21 (2011) 15935.
[2-10] T. I. Kamins, S. Sharma, A. A. Yasseri, Z. Li, J. Straznicky, “Metal-catalysed, Bridging Nanowires as Vapour Sensors and Concept for Their Use in a Sensor System”, Nanotechnology 17 (2006) S291–S297.
[2-11] A. E. Gad, M. W. G. Hoffmann, F. Hernandez-Ramirez, J. D. Prades, H. Shen, S. Mathur, “Coaxial p-Si/n-ZnO Nanowire Heterostructures for Energy and Sensing Applications”, Materials Chemistry and Physics 135 (2012) 618.
[2-12] G. Chen, B. Liang, X. Liu, Z. Liu, G. Yu, X. Xie, T. Luo, D. Chen, M. Zhu, G. Shen, Z. Fan, “High-Performance Hybrid Phenyl-C61-Butyric Acid Methyl Ester/Cd_3 P_2 Nanowire Ultraviolet–Visible–Near Infrared Photodetectors”, ACS Nano 8 (2014) 787-796.
[2-13] G. Chen, B. Liang, Z. Liu, G. Yu, X. Xie, T. Luo, Z. Xie, D. Chen, M. Q. Zhu, G. Shen, “High Performance Rigid and Flexible Visible-Light Photodetectors Based on Aligned X(In, Ga)P Nanowire Arrays”, Journal of Materials Chemistry C 2 (2014) 1270-1277.
[2-14] E. Mulazimoglu, S. Coskun, M. Gunoven, B. Butun, E. Ozbay, R. Turan, H. E. Unalan, “Silicon Nanowire Network Metal-Semiconductor-Metal Photodetectors”, Applied Physics Letters 103 (2013) 083114.
[2-15] G. Chen, Z. Liu, B. Liang, G. Yu, Z. Xie, H. Huang, B. Liu, X. Wang, D. Chen, M. Q. Zhu, G. Shen, “Single-Crystalline p-Type Zn_3 As_2 Nanowires for Field-Effect Transistors and Visible-Light Photodetectors on Rigid and Flexible Substrates”, Advanced Functional Materials 23 (2013) 2681-2690.
[2-16] G. Yu, B. Liang, H. Huang, G. Chen, Z. Liu, D. Chen, G. Shen, “Contact Printing of Horizontally-Aligned p-Type Zn_3 P_2 Nanowire Arrays for Rigid and Flexible Photodetectors”, Advanced Functional Materials 24 (2013) 095703.
[2-17] M. C. McAlpine, H. Ahmad, D. Wang, J. R. Heath, “Highly Ordered Nanowire Arrays on Plastic Substrates for Ultrasensitive Flexible Chemical Sensors”, Nature Materials 6 (2007) 379–384.
[2-18] X. P. A. Gao, G. F. Zheng, C. M. Lieber, “Subthreshold Regime Has the Optimal Sensitivity for Nanowire FET Biosensors”, Nano Letters 10 (2010) 547–552.
[2-19] S. K. Tzeng, M. H. Hon, I. C. Leu, “Improving the Performance of a Zinc Oxide Nanowire Ultraviolet Photodetector by Adding Silver Nanoparticles” , Journal of Electrochemical Society 159 (2012) H440-H443.
[2-20] L. Guo, H. Zhang, D. Zhao, B. Li, Z. Zhang, M. Jiang, D. Shen, “High Responsivity ZnO Nanowires Based UV Detector Fabricated by the Dielectrophoresis Method”, Sensor Actuators B 166-167 (2012) 12-16.
[2-21] 呂承翰, “以水熱法與介電泳法製備氧化鋅奈米線元件於氣體感測之應用” ,碩士論文,國立中興大學材料科學與工程學系, 民國一百零五年。
[2-22] W. J. Park, K. J. Choi, M. H. Kim, “Self-Assembled and Highly Selective Sensors Based on Air-Bridge-Structured Nanowire Junction Arrays”, ACS Applied Materials & Interfaces 5 (2013) 6802−6807.
[2-23] C. Yan, N. Singh, H. Cai, “Network-Enhanced Photoresponse Time of Ge Nanowire Photodetectors”, ACS Applied Materials & Interfaces 2 (2010) 1794-1797.
[2-24] J. Li, S. Zhang, H. Chen, Z. Z. Gu, Z. Lu, “Three-Dimensional Non-Close-Packed Arrays Formed by Soft PMMA Spheres”, Colloids and Surfaces, A 299 (2007) 54–57.
[2-25] T. Ogi, L. B. M. Lopez, F. Iskandar, and K. Okuyama, “Fabrication of a Large Area Monolayer of Silica Particles on a Sapphire Substrate by a Spin Coating Method”, Colloids and Surfaces A 297 (2007) 71–78.
[2-26] J. C. Hulteen, R. P. V. Duyne, “Nanosphere Lithography: A Materials General Fabrication Process for Periodic Particle Array Surfaces”, Journal of Vacuum Science & Technology A 13 (1995) 1553-1558.
[2-27] R. Micheletto, H. Fukuda, M. Ohtsu, “A Simple Method for the Production of a Two-Dimensional, Ordered Array of Small Latex Particles”, Langmuir 11 (1995) 3333-3336.
[2-28] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, K. Nagayama, “Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates”, Langmuir 8 (1992) 3183-3190.
[2-29] J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, R. P. V, Duyne, “Nanosphere Lithography: Size-Tunable Silver Nanoparticle and Surface Cluster Arrays”, Journal of Physical Chemistry B 103 (1999) 3854-3863.
[2-30] P. I. Stavroulakis, N. Christou, D. Bagnall, “Improved Deposition of Large Scale Ordered Nanosphere Monolayers via Liquid Surface Self-Assembly”, Materials Science and Engineering B -Advanced Functional Solid-State Materials 165 (2009) 186-189.
[2-31] S. M. Weekes, F Y. Ogrin, W. A. Murray, P. S. Keatley, “Macroscopic Arrays of Magnetic Nanostructures from Self-Assembled Nanosphere Templates”, Langmuir 23 (2007) 1057-1060.
[2-32] J. Huang, F. Kim, A. R. Tao, S Connor, P. Yang, “Spontaneous Formation of Nanoparticle Stripe Patterns through Dewetting”, Nature Materials 4 (2005) 896-900.
[2-33] J. Yeom, D. Ratchford, C. R. Field, T. H. Brintlinger, P. E. Pehrsson, “Decoupling Diameter and Pitch in Silicon Nanowire Arrays Made by Metal-Assisted Chemical Etching”, Advanced Functional Materials 24 (2014) 106–116.
[2-34] A. Fasoli, W. I. Milne, “Overview and Status of Bottom-up Silicon Nanowire Electronics”, Materials Science in Semiconductor Processing 15 (2012) 601–614
[2-35] N. Wang, Y. Cai, and R.Q. Zhang, “Growth of Nanowires”, Materials Science and Engineering R 60 (2008) 1–51.
[2-36] L. Schubert, P. Wemer, N. D. Zakharov, G. Gerth, F. M. Kolb, L. Long, U. Gösele, T. Y. Tan, “Silicon Nanowhiskers Grown on 〈111〉 Si Substrates by Molecular-Beam Epitaxy”, Applied Physics Letters 84 (2004) 4968-4870.
[2-37] Y. Q. Fu, A. Colli, A. Fasoli, J. K. Luo, A. J. Flewitt, A. C. Ferrari, W. I. Milne, “Deep Reactive Ion Etching as a Tool for Nanostructure Fabrication”, Journal of Vacuum Science & Technology B 27 (2009) 1520 -1526.
[2-38] C. L. Cheung, R. J. Nikolic, C E Reinhardt, T. F. Wang, “Fabrication of Nanopillars by Nanosphere Lithography”, Nanotechnology 17 (2006) 1339–1343.
[2-39] M. Park, C. Harrison, P. M. Chaikin, R. A. Register, D. H. Adamson “Block Copolymer Lithography: Periodic Arrays of ~1011 Holes in 1 Square Centimeter”, Science 276 (1997) 1401-1404.
[2-40] H. Masuda, M. Satoh “Fabrication of Gold Nanodot Array using Anodic Porous Alumina as an Evaporation Mask”, Japanese Journal of Applied Physics 35 (1996) 126-129.
[2-41] X. Li, P. W. Bohn, “Metal-Assisted Chemical Etching in HF/H2 O2 Produces Porous Silicon”, Applied Physics Letters 77 (2000) 2572-2574.
[2-42] P. Sharma, Y. L. Wang, “Directional Etching of Silicon by Silver Nanostructures”, Applied Physics Express 4 (2011) 025001.
[2-43] Z. Huang, H. Fang, and J. Zhu, “Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length, and Density”, Advanced Materials 19 (2007) 744–748.
[2-44] J Yeom, D Ratchford, C. R. Field, T. H. Brintlinger, P. E. Pehrsson, “Decoupling Diameter and Pitch in Silicon Nanowire Arrays Made by Metal-Assisted Chemical Etching”, Advanced Functional Materials 24 (2014) 106–116.
[2-45]X. Q. Zhao, J. Y. Lee, C. R. Kim, J. H. HeO, C. M. Shin, “Dependence of the Properties of Hydrothermally Grown ZnO on Precursor Concentration”, Physica E 41 (2009) 1423.
[2-46]R.Pethig, “Review Article-Dielectrophoresis: Status of the Theory, Technology ,and Application”, Biomicrofluidics 4 (2010) 022811.
[2-47] X. B. Wang, Y. Huang, P. R. C. Gascoyne, F. F. Becker, “Dielectrophoretic Manipulation of Particles”, IEEE Transactions on Industry Applications 33 (1997) 660.
[2-48] X. B. Wang, Y. Huang, F. F. Becker, P. R. C. Gascoyne, “A Unified Theory of Dielectrophoresis and Travelling Wave Dielectrophoresis”, Journal of Physics D: Applied Physics 27 (1994) 1571.
[2-49] P. R. C. Gascoyne, Y. Huang, M. P. Hughes, X. B. Wang, R. Pethig, F. F. Becker, “Manipulation of Erythroleukemia Cells Using Traveling Electric Fields”, IEEE Engineering in Medicine and Biology Society 2 (1994) 772.
[2-50] 粘正勳、邱聞鋒, “介電泳動─承先啟後的奈米操縱術”, 物理雙月刊 廿三卷六期 (2004) 491.
[2-51] L. Dong, J. Bush, V. Chirayos, R. Solanki, J. Jiao, “Dielectrophoretically Controlled Fabrication of Single-Crystal Nickel Silicide Nanowire Interconnects”, Nano Letters 5 (2005) 2112-2115.
[2-52] X. Li, E. Chin, H. Sun, P. Kurup, Z. Gu, “Fabrication and Integration of Metal Oxide Nanowire Sensors Using Dielectrophoretic Assembly and Improved Post-assembly Processing”, Sensors and Actuators B: Chemical 148 (2010) 404.
[2-53] O. Harnack, C. Pacholski, H. Weller, A. Yasuda, J. M. Wessels, “Rectifying Behavior of Electrically Aligned ZnO Nanorods”, Nano Letters 3 (2003) 1097-1101.
[2-54] C. H. Lee, D. R. Kim, X. Zheng, “Orientation-Controlled Alignment of Axially Modulated pn Silicon Nanowires”, Nano Letters 10 (2010) 5116-5122.
[2-55] A. Motayed, M. He, A. V. Davydov, J. Melngailis, S. N. Mohammad, “Realization of reliable GaN nanowire transistors utilizing dielectrophoretic alignment technique”, Journal of Physics 100 (2006) 114310.
[2-56] P. A. Smith, C. D. Nordquist, T. N. Jackson, T. S. M. R. Martin, J. Mbindyo, T. E. Mallouk, “Electric-field assisted assembly and alignment of metallic nanowires”, Applied Physics Letters 77 (2000) 1399.
[4-1] 陳紹宇,“垂直式矽奈米線陣列於前列腺癌症之檢測”,碩士論文,國立中興大學材料科學與工程學系, 民國一百零四年。
[4-2] 黃琬茹,“利用奈米球微影法製備鎳矽化物/矽異質結構奈米線”, 碩士論文, 國立中興大學材料科學與工程學系, 民國九十九年。
[4-3] P. Shama, Y. L. Wang, “Directional Etching of Silicon by Silver Nanostructures”, Applied Physics Express 4 (2011) 025001.
[4-4] S. J. Papadakis, J. A. Hoffmann, D. Deglau, A. Chen, P. Tyagi, D. H. Gracias, “Quantitative Analysis of Parallel Nanowire Array Assembly by Dielectrophoresis”, Nanoscale 3 (2011) 1059.
[4-5] C. G. Nunez, A. G.a Marin, P. Nanterne, J. Piqueras, P. Kung, J. L. Pau, “Conducting Properties of Nearly Depleted ZnO Nanowire UV Densors Fabricated by Dielectrophoresis”, Nanotechnology 24 (2013) 415702.
[4-6] M. Collet, S. Salomon, N. Y. Klein, F. Seichepine, C. Vieu, L. Nicu, G. Larrieu, “Large-Scale Assembly of Single Nanowires through Capillary-Assisted Dielectrophoresis”, Advanced Materials 27 (2015) 1268–1273.
[4-7] A. W. Maijenburg, M. G. Maas, E. J. B. Rodijk, W. Ahmed, E. S. Kooij, E. T. Carlen, D. H. A. Blank, J. E. ten Elshof, “Dielectrophoretic Alignment of Metal and Metal Oxide Nanowires and Nanotubes: A Universal Set of Parameters for Bridging Prepatterned Microelectrodes”, Journal of Colloid and Interface Science 355 (2011) 486.
[4-8] M. P. Hughes, “Strategies for Dielectrophoretic Separation in Laboratory-on-a-chip Systems”, Electrophoresis 23 (2002) 2569.
[4-9] H. H. Lu, C. Y. Lin, T. C. Hsiao, “Electrical Properties of Single and Multiple Poly(3,4-ethylenedioxythiophene) Nanowires for Sensing Nitric Oxide Gas”, Analytica Chimica Acta 640 (2009) 68–74.
[4-10] Z. X. Cai, H. Y. Li, X. N. Yang, X. Guo, “NO Sensing by Single Crystalline WO3 Nanowires”, Sensors and Actuators B 219 (2015) 346–353.
[4-11] K. Q. Peng, X. Wang, S. T. Lee, “Gas Sensing Properties of Single Crystalline Porous Silicon Nanowires”, Applied Physics Letters 95 (2009) 243112.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top