跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/09 22:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張駿杰
研究生(外文):Chun-Chieh Chang
論文名稱:新型高功率IC固晶接點機械性質探討
論文名稱(外文):Study on mechanical properties of innovative power IC attach joints
指導教授:宋振銘
口試委員:江東昇汪俊延
口試日期:2017-07-19
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:74
中文關鍵詞:Bi-AgX焊膏奈米銀銅複合漿料剪變性質
外文關鍵詞:Bi-AgX solder pasteCu-Ag nanocomposite pasteshear properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:205
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
目前用於車用整流器等高功率模組之晶片操作溫度遠超過現行無鉛銲料使用範圍,因此以高溫銲料或者銀燒結技術做為固晶用途的開發正積極進行中。本研究著重在評估新型高功率IC固晶接點之熱穩定性,研究的固晶材料包括商用BiAgX®錫膏之外以及自行研發、添加甲酸銅之奈米銀銅複合漿料。分別以迴銲及熱壓方式進行銅基材試片接合後,進行不同時間150oC時效銲點組織特徵與剪變強度之調查。BiAgX®錫膏由於Sn元素之添加,於銲點介面與銅形成Cu3Sn,未時效銲點剪變強度為28.4MPa,經150oC 800小時僅降至22.9MPa。奈米銀銅複合漿料熱壓接點未時效組織均勻,為含1.86wt%Cu之過飽合銀固溶體,剪變強度高達43.6MPa。時效後Cu原子往基材端擴散並析出氧化亞銅,經時效200小時強度驟降至16.8MPa,後持平至800小時為14.7MPa。本研究結果顯示以熱穩定性觀點,BiAgX®錫膏較奈米銀銅複合漿料來得優異許多。
Power devices such as invertors for electronic vehicles usually operate at temperatures higher than enduable temperature range for common Pb-free solders. Development of high temperature solders, as well as nano-Ag sintering technique, for the power IC attach applications are now under development. This study aims to evaluate the thermal stability of new innovative power IC attach joints bonded using BiAgX® solder pastes by reflowing, and Ag-Cu nanocomposite pastes with the copper formate additives developed in our lab by thermal-compression bonding, respectively. Microstructural feature and shear strength of the joints subjected aging at 150oC are investigated. Due to the alloying effect of minor Sn addition, joints, Cu3Sn formed at the interface of BiAgX®/Cu joints. The fact that shear strength of as-bonded BiAgX® joints was 28.4MPa and that of 800hr-aged joints was 22.9MPa suggests excellent reliability in high temperature storage. In contrast, the joint strength of nano-composite samples drastically decrease from 43.6MPa at as-bonded state to 16.8MPa when aged for 200 hr. After that, the shear strength of nanocomposite joint remained alsmost the same up to 800 hr. The as-bonded Cu-Ag nanocomposite joints possessed a homogeneous Ag matrix supersaturated with 1.86w% Cu. Subjected to aging, Cu atoms diffused towards joint interface and precipited to form Cu2O. This may account for the deterioration in joint strength.
摘要 け
Abstract げ
總目錄 こ
圖目錄 ご
表目錄 じ
第一章 緒論 1
第二章 文獻回顧 2
2.1高功率固晶材料之發展 2
2.2 Zn-Sn合金 2
2.3 Au-Sn合金 3
2.4 Bi-Ag合金 4
2.4.1 Bi-Ag和Cu基材介面反應 5
2.4.2 Bi-Ag和Ni基材介面反應 5
2.4.3 BiAgX®新型合金與其表現 6
2.5 銀做為接合材料 6
2.5.1 銀奈米粒子之製備方法 7
2.5.2 銀漿料製備 8
2.5.3 含奈米銀漿料於接合之應用 10
2.5.4 以銅銀漿料進行接合 10
第三章 實驗步驟 38
3.1 複合金屬粒子及漿料製備 38
3.1.1 合成以月桂酸為保護劑之銀奈米粒子 (Ag-O2C12) 38
3.1.2 低溫真空脫水製備去水甲酸銅 38
3.1.3 Ag-O2C12銀粒子混合甲酸銅之金屬漿料製備 39
3.2 接合試片製程 39
3.2.1 BiAgX®接合試片製備 39
3.2.2 奈米銀銅複合漿料接合試片製備 39
3.2.3 Alpha Metal接合試片製備 40
3.3 組織觀察 40
3.4 接點剪力測試與時效試驗 40
第四章 實驗結果與討論 47
4.1 接點組織特徵 47
4.2 剪變強度及時效效應 48
4.3 破壞型貌與失效因素分析 48
第五章結論 69
參考文獻 70
[1]H. W. Zhang and N. C. Lee, Packaging Technology Conference (EPTC), (2011)567-572
[2]R. Dingreville, J. Qu and M. Cherkaoui, “Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films”, J. Mech. Phys. Solids. , 53(2005)1827‒1854
[3]C. W. Chiu, P. D. Hong, J. J. Lin, “Clay-mediated synthesis of silver nanoparticles exhibiting low-temperature melting”, Langmuir, 27(2011)11690‒11696
[4]J. Yan, G. Zou, A. Hu, and Y. N. Zhou, “Preparation of PVP coated Cu NPs and the application for low-temperature bonding”, J. Mater. Chem., 21(2011)15981‒15986
[5]Kasthuri, J. and Rajendiran, “Functionalization of silver and gold nanoparticles using amino acid conjugated bile salts with tunable longitudinal plasmon resonance”, Colloids Surf. B., 73(2009)387‒393
[6]Y. Long, J. Wu, H. Wang, X. Zhang, N. Zhao and J. Xu, “Rapid sintering of silver nanoparticles in an electrolyte solution at room temperature and its application to fabricate conductive silver films using polydopamine as adhesive layers”, J. Mater. Chem., 21(2011)4875‒4881
[7]E. Ide, S. Angata, A. Hirose and K. F. Kobayashi, “Metal–metal bonding prrocess using Ag metallo-organic nanoparticles”, Acta Mater., 53(2005)2385‒2393
[8]H. Alarifi, A. Hu, M. Yavuz and Y. Z. Zhou, “Silver nanoparticle paste for low-temperature bonding of Copper”, J. Electron. Mater., 40(2011)1394‒1402
[9]A. Hu, J. Y. Guo, H. Alarifi, G. Patane, Y. Zhou, G. Compagnini and X. Xu, “Low temperature sintering of Ag nanoparticles for flexible electronics packaging”, Appl. Phys. Lett., 97(2010)135117
[10]T. H. Hoang, H. Takamura, J. Koike, “Oxidation behavior of Cu–Ag core–shell particles for solar cell applicationsOriginal Research Article”, J.Alloys Compd., 564(2013)71‒77
[11]K. Woo, D. Kim, J. S. Kim, S. Lim and J. Moon, “Ink-jet printing of Cu-Ag-based highly conductive tracks on a transparent substrate”, Langmuir. , 25(2009)429‒433
[12]J. E. Lee, K. S. Kim, K. Suganuma, J. Takenaka and K. Hagio, “Interfacial Properties of Zn--Sn Alloys as High Temperature Lead-Free Solder on Cu Substrate”, Mater. Trans., 46(2005)2413‒2418
[13]S. Kim, K. S. Kim, S. S. Kim, K. Suganuma, “Interfacial reaction and die attach properties of Zn-Sn high-temperature solders”, J. Electron. Mater., 38(2009)266‒272
[14]S. Kim, K. S. Kim, S. S. Kim, K. Suganuma, and G. Izuta, “Improving the reliability of Si die attachment with Zn-Sn-based high-temperature Pb-free solder using a TiN diffusion barrier”, J. Electron. Mater., 38(2009) 2668‒2675
[15]J. M. Song, Z. H. Chang, “Heat resistant BiAgX solders for power IC die attachment”, ICEP-IACC, (2015) 550‒553
[16]K. Suganuma,S. Kim, “Ultra heat-shock resistant die attachment for silicon carbide with pure zinc”, IEEE Electron Device Lett., 31(2010)1467‒1469
[17]S.W. Park, S. Nagao, T. Sugahara, K. S. Kim, K. Suganuma, “Retarding intermetallic compounds growth of Zn high-temperature solder and Cu substrate by trace element addition”, J. Mater. Sci. - Mater. Electron., 24(2013)4704‒4712
[18]S.W. Park, T. Sugahara, S. Nagao, K. Suganuma, “Oxidation resistance and joining properties of Cr-doped Zn bonding for SiC die-attachment”, ECTC, (2013)1734‒1737
[19]J.W. Ronnie Teo, F.L. Ng, L.S. Kip Goi, Y.F. Sun, Z.F. Wang, X.Q. Shi, J. Wei, G.Y. Li, “Microstructure of eutectic 80Au/20Sn solder joint in laser diode package”, Microelectron. Eng., 85(2008)512–517
[20]M.T. Sheen, Y.H. Ho, C.L. Wang, K.C. Hsieh, W.H. Cheng, “The joint strength and microstructure of fluxless Au/Sn solders in InP-based laser diode packages”, J. Electron. Mater., 34(2005)1318–1322
[21]J.M. Song, H.Y. Chuang, T.X. Wen, “Thermal and tensile properties of Bi-Ag alloys”, Metall. Mater. Trans. A, 38(2007)1371–1375
[22]J.M. Song, H.Y. Chuang, Z.M. Wu, “Interfacial reactions between
Bi-Ag high temperature solders and metallic substrates”, J. Electron. Mater., 35(2006)1041–1049
[23]B. Kim, C.W. Lee, D. Lee, N. Kang, “Effect of Sb addition on Bi–2.6Ag–0.1Cu solders for high-temperature applications”, J. Alloys Compd., 592(2014)207–212
[24]P. Fima, W. Gasior, A. Sypien, Z. Moser, “Wetting of Cu by Bi–Ag based alloys with Sn and Zn additions”, J. Mater. Sci., 45(2010)4339–4344
[25]R. Kolenak, M. Chachula, “Characteristics and properties of Bi-11Ag solder”, Soldering & Surface Mount Technology, 25(2013)68–75
[26]宋振銘、莊鑫毅、吳宗謀、李國瑋:新型LED晶片接合無鉛銲料開發,真空科技,18卷,4期,8-14頁,民國95年
[27]B. Joseph, F. Barbier, G. Dagoury and M. Aucouturier, “Mechanism of liquid Bi penetration along Cu grain boundaries”, Scripta Mater., 42(2000)1151‒1158
[28]Z. M. Wu, T. X. Wen and J. M. Song, “Tensile properties of Bi-Ag new Pb-free die attach solder and the joints”, IMAPS TAIWAN, Taipei, June 28-July 1, (2006)
[29]E. Ide, S. Angata, A. Hirose and K.F. Kobayashi, “Metal–metal bonding process using Ag metallo-organic nanoparticles”, Acta Mater., 53 (2005)2385‒2393
[30]J. Yan, G. Zou, A. Wu, J. Ren, J. Yan, A. Huc and Y. Zhoua, “Pressureless bonding process using Ag nanoparticle paste for flexible electronics packaging”, Scripta Mater., 66(2012)582‒585
[31]M. Tobita, Y. Yasuda, E. Ide, J. Ushio, T. Morita, “Optimal design of coating material for nanoparticles and its application for low-temperature interconnection”, J. Nanopart.Res., 12(2010)2135‒2144
[32]H. Zheng, D. Berry, D. Khai, T. Ngo and G. Q. Lu, “Chip-Bonding on Copper by Pressureless Sintering of Nanosilver Paste Under Controlled Atmosphere”, IEEE,transactions on components,packaging and manufacturing technology, 4(2014)377‒384
[33]J. Li, I. Yaqub, M. Corfield, P. Agyakwa, C. M. Johnson, “Comparison of thermo-mechanical reliability of high-temperature bonding materials for attachment of SiC devices”, Power Electronics, University of Nottingham, CIPS 2014.
[34]M. S. Kim, H. Nishikawa, “Effect of joining conditions on the joint strength of Ag nanoporous bonding”, Osaka University, ICEP 2014.
[35]M. S. Kim, H. Nishikawa, “Microstructural change of Ag nanoporous bonding joint and interdiffusion of Cu / Ag during thermal aging”, ICEP 2014.
[36]H. Wang, X. Qiao, J. Chen, X. Wang , S. Ding, “Mechanisms of PVP in the preparation of silver nanoparticles”, Mater Chem. Phys., 94 (2005) 449‒453
[37]M. A. Willard, L. K. Kurihara, E. E. Carpenter, S. Calvin and V. G. Harris, “Chemically prepared magnetic nanoparticles”, Int. Mater. Rev., 49 (2004) 125‒170
[38]B. L. Cushing, V. L. Kolesnichenko, C. J. O’Connor, “Recent advances in the liquid-phase syntheses of inorganic nanoparticles”, Chem. Rev., 104 (2004) 3893‒3946
[39]A. Ulman, “Formation and Structure of Self-Assembled Monolayers”, Chem. Rev., 96 (1996) 1533‒1554
[40]L. H. Dubois, B. R. Zegarski, R. G. Nuzzo, Spontaneous Organization of Carboxylic Acid Monolayer Films in Ultrahigh Vacuum. Kinetic Constraints to Assembly via Gas Phase Adsorption. Langmuir. 2 (1986) 412.
[41]K. Abe, T. Hanada, Y. Yoshida, N. Tanigaki, H. Takiguchi, H. Nagasawa, M. Nakamoto, T. Yamaguchi, K. Yase, “Two-dimensional array of silver nanoparticles”, Thin Solid Films., 524 (1998) 327‒329
[42]H. Nagasawa, M. Maruyama, T. Komatsu, S. Isoda, T. Kobayashi, “Physical Characteristics of Stabilized Silver Nanoparticles Formed Using a New Thermal-Decomposition Method”, Phys. Status Solidi A., 191 (2002) 67‒76
[43]W. Wang, S. Efrima, O. Regev, “Directing Oleate Stabilized Nanosized Silver Colloids into Organic Phases”, Langmuir., 14 (1998) 602‒610
[44]T. Y. Dong, W. T. Chen, C. W. Wang, C. P. Chen, C. N. Chen, M. C. Lin, J. M. Song, I. G. Chen, T. H. Kao, “One-Step Synthesis of Uniform Silver Nanoparticle Capped by Saturated Decanoate: Direct Spray Printing Ink to Form Metallic Silver Films”, PCCP., 11 (2009) 6269‒6275
[45]C. N. Chen, C. P. Chen, T.-Y. Dong, T. C. Chang, M. C. Chen, H. T. Chen, I.G. Chen, “Using nanoparticles as direct-injection printing ink to fabricate conductive silver features on the transparent flexible PET substrate at room-temperatur”, Acta Mater., 60 (2012) 5914–5924
[46]J. Liu, X. Li, X. Zeng, “Silver nanoparticles prepared by chemical reduction-protection method and their application in electrically conductive silver nanopaste”, J. Alloys Compd., 494(2010)84‒87
[47]P.A. Hu, W. O’Neil, Q. Hu”, Synthesis of 10 nm Ag nanoparticle polymer composite pastes for low temperature production of high conductivity films”, Appl. Sur. Sci., 257(2010)680‒685
[48]R. Faddoul, N. Reverdy-Bruas, J. Bourel, “Silver content effect on rheological and electrical properties of silver pastes”, J. Mater Sci.-Mater Electron , 23(2012)1415‒1426
[49]K. Suganuma, S.Sakamoto, N. Kagami, D. Wakuda, K.-S. Kim, M. Nogi, “Low-temperature low-pressure die attach with hybrid silver particle paste”, Microelectronics Reliability, 52(2012)375‒380
[50]S. Park, D. Seo, J. Lee, “Preparation of Pb-free silver paste containing nanoparticles”, Colloids and Surfaces A: Physicochem. Eng. Aspects, 313–314 (2008)197–201
[51]Y. Morisada, T. Nagaoka, M. Fukusumi, Y. Kashiwagi, M. Yamamoto, M. Nakamoto, “A Low-Temperature Bonding Process Using Mixed Cu–Ag Nanoparticles”, J. Electron. Mater., 39(2010)1283‒1288
[52]K. Woo, D. Kim, J.S. Kim, S. Lim, and J. Moon, “Ink-Jet Printing of Cu−Ag-Based Highly Conductive Tracks on a Transparent Substrate”, Langmuir, 25(2008)429‒433
[53]Y. Morisada, T. Nagaoka, M. Fukusumi, Y. Kashiwagi, M. Yamamoto, and M. Nakamoto1, “A Low-Temperature Bonding Process Using Mixed Cu–Ag Nanoparticles”, J. Electron. Mater., 39 (2010) 1283‒1288
[54]J. Yan, G. Zou, A. Wu, J. Ren, A. Hu, and Y. N. Zhou, “Polymer-Protected Cu-Ag Mixed NPs for Low-Temperature Bonding Application”, J. Electron. Mater., 41(2012)1886‒1892
[55]C. H. Hsiao, W. T. Kung, J. M. Song*, J. Y. Chang and T. C. Chang, Development of Cu-Ag Pastes for High Temperature Sustainable Bonding, Mater. Sci. Eng., A , 684(2017)500-509
[56]龔萬庭, “金屬/有機鹽類複合漿料於微電子接合運用之研究”, 國立中興大學材料科學與工程研究所碩士論文(2015).
[57]宋振銘、林建志, “高溫無鉛銲點機械性質探討,碩士論文”,國立東華大學材料科學與工程學系
[58]Y. Zeng, R. Stierman, T.C. Cheng and D. Edwards, “Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability”, J. Appl. Phts., 97(2004)024508
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top