跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:2119:b261:d24c:ce10) 您好!臺灣時間:2025/01/21 07:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王建程
研究生(外文):Jian-Cheng Wang
論文名稱:帶狀奈米石墨烯/聚吡咯/氧化釕奈米複合材料之性質研究及電化學分析
論文名稱(外文):Preparation and Characterization of Graphene nanoribbons/Polypyrrole/Ruthenium oxide Nanocomposite
指導教授:吳宗明吳宗明引用關係
指導教授(外文):Tzong-Ming Wu
口試委員:廖建勛蔡毓禎
口試委員(外文):Jian-Shium LiauYu-Jen Tsai
口試日期:2017-06-29
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:120
中文關鍵詞:聚吡咯帶狀奈米石墨烯氧化釕超級電容器
外文關鍵詞:PolypyrroleGraphene nanoribbonsRuthenium oxideSupercapacitor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:333
  • 評分評分:
  • 下載下載:45
  • 收藏至我的研究室書目清單書目收藏:0
本研究將藉由縱向切割多壁奈米碳管製備帶狀奈米石墨烯,並改變帶狀奈米石墨烯添加量,利用原位聚合法將聚吡咯包覆帶狀奈米石墨烯,形成帶狀奈米石墨烯/聚吡咯奈米複合材料,而最外層以金屬氧化物-氧化釕,均勻披覆於聚吡咯外層形成帶狀奈米石墨烯/聚吡咯/氧化釕之三元複合材料,並探討彼此之電化學表現。

首先,討論帶狀奈米石墨烯/聚吡咯二元複合材料系統,藉由SEM及TEM表面形貌觀察得知,聚吡咯顆粒大小隨著帶狀奈米石墨烯添加量上升而減小;比電容值在5 mV/s掃描速率下,則隨著帶狀奈米石墨烯添加量提升而增加,由純聚吡咯之215 F/g提升至添加帶狀奈米石墨烯7 wt%(7GP)的438 F/g,而1000圈循環壽命測試由純聚吡咯的61%提升至7GP之70.2%。

在固定帶狀奈米石墨烯/聚吡咯添加量,並改變氧化釕之添加(7GPxR),由電化學分析後得知,隨著氧化釕披覆量提升而比電容值具有上升趨勢,並且將氧化釕添加量之最佳比例,改變製程順序,探討氧化釕包覆於外層(7GPxR)及內層(GRP)之差異,其比電容值在掃描速率5 mV/s下分別為7GP9R之1352 F/g及GRP之749 F/g,且由於低溫退火下之氧化釕具有良好之電子及質子傳導能力,於3.0 A/g高電流密度下其電容保留值由7GP之44%提升至7GP9R之64.6%。此外, GRP、7GP9R於100 mV/s掃描速率下進行1000圈之循環壽命測試,其結果為52.2%、64.6%,顯示氧化釕包覆於最外層將能有效地保護內層之聚吡咯結構並提升循環壽命。
In this study, graphene nanoribbons (GNR) were prepared by longitudinal unzipping of multiwalled carbon nanotubes (MWCNTs). The GNR/PPy nanocomposites were synthesized by in-situ polymerization with different amounts of GNR. The ruthenium oxide (RuO2-xH2O) nanoparticles were deposited directly on the surface of GNR/PPy nanocomposites using the hydrothermal method. The morphologies of the PPy、GNR/PPy 、GNR/PPy/RuO2 nanocomposites were characterized through SEM and TEM. Electrochemical behavior of the PPy、GNR/PPy 、GNR/PPy/RuO2 nanocomposites were investigated by cyclic voltammetry and galvanostatic charge-discharge.
For the GNR/PPy system, the particle size of PPy measured by SEM and TEM images was gradually decreased with increasing the loading of GNR. The specific capacity of PPy increased significantly from 215 to 438 F/g in composites with 7 wt% GNR content (7GP) at a scan rate 5 mV/s. The cycle stability of 7GP composites improved to 70.2% after 1000 times test which is higher than 61% of pure PPy.
At the system of 7 wt% GNR with various RuO2-xH2O content (7GPxR), a maximum capacitance value of 1352 F/g had been obtained for the loading of 9R ([GNR/PPy]:[ RuO2]=1:9 w/w) into GNR/PPy composite at scan rate of 5 mV/s.
To compare with the performance of specific capacitance for the loading of RuO2-xH2O inside (7GP9R) and outside (GRP) were 1352 F/g 、749 F/g. Due to the low temperature annealing,therefore, the RuO2-xH2O is provided with high electron and proton conductivity.Therefore the capacitance retention of 7GP9R was improved to 64.6% which is more 20.6% higher than the 7GP(44%) at a current density of 3.0 A/g. In addition, the cycle stability of GRP and 7GP9R were 52.2%、64.6% after 1000 times test, which is contributed to the presence of RuO2-xH2O coverd the GNR/PPy composites and could for the protect structure of PPy to improve the cycle stability.
致謝 i
摘要 i
Abstract ii
目錄 iv
圖目錄 vi
表目錄 x
第一章 緒論 1
1.1 前言 1
1.2 研究動機 4
1.3 研究方向及目的 5
第二章 文獻回顧 6
2.1 導電高分子(Conducting polymers) 6
2.1.1導電高分子簡介 6
2.1.2 基本能帶理論 10
2.1.3 導電高分子之導電機制 13
2.1.4 導電高分子種類 15
2.2 聚吡咯(Polypyrrole, PPy) 17
2.2.1 聚?咯之簡介 17
2.3 奈米碳管(Carbon Nanotubes, CNTs) 21
2.3.1 奈米碳管之簡介 21
2.3.2 帶狀奈米石墨烯(Graphene nanoribbon, GNR) 25
2.4 超級電容器(Supercapacitors) 35
2.4.1 超級電容器介紹 35
2.4.2 超級電容器之電極材料 43
2.4.3 導電高分子/奈米無機物複合材料 50
第三章 實驗方法與步驟 57
3.1 實驗材料 57
3.2 實驗儀器 60
3.3 實驗架構 61
3.4 實驗方法與步驟 62
3.4.1 帶狀奈米石墨烯之製備 62
3.4.2 帶狀奈米石墨烯/聚?咯之製備 64
3.4.3 氧化釕之製備 66
3.4.4 帶狀奈米石墨烯/聚吡咯/氧化釕之製備 68
3.5 實驗儀器分析 70
3.5.1 拉曼光譜儀 (Raman Spectrometer) 70
3.5.2 傅立葉轉換紅外光光譜儀 (Fourier Transform Infrared Spectrometer,FT-IR) 70
3.5.3 場發射掃描式電子顯微鏡 (Field-emmision Scanning Electron Microscopy,FE-SEM) 71
3.5.4 高解析穿透式電子顯微鏡 (High-Resolution Transmission Electron Microscopy,HRTEM) 71
3.5.5 電化學分析儀(Electrochemical analysis instrument) 72
第四章 結果與討論 73
4.1 化學法製備帶狀奈米石墨烯與基本性質分析 73
4.2 改變帶狀奈米石墨烯添加量:GNR-PPy複合材料 77
4.2.1 帶狀奈米石墨烯/聚吡咯二元複合材料性質分析 77
4.2.2 帶狀奈米石墨烯/聚吡咯二元複合材料電化學性質分析 83
4.3 帶狀奈米石墨烯/聚吡咯/氧化釕性質探討及電化學特性 90
4.3.1 帶狀奈米石墨烯/聚吡咯/氧化釕之製備及其性質分析 90
4.3.2 帶狀奈米石墨烯/聚吡咯/氧化釕三元複合材料電化學性質分析 95
第五章 結論 112
第六章 參考文獻 114
[1]江文彥,科技發展,2002,359,68
[2]H. Shirakawa, E. J. Louis, A. G. Macdiarmid, C. K. Chiang, A. J. Heeger, “Synthesis of electrically conducting organic polymers:halogen derivatives of polyacetylene, (CH)x”, J.C.S. Chem. Comm, 1977, 474, 578.
[3]Z. Shi, “Polypyrrole directly bonded to air-plasma activated carbon nanotube as electrode materials for high-performance supercapacitor”, Electrochim. Acta, 2015, 153, 76.
[4]H. W. Kroto, "C60:Buckminsterfullerene", Nature, 1985, 318 , 162.
[5]S. Iijima,”Helical microtubules of graphitic carbon”, Nature, 1991, 56, 354.
[6]http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/band.html
[7]孫允武,半導體概論,中興物理
http://ezphysics.nchu.edu.tw/prophys/condmatt/handouts/chap8semicon/semicond.pdf
[8]黃桂武,共軛性導電高分子材料技術簡介,工業材料雜誌288期,2010,288
[9]吳孟秋,鎳外層材質對熱塑性聚氨脂-鎳奈米複合材料電性之影響,中原大學化學系畢業論文,2005
[10]賴正耀,1,8-萘二胺與苯胺共聚複合膜吸收銅離子濃度與導電率關係,台北科技大學化學工程學系畢業論文,2007
[11]W. H. T. Davison, S. Slaney, A. L. Wergg, Chem. Ind. (Londan) , 1954, 1356.
[12]J. Joo, “Physical Characterization of Electrochemically and Chemically Synthesized Polypyrroles”, Macromolecules, 2000, 33, 5131.
[13]J. Y. Lee, D. Y. Kim, C. Y. Kim, “Synthesis of soluble polypyrrole of the doped state in organic solvents”, Synth. Met., 1995, 74, 103.
[14]J. Stejskal, M. Omastova, S. Fedorova, J. Prokes, M. Trchova, “Polyaniline and polypyrrole prepared in the presence of surfactants: a comparative conductivity study”, Polymer, 2003, 44, 1353.
[15]S. P. Armes,”Optimum reaction conditions for the polymerization of pyrrole by iron(III) chloride in aqueous solution”, Synth. Met., 1987, 20, 365.
[16]J. Ouyang, Y. Li, “Great improvement of polypyrrole films prepared electrochemically from aqueous solutions by adding nonaphenol polyethyleneoxy (10) ether”, Polymer, 1997, 38, 3997.
[17]S. Sadki, P. Schottland, N. Brodie, G. Sabouraud, “The mechanisms of pyrrole electropolymerization”, Chem. Soc. Rev., 2000, 29, 283.
[18]J. Wang, Y. Xu, J. Wang, X. Du, F. Xiao, J. Li, “Electrochemical polymerization of pyrrole”, Synth. Metals., 2010, 160, 1826.
[19]A. F. Diza, K. K. Kanazawa, “High charge/discharge rate polypyrrole films prepared by pulse current polymerization”,C. S. Chem. Comm., 1979, 373, 636.
[20]P. Saville, “Polypyrrole Formation and Use”, 2005
[21]B. R. Saunder, R. J. Fleming, K. S. Murray, “Recent advances in the physical and spectroscopic properties of polypyrrole films, particularly those Containing transition-metal complexes as counteranions”, Chem. Mater., 1995, 7, 1082.
[22]E. Osawa, “Superaromaticity”Kagaku., 1970, 25, 854.
[23]P. W. Fowler , “Carbon cylinders: a class of closed-shell clusters” Chem Soc-Faraday Tran., 1990 , 86, 2073.
[24]S. Iijima, T. Ichihash, “Single-shell carbon nanotubes of 1-nm diameter”, Nature, 1993, 363, 603.
[25]D. S. Bethune, C.H. Kiang, M. S. Devries, “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls”, Nature, 1993, 363, 605.
[26]João Pedro Bebiano e, Immobilization of Laccase over carbon nanotubes for biocatalysis applications, 2009.
[27]M. Ouyang, J. Huang, C. M. Leiber, “Fundamental Electronic Properties and Applications of Single-Walled Carbon Nanotubes”, Acc. Chem. Res., 2002, 35, 1018.
[28]M. S. Dresselhaus, G. Drsselhaus, R. Saito, “Physics of carbon nanotubes”, Carbon., 1995, 33, 883.
[29]R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus, “Electronic structure of chiral graphene tubules”, Appl. Rev. Lett., 1992, 60, 2204.
[30]N. Hamada, S. Sawada, A. Oshiyama, “New One-dimensional conductor microtubles”, Phys. Rev. Lett., 1992, 68, 1579.
[31]P. M. Ajayan, “Nanotubes from Carbon” Chem. Rev., 1999, 99, 1787.
[32]K. Nakada, M. Fujita, G. Dresselhaus, “Edge state in graphene ribbons: Nanometer size effect and edge shape dependence.”, Phys Rev B, 1996, 54, 17954.
[33]K. Wakabayashi, “Peculiar Localized State at Zigzag Graphite Edge”, J Phys Soc Jpn, 1996, 65, 1920.
[34]J. Bai, Y. Huang, “Fabrication and electrical properties of graphene nanoribbons”, Mater Sci Eng, 2010, 70, 341.
[35]D. V. Kosynkin, A. L. Higginbothaml, A. Sinitskiil, J. R. Lomeda, A. Dimiev, B. K. Price, J. M. Tour, “Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons”, Nature, 2009, 458, 872.
[36]N. L. Rangel, J. C. Sotelo, J. M. Seminario, “Mechanism of carbon nanotubes unzipping into graphene ribbons”, J. Chem. Phys, 2009, 131, 031105.
[37]Z. Chen, Y. M. Lin, M. J. Rooks, P. Avouris, “Graphene nano-ribbon electronics”, Pysic E, 2007, 40, 228.
[38]L. Tapazto, G. Dobrik, P. Lambin, L. P. Biro, “Tailoring the atomic structure of graphene nanoribbons by STM Lithography”, Nat. Nanotech, 2008, 3, 397.
[39]X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, H. Dai, “Highly conducting graphene sheets and Langmuir–Blodgett films.”, Nat. Nanotechnol, 2008, 3, 538.
[40]J. Bai, Y. Huang, Mater Sci Eng, 2010, 70, 341.
[41]W. Yoon, Y. Lee, H. Jang, M. Jang, J. S. Kim, H. S. Lee, S. Im, D. W. Boo, J. Park, S. Y. Ju, “Graphene nanoribbons formed by a sonochemical graphene unzipping using flavin mononucleotide as a template”, Carbon, 2015, 81, 629.
[42]J. Capos-Delgado, J. M. Romo-Herrera, X. Jia, D. A. Cullen, H. Muramatsu, Y. A. Kim, T. Hayashi, Z. Ren, D. J. Smith, Y. Okuno, T. Ohna, H. Kanoh,; K. Kaneko, M. Endo, H. Terrones, M. S. Dresselhaus, M. Terrones, “Bulk production of a new form of sp2 carbon: Crystalline graphene nanoribbons”, Nano Lett, 2008, 8, 2773.
[43]S. Sukumar,”Understanding how capacitors work with the help of proper diagrams”, http://www.buzzle.com/articles/understanding-how-capacitors-work.html
[44]林宜慶,超級電容器技術發展與應用趨勢分析,2009
https://www.artc.org.tw/upfiles/ADUpload/knowledge/tw_knowledge_309593075.pdf
[45]台灣wiki,電化學電容器介紹
http://www.twwiki.com/wiki/%E9%9B%BB%E5%8C%96%E5%AD%B8%E9%9B%BB%E5%AE%B9%E5%99%A8
[46]http://www.elna.co.jp/en/capacitor/double_layer/principle/
[47]M. Aslani, “Electrochemical Double Layer Capacitors”, http://large.stanford.edu/courses/2012/ph240/aslani1/
[48]A. M. Namisnyk, “A survey of electrochemical supercapacitor technology”, (University of Technology, Sydney), 2003.
[49]L. L. Zang, R. Zhou, X. S. Zhao, “Graphene-based materials as supercapacitor electrodes”, J. Mater. Chem, 2010, 20, 5983.
[50]S. Ardizzone, G. Fregonara, S. Trasatti, “Inner and outer active surface of RuO2 electrodes”, Electrochim. Acta, 1990, 35, 263.
[51]J. Zhang, J. Jiang, H. Li, X. S. Zhao, “A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes”, Energy Environ. Sci, 2011, 4, 4009
[52]I. Shown, A. Ganguly, L. C. Chen, K. H. Chen, “Conducting polymer-based flexible supercapacitor”, Energy Science and Engineering, 2015, 3(1), 2.
[53]Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, L. C. Qin, “Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density”, Phys. Chem. Chem. Phys, 2011, 13, 17615.
[54]I. Y. Jang, H. Muramatsu, K. C. Park, Y. J. Kim, M. Endo, “Capacitance response of double-walled carbon nanotubes depending on surface modification”, Electrochem Commun, 2009, 11, 719.
[55]E. Seo, T. Lee, K. T. Lee, H. K. Song, B. S. Kim, Versatile double hydrophilic block copolymer: dual role as synthetic nanoreactor and ionic and electronic conduction layer for ruthenium oxide nanoparticle supercapacitors”, J. Mater. Chem, 2012, 22, 11598.
[56]C. Lin, J. A. Ritter, B. N. Popov, “Development of Carbon‐Metal Oxide Supercapacitors from Sol‐Gel Derived Carbon‐Ruthenium Xerogels”, J. Electrochem. Soc, 1999, 146, 3155.
[57]W. Sugimoto, H. Iwata, Y. Yasunaga, Y. Murakami, Y. Takasu, “Preparation of Ruthenic Acid Nanosheets and Utilization of Its Interlayer Surface for Electrochemical Energy Storage”, Angew. Chem., Int. Ed, 2003, 42, 4092.
[58]J. S. Ye, H. F. Cui, X. Liu, T. M. Lim, W. D. Zhang, F. S. Sheu, “Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors.”, Small, 2005, 1, 560.
[59]J. R. Zhang, D. C. Jiang, B. Chen, J. J. Zhu, L. P. Jiang, H. Q. Fang, “Preparation and Electrochemistry of Hydrous Ruthenium Oxide/Active Carbon Electrode Materials for Supercapacitor”, J. Electrochem. Soc, 2001, 148, A1362.
[60]C. C. Hu, W. C. Chen, K. H. Chang, “How to Achieve Maximum Utilization of Hydrous Ruthenium Oxide for Supercapacitors”, J. Electrochem. Soc, 2004, 151, A281.
[61]J. P. Zheng, P. J. Cygan, T. R. Jow, “Hydrous ruthenium oxide as an electrode material for electrochemical capacitors.”, J. Electrochem. Soc, 1995, 142, 2699.
[62]K. H. Chagn, C. C. Hu, C. Y. Chou, “Textural and Capacitive Characteristics of Hydrothermally Derived RuO2•xH2O Nanocrystallites: Independent Control of Crystal Size and Water Content”, Chem. Mater., 2007, 19, 2112.
[63]I. M. D. L. F. Salas, Y. N. Sudhakar, M. Selvakumar, “High performance of symmetrical supercapacitor based on multilayer films of graphene oxide/polypyrrole electrodes”, Appl. Surf. Sci., 2014, 296, 195.
[64]Y. Wang, C. Yang, P. Liu, “Acid blue AS doped polypyrrole (PPy/AS) nanomaterials with different morphologies as electrode materials for supercapacitors”, Chem. Eng. J., 2011, 172, 1137.
[65]Y. Han, L. Hao, X. Zhang, “Preparation and electrochemical performances of graphene of graphite oxide/polypyrrole composites” Synth. Met., 2010, 160, 2336.
[66]H. Fu, Z. J. Du, W. Zou, H. Q. Li, C. Zhang, “Carbon nanotube renforced polypyrrole nanowire network as a high-performance supercapacitor electrode” J. Mater. Chem. A., 2013, 1, 14943.
[67]H. P. de Oliveira, S. A. Sydlik, T. M. Swager, “Supercapacitors from Free-Standing Polypyrrole/Graphene Nanocomposites”, The Journal of Physical Chemistry, 2013, C 117, 10270.
[68]D. C. Zhang, X. Zhang, Y. Chen, P. Yu, C. H. Wang, Y. W. Ma, “Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors”, Journal of Power Source, 2011, 196, 5990.
[69]S. Sahoo, S. Dhibar, G. Hatui, P. Bhattacharya, C. K. Das, “Graphene/polypyrrole nanofiber nanocomposite as electrode material for electrochemical supercapacitor”, Polymer., 2013, 54 , 1033.
[70]X. Zhang, J. Zhang, R. Wang, T. Zhu, Z. Liu, “Surfactant-directed polypyrrole/CNT nanocables: synthesis, characterization, and enhanced electrical properties.”, ChemPhysChem., 2004, 5, 998.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top