[1]江文彥,科技發展,2002,359,68
[2]H. Shirakawa, E. J. Louis, A. G. Macdiarmid, C. K. Chiang, A. J. Heeger, “Synthesis of electrically conducting organic polymers:halogen derivatives of polyacetylene, (CH)x”, J.C.S. Chem. Comm, 1977, 474, 578.
[3]Z. Shi, “Polypyrrole directly bonded to air-plasma activated carbon nanotube as electrode materials for high-performance supercapacitor”, Electrochim. Acta, 2015, 153, 76.
[4]H. W. Kroto, "C60:Buckminsterfullerene", Nature, 1985, 318 , 162.
[5]S. Iijima,”Helical microtubules of graphitic carbon”, Nature, 1991, 56, 354.
[6]http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/band.html
[7]孫允武,半導體概論,中興物理
http://ezphysics.nchu.edu.tw/prophys/condmatt/handouts/chap8semicon/semicond.pdf
[8]黃桂武,共軛性導電高分子材料技術簡介,工業材料雜誌288期,2010,288[9]吳孟秋,鎳外層材質對熱塑性聚氨脂-鎳奈米複合材料電性之影響,中原大學化學系畢業論文,2005
[10]賴正耀,1,8-萘二胺與苯胺共聚複合膜吸收銅離子濃度與導電率關係,台北科技大學化學工程學系畢業論文,2007
[11]W. H. T. Davison, S. Slaney, A. L. Wergg, Chem. Ind. (Londan) , 1954, 1356.
[12]J. Joo, “Physical Characterization of Electrochemically and Chemically Synthesized Polypyrroles”, Macromolecules, 2000, 33, 5131.
[13]J. Y. Lee, D. Y. Kim, C. Y. Kim, “Synthesis of soluble polypyrrole of the doped state in organic solvents”, Synth. Met., 1995, 74, 103.
[14]J. Stejskal, M. Omastova, S. Fedorova, J. Prokes, M. Trchova, “Polyaniline and polypyrrole prepared in the presence of surfactants: a comparative conductivity study”, Polymer, 2003, 44, 1353.
[15]S. P. Armes,”Optimum reaction conditions for the polymerization of pyrrole by iron(III) chloride in aqueous solution”, Synth. Met., 1987, 20, 365.
[16]J. Ouyang, Y. Li, “Great improvement of polypyrrole films prepared electrochemically from aqueous solutions by adding nonaphenol polyethyleneoxy (10) ether”, Polymer, 1997, 38, 3997.
[17]S. Sadki, P. Schottland, N. Brodie, G. Sabouraud, “The mechanisms of pyrrole electropolymerization”, Chem. Soc. Rev., 2000, 29, 283.
[18]J. Wang, Y. Xu, J. Wang, X. Du, F. Xiao, J. Li, “Electrochemical polymerization of pyrrole”, Synth. Metals., 2010, 160, 1826.
[19]A. F. Diza, K. K. Kanazawa, “High charge/discharge rate polypyrrole films prepared by pulse current polymerization”,C. S. Chem. Comm., 1979, 373, 636.
[20]P. Saville, “Polypyrrole Formation and Use”, 2005
[21]B. R. Saunder, R. J. Fleming, K. S. Murray, “Recent advances in the physical and spectroscopic properties of polypyrrole films, particularly those Containing transition-metal complexes as counteranions”, Chem. Mater., 1995, 7, 1082.
[22]E. Osawa, “Superaromaticity”Kagaku., 1970, 25, 854.
[23]P. W. Fowler , “Carbon cylinders: a class of closed-shell clusters” Chem Soc-Faraday Tran., 1990 , 86, 2073.
[24]S. Iijima, T. Ichihash, “Single-shell carbon nanotubes of 1-nm diameter”, Nature, 1993, 363, 603.
[25]D. S. Bethune, C.H. Kiang, M. S. Devries, “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls”, Nature, 1993, 363, 605.
[26]João Pedro Bebiano e, Immobilization of Laccase over carbon nanotubes for biocatalysis applications, 2009.
[27]M. Ouyang, J. Huang, C. M. Leiber, “Fundamental Electronic Properties and Applications of Single-Walled Carbon Nanotubes”, Acc. Chem. Res., 2002, 35, 1018.
[28]M. S. Dresselhaus, G. Drsselhaus, R. Saito, “Physics of carbon nanotubes”, Carbon., 1995, 33, 883.
[29]R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus, “Electronic structure of chiral graphene tubules”, Appl. Rev. Lett., 1992, 60, 2204.
[30]N. Hamada, S. Sawada, A. Oshiyama, “New One-dimensional conductor microtubles”, Phys. Rev. Lett., 1992, 68, 1579.
[31]P. M. Ajayan, “Nanotubes from Carbon” Chem. Rev., 1999, 99, 1787.
[32]K. Nakada, M. Fujita, G. Dresselhaus, “Edge state in graphene ribbons: Nanometer size effect and edge shape dependence.”, Phys Rev B, 1996, 54, 17954.
[33]K. Wakabayashi, “Peculiar Localized State at Zigzag Graphite Edge”, J Phys Soc Jpn, 1996, 65, 1920.
[34]J. Bai, Y. Huang, “Fabrication and electrical properties of graphene nanoribbons”, Mater Sci Eng, 2010, 70, 341.
[35]D. V. Kosynkin, A. L. Higginbothaml, A. Sinitskiil, J. R. Lomeda, A. Dimiev, B. K. Price, J. M. Tour, “Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons”, Nature, 2009, 458, 872.
[36]N. L. Rangel, J. C. Sotelo, J. M. Seminario, “Mechanism of carbon nanotubes unzipping into graphene ribbons”, J. Chem. Phys, 2009, 131, 031105.
[37]Z. Chen, Y. M. Lin, M. J. Rooks, P. Avouris, “Graphene nano-ribbon electronics”, Pysic E, 2007, 40, 228.
[38]L. Tapazto, G. Dobrik, P. Lambin, L. P. Biro, “Tailoring the atomic structure of graphene nanoribbons by STM Lithography”, Nat. Nanotech, 2008, 3, 397.
[39]X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, H. Dai, “Highly conducting graphene sheets and Langmuir–Blodgett films.”, Nat. Nanotechnol, 2008, 3, 538.
[40]J. Bai, Y. Huang, Mater Sci Eng, 2010, 70, 341.
[41]W. Yoon, Y. Lee, H. Jang, M. Jang, J. S. Kim, H. S. Lee, S. Im, D. W. Boo, J. Park, S. Y. Ju, “Graphene nanoribbons formed by a sonochemical graphene unzipping using flavin mononucleotide as a template”, Carbon, 2015, 81, 629.
[42]J. Capos-Delgado, J. M. Romo-Herrera, X. Jia, D. A. Cullen, H. Muramatsu, Y. A. Kim, T. Hayashi, Z. Ren, D. J. Smith, Y. Okuno, T. Ohna, H. Kanoh,; K. Kaneko, M. Endo, H. Terrones, M. S. Dresselhaus, M. Terrones, “Bulk production of a new form of sp2 carbon: Crystalline graphene nanoribbons”, Nano Lett, 2008, 8, 2773.
[43]S. Sukumar,”Understanding how capacitors work with the help of proper diagrams”, http://www.buzzle.com/articles/understanding-how-capacitors-work.html
[44]林宜慶,超級電容器技術發展與應用趨勢分析,2009
https://www.artc.org.tw/upfiles/ADUpload/knowledge/tw_knowledge_309593075.pdf
[45]台灣wiki,電化學電容器介紹
http://www.twwiki.com/wiki/%E9%9B%BB%E5%8C%96%E5%AD%B8%E9%9B%BB%E5%AE%B9%E5%99%A8
[46]http://www.elna.co.jp/en/capacitor/double_layer/principle/
[47]M. Aslani, “Electrochemical Double Layer Capacitors”, http://large.stanford.edu/courses/2012/ph240/aslani1/
[48]A. M. Namisnyk, “A survey of electrochemical supercapacitor technology”, (University of Technology, Sydney), 2003.
[49]L. L. Zang, R. Zhou, X. S. Zhao, “Graphene-based materials as supercapacitor electrodes”, J. Mater. Chem, 2010, 20, 5983.
[50]S. Ardizzone, G. Fregonara, S. Trasatti, “Inner and outer active surface of RuO2 electrodes”, Electrochim. Acta, 1990, 35, 263.
[51]J. Zhang, J. Jiang, H. Li, X. S. Zhao, “A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes”, Energy Environ. Sci, 2011, 4, 4009
[52]I. Shown, A. Ganguly, L. C. Chen, K. H. Chen, “Conducting polymer-based flexible supercapacitor”, Energy Science and Engineering, 2015, 3(1), 2.
[53]Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, L. C. Qin, “Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density”, Phys. Chem. Chem. Phys, 2011, 13, 17615.
[54]I. Y. Jang, H. Muramatsu, K. C. Park, Y. J. Kim, M. Endo, “Capacitance response of double-walled carbon nanotubes depending on surface modification”, Electrochem Commun, 2009, 11, 719.
[55]E. Seo, T. Lee, K. T. Lee, H. K. Song, B. S. Kim, Versatile double hydrophilic block copolymer: dual role as synthetic nanoreactor and ionic and electronic conduction layer for ruthenium oxide nanoparticle supercapacitors”, J. Mater. Chem, 2012, 22, 11598.
[56]C. Lin, J. A. Ritter, B. N. Popov, “Development of Carbon‐Metal Oxide Supercapacitors from Sol‐Gel Derived Carbon‐Ruthenium Xerogels”, J. Electrochem. Soc, 1999, 146, 3155.
[57]W. Sugimoto, H. Iwata, Y. Yasunaga, Y. Murakami, Y. Takasu, “Preparation of Ruthenic Acid Nanosheets and Utilization of Its Interlayer Surface for Electrochemical Energy Storage”, Angew. Chem., Int. Ed, 2003, 42, 4092.
[58]J. S. Ye, H. F. Cui, X. Liu, T. M. Lim, W. D. Zhang, F. S. Sheu, “Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors.”, Small, 2005, 1, 560.
[59]J. R. Zhang, D. C. Jiang, B. Chen, J. J. Zhu, L. P. Jiang, H. Q. Fang, “Preparation and Electrochemistry of Hydrous Ruthenium Oxide/Active Carbon Electrode Materials for Supercapacitor”, J. Electrochem. Soc, 2001, 148, A1362.
[60]C. C. Hu, W. C. Chen, K. H. Chang, “How to Achieve Maximum Utilization of Hydrous Ruthenium Oxide for Supercapacitors”, J. Electrochem. Soc, 2004, 151, A281.
[61]J. P. Zheng, P. J. Cygan, T. R. Jow, “Hydrous ruthenium oxide as an electrode material for electrochemical capacitors.”, J. Electrochem. Soc, 1995, 142, 2699.
[62]K. H. Chagn, C. C. Hu, C. Y. Chou, “Textural and Capacitive Characteristics of Hydrothermally Derived RuO2•xH2O Nanocrystallites: Independent Control of Crystal Size and Water Content”, Chem. Mater., 2007, 19, 2112.
[63]I. M. D. L. F. Salas, Y. N. Sudhakar, M. Selvakumar, “High performance of symmetrical supercapacitor based on multilayer films of graphene oxide/polypyrrole electrodes”, Appl. Surf. Sci., 2014, 296, 195.
[64]Y. Wang, C. Yang, P. Liu, “Acid blue AS doped polypyrrole (PPy/AS) nanomaterials with different morphologies as electrode materials for supercapacitors”, Chem. Eng. J., 2011, 172, 1137.
[65]Y. Han, L. Hao, X. Zhang, “Preparation and electrochemical performances of graphene of graphite oxide/polypyrrole composites” Synth. Met., 2010, 160, 2336.
[66]H. Fu, Z. J. Du, W. Zou, H. Q. Li, C. Zhang, “Carbon nanotube renforced polypyrrole nanowire network as a high-performance supercapacitor electrode” J. Mater. Chem. A., 2013, 1, 14943.
[67]H. P. de Oliveira, S. A. Sydlik, T. M. Swager, “Supercapacitors from Free-Standing Polypyrrole/Graphene Nanocomposites”, The Journal of Physical Chemistry, 2013, C 117, 10270.
[68]D. C. Zhang, X. Zhang, Y. Chen, P. Yu, C. H. Wang, Y. W. Ma, “Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors”, Journal of Power Source, 2011, 196, 5990.
[69]S. Sahoo, S. Dhibar, G. Hatui, P. Bhattacharya, C. K. Das, “Graphene/polypyrrole nanofiber nanocomposite as electrode material for electrochemical supercapacitor”, Polymer., 2013, 54 , 1033.
[70]X. Zhang, J. Zhang, R. Wang, T. Zhu, Z. Liu, “Surfactant-directed polypyrrole/CNT nanocables: synthesis, characterization, and enhanced electrical properties.”, ChemPhysChem., 2004, 5, 998.