|
[1] M.R. Bayati, F. Golestani-Fard, A.Z. Moshfegh, How photocatalytic activity of the MAO-grown TiO2 nano/micro-porous films is influenced by growth parameters?, Appl. Surf. Sci. 256 (2010) 4253. [2] N. Rahimi, R.A. Pax, E.M. Gray, Review of functional titanium oxides. I: TiO2 and its modifications, Progress in Solid State Chemistry 44 (2016) 86. [3] Akira Fujishima, Tata N. Rao, D.A. Tryk, Titanium dioxide photocatalysis., J. Photoch. Photobio. C. 1 (2000) 1. [4] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Gratzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers, Nat Chem 6 (2014) 242. [5] S. Sharma, S. Bulkesh, S.K. Ghoshal, D. Mohan, Dye sensitized solar cells: From genesis to recent drifts, Renew. Sustainable Energy Rev. 70 (2017) 529. [6] H.-J. Song, M.-K. Kim, G.-C. Jung, M.-S. Vang, Y.-J. Park, The effects of spark anodizing treatment of pure titanium metals and titanium alloys on corrosion characteristics, Surf. Coat. Technol. 201 (2007) 8738. [7] H.Z. Abdullah, P. Koshy, C.C. Sorrell, Anodic oxidation of titanium in mixture of β-Glycerophosphate (β-GP) and calcium acetate (CA), Key. Eng. Mater. 594-595 (2013) 275. [8] L. Wang, L. Chen, Z. Yan, W. Fu, Optical emission spectroscopy studies of discharge mechanism and plasma characteristics during plasma electrolytic oxidation of magnesium in different electrolytes, Surf. Coat. Technol. 205 (2010) 1651. [9] T. Mi, B. Jiang, Z. Liu, L. Fan, Plasma formation mechanism of microarc oxidation, Electrochim. Acta 123 (2014) 369. [10] W. Li, Z. Qian, X. Liu, L. Zhu, H. Liu, Investigation of micro-arc oxidation coating growth patterns of aluminum alloy by two-step oxidation method, Appl. Surf. Sci. 356 (2015) 581. [11] A. Lugovskoy, M. Zinigr, Plasma electrolytic oxidation of valve metals, Materials Science - Advanced Topics 2013. [12] E.V. Parfenov, A. Yerokhin, R.R. Nevyantseva, M.V. Gorbatkov, C.J. Liang, A. Matthews, Towards smart electrolytic plasma technologies: An overview of methodological approaches to process modelling, Surface and Coatings Technology 269 (2015) 2-22. [13] G.C. Wood, C. Person, Dielectric breakdown of anodic oxide films on valve metals, Corros. Sci. 7 (1967) 119. [14] M.K. Nazeeruddin, E. Baranoff, M. Grätzel, Dye-sensitized solar cells: A brief overview, Sol. Energy 85 (2011) 1172. [15] M. Grätzel, Dye-sensitized solar cells, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 4 (2003) 145. [16] M. Shakeel Ahmad, A.K. Pandey, N. Abd Rahim, Advancements in the development of TiO 2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review, Renewable and Sustainable Energy Reviews 77 (2017) 89. [17] J.-K. Lee, M. Yang, Progress in light harvesting and charge injection of dye-sensitized solar cells, Mater. Sci. Eng., B 176 (2011) 1142. [18] D.-H. Lee, J.-G. Park, K. Jin Choi, H.-J. Choi, D.-W. Kim, Preparation of brookite-type TiO2/Carbon nanocomposite electrodes for application to Li ion batteries, Eur. J. Inorg. Chem. 2008 (2008) 878. [19] N.-G. Park, G. Schlichtho1rl, J. van de Lagemaat, H. M. Cheong, A. Mascarenhas, A.J. Frank, Dye-sensitized TiO2 solar cells: Structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl4, J. Phys. Chem. B 103 (1999) 3308. [20] N.-G. Park, J. van de Lagemaat, A.J. Frank, Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells., J. Phys. Chem. B 104 (2000) 8989. [21] S. Meng, E. Kaxiras, Electron and hole dynamics in dye-sensitized solar cells: influencing factors and systematic trends, Nano Lett. 10 (2010) 1238. [22] Robson da Silva, Luis G. C. Rego, Jose´ A. Freire, Javier Rodriguez, Daniel Laria, V.S. Batista, Study of redox species and oxygen vacancy defects at TiO2-electrolyte interfaces., J. Phys. Chem. C 114 (2010) 19433. [23] Anders Hagfeldt, Gerrit Boschloo, Lars Kloo, H. Pettersson, Dye-sensitized solar cells., Chem. Rev 110 (2010) 6595. [24] 翁敏航, 楊茹媛, 管鴻, 晁成虎, 太陽能電池 : 原理、元件、材料、製程與檢測技術 = Solar cell : theory, devices, materials, processing and measurement technology, 台灣東華書局股份有限公司2010. [25] G.J. Meyer, Efficient light-to-electrical energy conversion: Nanocrystalline TiO2 films modified with inorganic sensitizers, J. Chem. Educ. 74 (1997) 652. [26] R.K. Kanaparthi, J. Kandhadi, L. Giribabu, Metal-free organic dyes for dye-sensitized solar cells: recent advances, Tetrahedron 68 (2012) 8383. [27] A. Mishra, M.K. Fischer, P. Bauerle, Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules, Angew Chem Int Ed Engl 48 (2009) 2474. [28] B.M. Marwa, S. Bruno, B. Mongi, F. Tran Van, B.L. Abdelmottaleb, Modeling of adsorption isotherms of dye N719 on titanium oxide using the grand canonical ensemble in statistical physics for dye sensitized solar cells, Solar Energy 135 (2016) 177. [29] 北京中聯金橋信息技術研究院, 2013-2017年中國(含全球)染料敏化太陽能電池行業市場前景及投資預測調研告, 北京中聯金橋信息技術研究院2013. [30] J. He, Q.Z. Cai, Y.G. Ji, H.H. Luo, D.J. Li, B. Yu, Influence of fluorine on the structure and photocatalytic activity of TiO2 film prepared in tungstate-electrolyte via micro-arc oxidation, J. Alloys. Compd. 482 (2009) 476. [31] L.K. Mirelman, J.A. Curran, T.W. Clyne, The production of anatase-rich photoactive coatings by plasma electrolytic oxidation, Surf. Coat. Technol. 207 (2012) 66. [32] N. Xiang, R.G. Song, B. Xiang, H. Li, Z.X. Wang, C. Wang, A study on photocatalytic activity of micro-arc oxidation TiO2 films and Ag+/MAO-TiO2 composite films, Appl. Surf. Sci. 347 (2015) 454. [33] Z. DohĿeviĿ-MitroviĿ, S. StojadinoviĿ, L. Lozzi, S. AškrabiĿ, M. RosiĿ, N. TomiĿ, N. PaunoviĿ, S. LazoviĿ, M.G. NikoliĿ, S. Santucci, WO3/TiO2 composite coatings: structural, optical and photocatalytic properties, Mater. Res. Bull. 83 (2016) 217. [34] S.-Y. Wu, Y.-H. Chen, K.-C. Chen, J.-L. He, Using micro-arc oxidation and alkali etching to produce a nanoporous TiO2 layer on titanium foil for flexible dye-sensitized solar cell application, Jpn. J. Appl. Phys. 49 (2010) 092301. [35] N. Salami, M.R. Bayati, F. Golestani-Fard, H.R. Zargar, UV and visible photodecomposition of organic pollutants over micro arc oxidized Ag-activated TiO2 nanocrystalline layers, Mater. Res. Bull. 47 (2012) 1080. [36] T.C. Lee, P. Koshy, H.Z. Abdullah, M.I. Idris, Precipitation of bone-like apatite on anodised titanium in simulated body fluid under UV irradiation, Surf. Coat. Technol. 301 (2016) 20. [37] Y.M. Wang, D.C. Jia, L.X. Guo, T.Q. Lei, B.L. Jiang, Effect of discharge pulsating on microarc oxidation coatings formed on Ti6Al4V alloy, Mater. Chem. Phys. 90 (2005) 128. [38] Y.-l. Cheng, X.-Q. Wu, Z.-g. Xue, E. Matykina, P. Skeldon, G.E. Thompson, Microstructure, corrosion and wear performance of plasma electrolytic oxidation coatings formed on Ti–6Al–4V alloy in silicate-hexametaphosphate electrolyte, Surf. Coat. Technol. 217 (2013) 129. [39] Y. Jiang, J. Wang, B. Hu, Z. Yao, Q. Xia, Z. Jiang, Preparation of a novel yellow ceramic coating on Ti alloys by plasma electrolytic oxidation, Surf. Coat. Technol. 307 (2016) 1297. [40] W.-C. Gu, G.-H. Lv, H. Chen, G.-L. Chen, W.-R. Feng, G.-L. Zhang, S.-Z. Yang, Investigation of morphology and composition of plasma electrolytic oxidation coatings in systems of Na2SiO3–NaOH and (NaPO3)4–NaOH, J. Mater. Process. Technol. 182 (2007) 28. [41] H. Ma, D. Li, C. Liu, Z. Huang, D. He, Q. Yan, P. Liu, P. Nash, D. Shen, An investigation of (NaPO3)6 effects and mechanisms during micro-arc oxidation of AZ31 magnesium alloy, Surf. Coat. Technol. 266 (2015) 151. [42] S. Ji, Y. Weng, Z. Wu, Z. Ma, X. Tian, R.K.Y. Fu, H. Lin, G. Wu, P.K. Chu, F. Pan, Excellent corrosion resistance of P and Fe modified micro-arc oxidation coating on Al alloy, J. Alloys. Compd. 710 (2017) 452. [43] S.-N. Chen, S.K. Deb, H. Witzke, Dye-titanium dioxide photogalvanic cell, 1978. [44] C.-H. Liao, W.-T. Shih, C.-C. Chen, Y.-L. Lee, P.-L. Kuo, Effect of photoelectrode morphology of single-crystalline anatase nanorods on the performance of dye-sensitized solar cells, Thin Solid Films 519 (2011) 5552. [45] R. Liu, W.-D. Yang, L.-S. Qiang, Enhanced efficiency for dye-sensitized solar cells using a surface-treated photo-anode, J. Power Sources 199 (2012) 418. [46] M. Kim, K.-W. Lee, L.-W. Jang, D.-W. Jeon, J.-W. Ju, H.-G. Yun, I.-H. Lee, Improved performance of metal foil-based dye-sensitized solar cells with low porosity and short length of TiO2 nanotube underlayer, Electrochim. Acta 133 (2014) 610. [47] ASTM, Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface, 2012. [48] A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. Dowey, Plasma electrolysis for surface engineering, Surf. Coat. Technol. 122 (1999) 73. [49] X. Nie, A. Leyland, A. Matthews, Deposition of layered bioceramic hydroxyapatite/TiO2 coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis, Surf. Coat. Technol. 125 (2000) 407. [50] J. Schreckenbach, F. Schlottig, G. Marx, W.M. Kriven, O.O. Popoola, M.H. Jilavi, S.D. Brown, Preparation and microstructure characterization of anodic spark deposited barium titanate conversion layers, J. Mater. Res. 14 (2011) 1437. [51] Y. Han, S.-H. Hong, K.W. Xu, Porous nanocrystalline titania films by plasma electrolytic oxidation., Surf. Coat. Technol. 154 (2002) 314. [52] Y. Wang, B. Jiang, T. Lei, L. Guo, Dependence of growth features of microarc oxidation coatings of titanium alloy on control modes of alternate pulse, Mater. Lett. 58 (2004) 1907. [53] D. Wei, Y. Zhou, D. Jia, Y. Wang, Characteristic and in vitro bioactivity of a microarc-oxidized TiO2-based coating after chemical treatment, Acta Biomater. 3 (2007) 817. [54] E. Matykina, A. Berkani, P. Skeldon, G.E. Thompson, Real-time imaging of coating growth during plasma electrolytic oxidation of titanium, Electrochim. Acta 53 (2007) 1987. [55] P. Huang, F. Wang, K. Xu, Y. Han, Mechanical properties of titania prepared by plasma electrolytic oxidation at different voltages, Surf. Coat. Technol. 201 (2007) 5168. [56] H. Wang, F. Liu, X. Xiong, S. Ke, X. Zeng, P. Lin, Structure, corrosion resistance and in vitro bioactivity of Ca and P containing TiO2 coating fabricated on NiTi alloy by plasma electrolytic oxidation, Appl. Surf. Sci. 356 (2015) 1234. [57] P. Gupta, G. Tenhundfeld, E.O. Daigle, D. Ryabkov, Electrolytic plasma technology: Science and engineering—An overview, Surf. Coat. Technol. 201 (2007) 8746. [58] H. Zhang, Y.-h. Liu, B. Zhou, Y.-h. Deng, Z.-c. Wang, Y.-p. Guo, Effects of treating solution concentration on growth rate and microhardness of MAO coatings on aluminum alloy., Journal of Jilin University 43 (2005) 825. [59] M.R. Bayati, R. Molaei, A. Kajbafvala, S. Zanganeh, H.R. Zargar, K. Janghorban, Investigation on hydrophilicity of micro-arc oxidized TiO2 nano/micro-porous layers, Electrochim. Acta 55 (2010) 5786. [60] S.H. Uhm, D.H. Song, J.S. Kwon, S.B. Lee, J.G. Han, K.N. Kim, Tailoring of antibacterial Ag nanostructures on TiO2 nanotube layers by magnetron sputtering, J. Biomed. Mater. Res. Part B Appl. Biomater. 102 (2014) 592. [61] J.C. Yu, J. Yu, W. Ho, J. Zhao, Light-induced super-hydrophilicity and photocatalytic activity of mesoporous TiO2 thin films, J. Photochem. Photobiol. A. Chem. 148 (2002) 331. [62] S. M, P. T, R. N, Role of electrolyte composition on structural, morphological and in-vitro biological properties of plasma electrolytic oxidation films formed on zirconium, Appl. Surf. Sci. 317 (2014) 198. [63] S. M, A. M, A. T, S. M.P, S. S, R. N, Effect of electrical parameters on morphology and in-vitro corrosion resistance of plasma electrolytic oxidized films formed on zirconium, Surf. Coat. Technol. 269 (2015) 286. [64] K.-H. Kim, N. Ramaswamy, Electrochemical surface modification of titanium in dentistry., Dent. Mater. J. 28 (2009) 20. [65] M.-T. Tsai, Y.-Y. Chang, H.-L. Huang, Y.-H. Wu, T.-M. Shieh, Micro-arc oxidation treatment enhanced the biological performance of human osteosarcoma cell line and human skin fibroblasts cultured on titanium–zirconium films, Surf. Coat. Technol. 303 (2016) 268. [66] R.E. Hummel, Electronic properties of materials (Third Edition), 3rd., Springer Verlag2000. [67] W.D. Callister, D.G. Rethwisch, Materials Science and Engineering, 8th Edition SI Version, 6th., Wiley2010. [68] D. Quéré, Rough ideas on wetting., Physica A 313 (2002) 32. [69] M. Ramiasa, J. Ralston, R. Fetzer, R. Sedev, The influence of topography on dynamic wetting, Adv Colloid Interface Sci 206 (2014) 275. [70] Q. Li, W. Yang, C. Liu, D. Wang, J. Liang, Correlations between the growth mechanism and properties of micro-arc oxidation coatings on titanium alloy: Effects of electrolytes, Surf. Coat. Technol. 316 (2017) 162. [71] A.R. Prusi, L.D. Arsov, The growth kinetics and optical properties of films formed under open circuit conditions on a titanium surface in potassium hydroxide solutions, Corros. Sci. 33 (1992) 153. [72] F.C. Walsh, C.T.J. Low, R.J.K. Wood, K.T. Stevens, J. Archer, A.R. Poeton, A. Ryder, Plasma electrolytic oxidation (PEO) for production of anodised coatings on lightweight metal (Al, Mg, Ti) alloys, Transactions of the IMF 87(3) (2013) 122-135. [73] S. Franz, D. Perego, O. Marchese, A. Lucotti, M. Bestetti, Photoactive TiO2 coatings obtained by plasma electrolytic oxidation in refrigerated electrolytes, Appl. Surf. Sci. 385 (2016) 498. [74] T. Akatsu, Y. Yamada, Y. Hoshikawa, T. Onoki, Y. Shinoda, F. Wakai, Multifunctional porous titanium oxide coating with apatite forming ability and photocatalytic activity on a titanium substrate formed by plasma electrolytic oxidation, Mater Sci Eng C Mater Biol Appl 33 (2013) 4871. [75] M. Babaei, C. Dehghanian, M. Vanaki, Effect of additive on electrochemical corrosion properties of plasma electrolytic oxidation coatings formed on CP Ti under different processing frequency, Appl. Surf. Sci. 357 (2015) 712. [76] F. Muhaffel, G. Cempura, M. Menekse, A. Czyrska-Filemonowicz, N. Karaguler, H. Cimenoglu, Characteristics of multi-layer coatings synthesized on Ti6Al4V alloy by micro-arc oxidation in silver nitrate added electrolytes, Surf. Coat. Technol. 307 (2016) 308. [77] S.L. Aktug, I. Kutbay, M. Usta, Characterization and formation of bioactive hydroxyapatite coating on commercially pure zirconium by micro arc oxidation, J. Alloys. Compd. 695 (2017) 998. [78] H.-P. Teng, C.-J. Yang, J.-F. Lin, Y.-H. Huang, F.-H. Lu, A simple method to functionalize the surface of plasma electrolytic oxidation produced TiO2 Coatings for growing hydroxyapatite, Electrochim. Acta 193 (2016) 216. [79] V. Thavasi, V. Renugopalakrishnan, R. Jose, S. Ramakrishna, Controlled electron injection and transport at materials interfaces in dye sensitized solar cells, Mater. Sci. Eng. R. Rep. 63 (2009) 81. [80] K.E. Lee, M.A. Gomez, S. Elouatik, G.P. Demopoulos, Further understanding of the adsorption mechanism of N719 sensitizer on anatase TiO2 films for DSSC applications using vibrational spectroscopy and confocal raman imaging, Langmuir 26 (2010) 9575.
|