跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/14 20:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳家雙
研究生(外文):Jia-Shuang Chen
論文名稱:以電漿電解氧化法於鈦箔製備二氧化鈦膜之研究
論文名稱(外文):Preparation of TiO2 coatings on Ti foils by plasma electrolytic oxidation
指導教授:呂福興
指導教授(外文):Fu-Hsing Lu
口試委員:林景崎曾文甲梁辰睿
口試委員(外文):Jing-Chie LinWen-Jea TsengChen-Jui Liang
口試日期:2017-06-24
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:106
中文關鍵詞:電漿電解氧化法銳鈦礦陶瓷膜磷酸鹽
外文關鍵詞:Plasma Electrolytic OxidationAnataseCeramic coatingsPhosphate
相關次數:
  • 被引用被引用:1
  • 點閱點閱:215
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本研究以鈦箔經電漿電解氧化法,利用六偏磷酸鈉和氫氧化鈉作為電解液,控制純銳鈦礦相之二氧化鈦生成,且評估染料敏化太陽能電池之應用,並探討影響二氧化鈦生成結晶相、表面微結構、親水性等因素為何。
若以0.04 M六偏磷酸鈉和0.125 M氫氧化鈉作為電解液,於鈦塊材及鈦箔反應基材,固定電流頻率980 Hz,佔空比10%,反應10分鐘,電解液溫度2℃,藉由改變不同反應電壓進行電漿電解氧化法,可製備出純銳鈦礦二氧化鈦。更進一步調整電解液濃度為(1) 0.02 M六偏磷酸鈉和0.125 M氫氧化鈉及(2) 0 M六偏磷酸鈉和0.125 M氫氧化鈉,於鈦箔反應基材進行相同製程,可知改變反應基材、電解液成分及電源參數可以進一步控制火花放電情況,影響氧化膜的生長,達到控制純相銳鈦礦產生。
比較鈦箔及鈦塊材之差異,可以得知氧化膜結晶相、厚度與粗糙度之差異變化不大;兩者最明顯之差異為鈦塊材的擊穿電壓為250 V,鈦箔擊穿電壓為200 V,因此,鈦箔之反應電流流經試片表面時間較久,膜層具有較高的表面能,可使鈦箔相較於鈦塊材,其表面孔洞較大及親水性優異等性質。
應用方面評估,染料敏化太陽能電池之光電效率與二氧化鈦光電極、染料分子及氧化還原電解質相關。以六偏磷酸鈉和氫氧化鈉作為電解液,可生成純銳鈦礦二氧化鈦,而以氫氧化鈉為電解液之電漿電解氧化之氧化膜結晶相為銳鈦礦與金紅石,因兩者表面微結構差異,影響染料吸附量,故光電轉換效率於氫氧化鈉為電解液條件下較佳。未來若能改善純銳鈦礦二氧化鈦之微結構,形成微奈米之孔洞,以利染料吸附比表面積提升,有望增強其光電轉換效率,於染料敏化太陽能電池應用之潛力提升。
In this research, titanium dioxide was produced by plasma electrolyte oxidation on Ti foil substrate with the electrolytic solution of sodium hexametaphosphate (NaPO3)6 and sodium hydroxide (NaOH) to control the formation of titania in the pure anatase phase and to evaluate the application of dye-sensitized solar cells. The formed titania was explored in the crystalline phase, surface microstructure, hydrophilicity and other factors.
Using the electrolyte of 0.04 M sodium hexametaphosphate and 0.125 M sodium hydroxide, with Ti bulk and Ti foil as reaction substrates, fixed the current frequency, duty cycle, reaction time and temperature of electrolyte was 980 Hz, 10%, 10 minutes and 2℃, respectively. By controlling the reaction voltage in plasma electrolyte oxidation method, the pure anatase titanium dioxide can be prepared. Furthermore, 0.02 M sodium hexametaphosphate with 0.125 M sodium hydroxide and 0 M sodium hexametaphosphate with 0.125 M sodium hydroxide were modified to carry out the same previous process on Ti foil reaction substrate. From the results of modification, we can know that changing the substrate, composition of electrolyte and power parameter can control the phenomenon of spark discharge to affect the growth oxide layer and control the existence of the pure anatase titania.
Compare the difference between Ti foil and Ti bulk, it can be seen that the oxide layer of the crystalline phase, the thickness and roughness were similar. The most obvious difference is when the breakdown voltage of Ti bulk is 250 V while the breakdown voltage of Ti foil is 200 V. The time of reaction current on Ti foil and flow through the specimen longer than Ti bulk, thus the oxide film has a higher surface energy to obtain the bigger surface pore size and excellent hydrophilicity.
In the application evaluation, the photoelectric conversion efficiency of dye-sensitized solar cells is related to titanium dioxide photoelectrode, dye molecules and redox electolytes. When the sodium hexametaphosphate and sodium hydroxide are used as electrolytes, the pure anatase titanium dioxide is produced. When the sodium hydroxide was used as electrolyte, the crystalline phase of titanium dioxide layer were anatase and rutile. Due to the difference of the surface microstructure, the amount of the dye adsorption was affected. Therefore, the photoelectric conversion efficiency is more excellent under the sodium hydroxide electrolyte. If the microstructure of pure anatase titanium dioxide can be improved to form micro-nanopores and to increase the adsorption specific surface area of the dye in the future, the photoelectric conversion efficiency will be enhanced which can increase the potential of dye-sensitized solar cells.
誌謝 i
摘要 iii
Abstract iv
目次 vi
表目次 ix
圖目次 x
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究目的 3
第二章 理論背景與文獻回顧 4
2.1 電漿電解氧化法理論背景 4
2.2 染料敏化太陽能電池之工作原理及組成元素 9
2.3 電漿電解氧化法於鈦塊材或鈦箔製備二氧化鈦塗層之文獻 15
2.3.1 以鈦塊材及鈦箔作為反應基材 15
2.3.2 使用六偏磷酸鈉作為電解液 21
2.4 不同製程方法製備二氧化鈦應用於染料敏化太陽能電池之文獻 25
第三章 研究方法 28
3.1 實驗流程 28
3.2 Ti基材之準備 29
3.3 電漿電解氧化法製備二氧化鈦之方法 30
3.4 染料敏化太陽能電池組裝 31
3.4.1 染料及電解液配置 31
3.4.2 元件組裝 31
3.4.3 光電轉換效率量測 32
3.5 分析儀器 33
3.5.1 X光繞射分析儀 33
3.5.2 冷場發射掃描電子顯微鏡 33
3.5.3 表面粗度測定儀 34
3.5.4 傅立葉轉換紅外線光譜儀 34
第四章 結果 35
4.1 鈦箔基材分析 35
4.2 以電漿電解氧化法於實驗組鈦箔及對照組鈦塊材以0.04 M六偏磷酸鈉加0.125 M氫氧化鈉作為電解液製備二氧化鈦之差異 37
4.2.1 以鈦箔作為反應基材 37
4.2.1.1 二氧化鈦膜層結晶相及相對強度之分析 37
4.2.1.2 二氧化鈦膜層表面及橫截面微結構分析 40
4.2.1.3 二氧化鈦膜層之接觸角 46
4.2.2 以鈦塊材作為反應基材 47
4.2.2.1 二氧化鈦膜層結晶相及相對強度之分析 47
4.2.2.2 二氧化鈦膜層表面及橫截面微結構分析 50
4.2.2.3 二氧化鈦膜層之接觸角 55
4.2.3 二氧化鈦/鈦箔應用於染料敏化太陽能電池測試結果 56
4.3 改變電解液組成 57
4.3.1 以0.02 M六偏磷酸鈉加0.125 M氫氧化鈉作為電解液 57
4.3.1.1 二氧化鈦膜層結晶相及相對強度之分析 57
4.3.1.2 二氧化鈦膜層表面及橫截面微結構分析 60
4.3.1.3 二氧化鈦膜層之接觸角 65
4.3.2 以氫氧化鈉作為電解液 66
4.3.2.1 二氧化鈦膜層結晶相及相對強度之分析 66
4.3.2.2 二氧化鈦膜層表面微結構分析 71
4.3.2.3 二氧化鈦膜層之接觸角 74
4.3.3 二氧化鈦/鈦箔應用於染料敏化太陽能電池測試結果 76
第五章 討論 78
5.1 電漿電解氧化法以鈦塊材與鈦箔作為反應基材對二氧化鈦結晶相與微結構之異同 78
5.2 改變電解液中六偏磷酸鈉濃度對結構造成的變化 83
5.3 二氧化鈦之結構對光電轉換效率的影響 90
第六章 結論 96
參考文獻 97
[1] M.R. Bayati, F. Golestani-Fard, A.Z. Moshfegh, How photocatalytic activity of the MAO-grown TiO2 nano/micro-porous films is influenced by growth parameters?, Appl. Surf. Sci. 256 (2010) 4253.
[2] N. Rahimi, R.A. Pax, E.M. Gray, Review of functional titanium oxides. I: TiO2 and its modifications, Progress in Solid State Chemistry 44 (2016) 86.
[3] Akira Fujishima, Tata N. Rao, D.A. Tryk, Titanium dioxide photocatalysis., J. Photoch. Photobio. C. 1 (2000) 1.
[4] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Gratzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers, Nat Chem 6 (2014) 242.
[5] S. Sharma, S. Bulkesh, S.K. Ghoshal, D. Mohan, Dye sensitized solar cells: From genesis to recent drifts, Renew. Sustainable Energy Rev. 70 (2017) 529.
[6] H.-J. Song, M.-K. Kim, G.-C. Jung, M.-S. Vang, Y.-J. Park, The effects of spark anodizing treatment of pure titanium metals and titanium alloys on corrosion characteristics, Surf. Coat. Technol. 201 (2007) 8738.
[7] H.Z. Abdullah, P. Koshy, C.C. Sorrell, Anodic oxidation of titanium in mixture of β-Glycerophosphate (β-GP) and calcium acetate (CA), Key. Eng. Mater. 594-595 (2013) 275.
[8] L. Wang, L. Chen, Z. Yan, W. Fu, Optical emission spectroscopy studies of discharge mechanism and plasma characteristics during plasma electrolytic oxidation of magnesium in different electrolytes, Surf. Coat. Technol. 205 (2010) 1651.
[9] T. Mi, B. Jiang, Z. Liu, L. Fan, Plasma formation mechanism of microarc oxidation, Electrochim. Acta 123 (2014) 369.
[10] W. Li, Z. Qian, X. Liu, L. Zhu, H. Liu, Investigation of micro-arc oxidation coating growth patterns of aluminum alloy by two-step oxidation method, Appl. Surf. Sci. 356 (2015) 581.
[11] A. Lugovskoy, M. Zinigr, Plasma electrolytic oxidation of valve metals, Materials Science - Advanced Topics 2013.
[12] E.V. Parfenov, A. Yerokhin, R.R. Nevyantseva, M.V. Gorbatkov, C.J. Liang, A. Matthews, Towards smart electrolytic plasma technologies: An overview of methodological approaches to process modelling, Surface and Coatings Technology 269 (2015) 2-22.
[13] G.C. Wood, C. Person, Dielectric breakdown of anodic oxide films on valve metals, Corros. Sci. 7 (1967) 119.
[14] M.K. Nazeeruddin, E. Baranoff, M. Grätzel, Dye-sensitized solar cells: A brief overview, Sol. Energy 85 (2011) 1172.
[15] M. Grätzel, Dye-sensitized solar cells, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 4 (2003) 145.
[16] M. Shakeel Ahmad, A.K. Pandey, N. Abd Rahim, Advancements in the development of TiO 2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review, Renewable and Sustainable Energy Reviews 77 (2017) 89.
[17] J.-K. Lee, M. Yang, Progress in light harvesting and charge injection of dye-sensitized solar cells, Mater. Sci. Eng., B 176 (2011) 1142.
[18] D.-H. Lee, J.-G. Park, K. Jin Choi, H.-J. Choi, D.-W. Kim, Preparation of brookite-type TiO2/Carbon nanocomposite electrodes for application to Li ion batteries, Eur. J. Inorg. Chem. 2008 (2008) 878.
[19] N.-G. Park, G. Schlichtho1rl, J. van de Lagemaat, H. M. Cheong, A. Mascarenhas, A.J. Frank, Dye-sensitized TiO2 solar cells: Structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl4, J. Phys. Chem. B 103 (1999) 3308.
[20] N.-G. Park, J. van de Lagemaat, A.J. Frank, Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells., J. Phys. Chem. B 104 (2000) 8989.
[21] S. Meng, E. Kaxiras, Electron and hole dynamics in dye-sensitized solar cells: influencing factors and systematic trends, Nano Lett. 10 (2010) 1238.
[22] Robson da Silva, Luis G. C. Rego, Jose´ A. Freire, Javier Rodriguez, Daniel Laria, V.S. Batista, Study of redox species and oxygen vacancy defects at TiO2-electrolyte interfaces., J. Phys. Chem. C 114 (2010) 19433.
[23] Anders Hagfeldt, Gerrit Boschloo, Lars Kloo, H. Pettersson, Dye-sensitized solar cells., Chem. Rev 110 (2010) 6595.
[24] 翁敏航, 楊茹媛, 管鴻, 晁成虎, 太陽能電池 : 原理、元件、材料、製程與檢測技術 = Solar cell : theory, devices, materials, processing and measurement technology, 台灣東華書局股份有限公司2010.
[25] G.J. Meyer, Efficient light-to-electrical energy conversion: Nanocrystalline TiO2 films modified with inorganic sensitizers, J. Chem. Educ. 74 (1997) 652.
[26] R.K. Kanaparthi, J. Kandhadi, L. Giribabu, Metal-free organic dyes for dye-sensitized solar cells: recent advances, Tetrahedron 68 (2012) 8383.
[27] A. Mishra, M.K. Fischer, P. Bauerle, Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules, Angew Chem Int Ed Engl 48 (2009) 2474.
[28] B.M. Marwa, S. Bruno, B. Mongi, F. Tran Van, B.L. Abdelmottaleb, Modeling of adsorption isotherms of dye N719 on titanium oxide using the grand canonical ensemble in statistical physics for dye sensitized solar cells, Solar Energy 135 (2016) 177.
[29] 北京中聯金橋信息技術研究院, 2013-2017年中國(含全球)染料敏化太陽能電池行業市場前景及投資預測調研告, 北京中聯金橋信息技術研究院2013.
[30] J. He, Q.Z. Cai, Y.G. Ji, H.H. Luo, D.J. Li, B. Yu, Influence of fluorine on the structure and photocatalytic activity of TiO2 film prepared in tungstate-electrolyte via micro-arc oxidation, J. Alloys. Compd. 482 (2009) 476.
[31] L.K. Mirelman, J.A. Curran, T.W. Clyne, The production of anatase-rich photoactive coatings by plasma electrolytic oxidation, Surf. Coat. Technol. 207 (2012) 66.
[32] N. Xiang, R.G. Song, B. Xiang, H. Li, Z.X. Wang, C. Wang, A study on photocatalytic activity of micro-arc oxidation TiO2 films and Ag+/MAO-TiO2 composite films, Appl. Surf. Sci. 347 (2015) 454.
[33] Z. DohĿeviĿ-MitroviĿ, S. StojadinoviĿ, L. Lozzi, S. AškrabiĿ, M. RosiĿ, N. TomiĿ, N. PaunoviĿ, S. LazoviĿ, M.G. NikoliĿ, S. Santucci, WO3/TiO2 composite coatings: structural, optical and photocatalytic properties, Mater. Res. Bull. 83 (2016) 217.
[34] S.-Y. Wu, Y.-H. Chen, K.-C. Chen, J.-L. He, Using micro-arc oxidation and alkali etching to produce a nanoporous TiO2 layer on titanium foil for flexible dye-sensitized solar cell application, Jpn. J. Appl. Phys. 49 (2010) 092301.
[35] N. Salami, M.R. Bayati, F. Golestani-Fard, H.R. Zargar, UV and visible photodecomposition of organic pollutants over micro arc oxidized Ag-activated TiO2 nanocrystalline layers, Mater. Res. Bull. 47 (2012) 1080.
[36] T.C. Lee, P. Koshy, H.Z. Abdullah, M.I. Idris, Precipitation of bone-like apatite on anodised titanium in simulated body fluid under UV irradiation, Surf. Coat. Technol. 301 (2016) 20.
[37] Y.M. Wang, D.C. Jia, L.X. Guo, T.Q. Lei, B.L. Jiang, Effect of discharge pulsating on microarc oxidation coatings formed on Ti6Al4V alloy, Mater. Chem. Phys. 90 (2005) 128.
[38] Y.-l. Cheng, X.-Q. Wu, Z.-g. Xue, E. Matykina, P. Skeldon, G.E. Thompson, Microstructure, corrosion and wear performance of plasma electrolytic oxidation coatings formed on Ti–6Al–4V alloy in silicate-hexametaphosphate electrolyte, Surf. Coat. Technol. 217 (2013) 129.
[39] Y. Jiang, J. Wang, B. Hu, Z. Yao, Q. Xia, Z. Jiang, Preparation of a novel yellow ceramic coating on Ti alloys by plasma electrolytic oxidation, Surf. Coat. Technol. 307 (2016) 1297.
[40] W.-C. Gu, G.-H. Lv, H. Chen, G.-L. Chen, W.-R. Feng, G.-L. Zhang, S.-Z. Yang, Investigation of morphology and composition of plasma electrolytic oxidation coatings in systems of Na2SiO3–NaOH and (NaPO3)4–NaOH, J. Mater. Process. Technol. 182 (2007) 28.
[41] H. Ma, D. Li, C. Liu, Z. Huang, D. He, Q. Yan, P. Liu, P. Nash, D. Shen, An investigation of (NaPO3)6 effects and mechanisms during micro-arc oxidation of AZ31 magnesium alloy, Surf. Coat. Technol. 266 (2015) 151.
[42] S. Ji, Y. Weng, Z. Wu, Z. Ma, X. Tian, R.K.Y. Fu, H. Lin, G. Wu, P.K. Chu, F. Pan, Excellent corrosion resistance of P and Fe modified micro-arc oxidation coating on Al alloy, J. Alloys. Compd. 710 (2017) 452.
[43] S.-N. Chen, S.K. Deb, H. Witzke, Dye-titanium dioxide photogalvanic cell, 1978.
[44] C.-H. Liao, W.-T. Shih, C.-C. Chen, Y.-L. Lee, P.-L. Kuo, Effect of photoelectrode morphology of single-crystalline anatase nanorods on the performance of dye-sensitized solar cells, Thin Solid Films 519 (2011) 5552.
[45] R. Liu, W.-D. Yang, L.-S. Qiang, Enhanced efficiency for dye-sensitized solar cells using a surface-treated photo-anode, J. Power Sources 199 (2012) 418.
[46] M. Kim, K.-W. Lee, L.-W. Jang, D.-W. Jeon, J.-W. Ju, H.-G. Yun, I.-H. Lee, Improved performance of metal foil-based dye-sensitized solar cells with low porosity and short length of TiO2 nanotube underlayer, Electrochim. Acta 133 (2014) 610.
[47] ASTM, Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface, 2012.
[48] A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. Dowey, Plasma electrolysis for surface engineering, Surf. Coat. Technol. 122 (1999) 73.
[49] X. Nie, A. Leyland, A. Matthews, Deposition of layered bioceramic hydroxyapatite/TiO2 coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis, Surf. Coat. Technol. 125 (2000) 407.
[50] J. Schreckenbach, F. Schlottig, G. Marx, W.M. Kriven, O.O. Popoola, M.H. Jilavi, S.D. Brown, Preparation and microstructure characterization of anodic spark deposited barium titanate conversion layers, J. Mater. Res. 14 (2011) 1437.
[51] Y. Han, S.-H. Hong, K.W. Xu, Porous nanocrystalline titania films by plasma electrolytic oxidation., Surf. Coat. Technol. 154 (2002) 314.
[52] Y. Wang, B. Jiang, T. Lei, L. Guo, Dependence of growth features of microarc oxidation coatings of titanium alloy on control modes of alternate pulse, Mater. Lett. 58 (2004) 1907.
[53] D. Wei, Y. Zhou, D. Jia, Y. Wang, Characteristic and in vitro bioactivity of a microarc-oxidized TiO2-based coating after chemical treatment, Acta Biomater. 3 (2007) 817.
[54] E. Matykina, A. Berkani, P. Skeldon, G.E. Thompson, Real-time imaging of coating growth during plasma electrolytic oxidation of titanium, Electrochim. Acta 53 (2007) 1987.
[55] P. Huang, F. Wang, K. Xu, Y. Han, Mechanical properties of titania prepared by plasma electrolytic oxidation at different voltages, Surf. Coat. Technol. 201 (2007) 5168.
[56] H. Wang, F. Liu, X. Xiong, S. Ke, X. Zeng, P. Lin, Structure, corrosion resistance and in vitro bioactivity of Ca and P containing TiO2 coating fabricated on NiTi alloy by plasma electrolytic oxidation, Appl. Surf. Sci. 356 (2015) 1234.
[57] P. Gupta, G. Tenhundfeld, E.O. Daigle, D. Ryabkov, Electrolytic plasma technology: Science and engineering—An overview, Surf. Coat. Technol. 201 (2007) 8746.
[58] H. Zhang, Y.-h. Liu, B. Zhou, Y.-h. Deng, Z.-c. Wang, Y.-p. Guo, Effects of treating solution concentration on growth rate and microhardness of MAO coatings on aluminum alloy., Journal of Jilin University 43 (2005) 825.
[59] M.R. Bayati, R. Molaei, A. Kajbafvala, S. Zanganeh, H.R. Zargar, K. Janghorban, Investigation on hydrophilicity of micro-arc oxidized TiO2 nano/micro-porous layers, Electrochim. Acta 55 (2010) 5786.
[60] S.H. Uhm, D.H. Song, J.S. Kwon, S.B. Lee, J.G. Han, K.N. Kim, Tailoring of antibacterial Ag nanostructures on TiO2 nanotube layers by magnetron sputtering, J. Biomed. Mater. Res. Part B Appl. Biomater. 102 (2014) 592.
[61] J.C. Yu, J. Yu, W. Ho, J. Zhao, Light-induced super-hydrophilicity and photocatalytic activity of mesoporous TiO2 thin films, J. Photochem. Photobiol. A. Chem. 148 (2002) 331.
[62] S. M, P. T, R. N, Role of electrolyte composition on structural, morphological and in-vitro biological properties of plasma electrolytic oxidation films formed on zirconium, Appl. Surf. Sci. 317 (2014) 198.
[63] S. M, A. M, A. T, S. M.P, S. S, R. N, Effect of electrical parameters on morphology and in-vitro corrosion resistance of plasma electrolytic oxidized films formed on zirconium, Surf. Coat. Technol. 269 (2015) 286.
[64] K.-H. Kim, N. Ramaswamy, Electrochemical surface modification of titanium in dentistry., Dent. Mater. J. 28 (2009) 20.
[65] M.-T. Tsai, Y.-Y. Chang, H.-L. Huang, Y.-H. Wu, T.-M. Shieh, Micro-arc oxidation treatment enhanced the biological performance of human osteosarcoma cell line and human skin fibroblasts cultured on titanium–zirconium films, Surf. Coat. Technol. 303 (2016) 268.
[66] R.E. Hummel, Electronic properties of materials (Third Edition), 3rd., Springer Verlag2000.
[67] W.D. Callister, D.G. Rethwisch, Materials Science and Engineering, 8th Edition SI Version, 6th., Wiley2010.
[68] D. Quéré, Rough ideas on wetting., Physica A 313 (2002) 32.
[69] M. Ramiasa, J. Ralston, R. Fetzer, R. Sedev, The influence of topography on dynamic wetting, Adv Colloid Interface Sci 206 (2014) 275.
[70] Q. Li, W. Yang, C. Liu, D. Wang, J. Liang, Correlations between the growth mechanism and properties of micro-arc oxidation coatings on titanium alloy: Effects of electrolytes, Surf. Coat. Technol. 316 (2017) 162.
[71] A.R. Prusi, L.D. Arsov, The growth kinetics and optical properties of films formed under open circuit conditions on a titanium surface in potassium hydroxide solutions, Corros. Sci. 33 (1992) 153.
[72] F.C. Walsh, C.T.J. Low, R.J.K. Wood, K.T. Stevens, J. Archer, A.R. Poeton, A. Ryder, Plasma electrolytic oxidation (PEO) for production of anodised coatings on lightweight metal (Al, Mg, Ti) alloys, Transactions of the IMF 87(3) (2013) 122-135.
[73] S. Franz, D. Perego, O. Marchese, A. Lucotti, M. Bestetti, Photoactive TiO2 coatings obtained by plasma electrolytic oxidation in refrigerated electrolytes, Appl. Surf. Sci. 385 (2016) 498.
[74] T. Akatsu, Y. Yamada, Y. Hoshikawa, T. Onoki, Y. Shinoda, F. Wakai, Multifunctional porous titanium oxide coating with apatite forming ability and photocatalytic activity on a titanium substrate formed by plasma electrolytic oxidation, Mater Sci Eng C Mater Biol Appl 33 (2013) 4871.
[75] M. Babaei, C. Dehghanian, M. Vanaki, Effect of additive on electrochemical corrosion properties of plasma electrolytic oxidation coatings formed on CP Ti under different processing frequency, Appl. Surf. Sci. 357 (2015) 712.
[76] F. Muhaffel, G. Cempura, M. Menekse, A. Czyrska-Filemonowicz, N. Karaguler, H. Cimenoglu, Characteristics of multi-layer coatings synthesized on Ti6Al4V alloy by micro-arc oxidation in silver nitrate added electrolytes, Surf. Coat. Technol. 307 (2016) 308.
[77] S.L. Aktug, I. Kutbay, M. Usta, Characterization and formation of bioactive hydroxyapatite coating on commercially pure zirconium by micro arc oxidation, J. Alloys. Compd. 695 (2017) 998.
[78] H.-P. Teng, C.-J. Yang, J.-F. Lin, Y.-H. Huang, F.-H. Lu, A simple method to functionalize the surface of plasma electrolytic oxidation produced TiO2 Coatings for growing hydroxyapatite, Electrochim. Acta 193 (2016) 216.
[79] V. Thavasi, V. Renugopalakrishnan, R. Jose, S. Ramakrishna, Controlled electron injection and transport at materials interfaces in dye sensitized solar cells, Mater. Sci. Eng. R. Rep. 63 (2009) 81.
[80] K.E. Lee, M.A. Gomez, S. Elouatik, G.P. Demopoulos, Further understanding of the adsorption mechanism of N719 sensitizer on anatase TiO2 films for DSSC applications using vibrational spectroscopy and confocal raman imaging, Langmuir 26 (2010) 9575.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top