(3.238.7.202) 您好!臺灣時間:2021/03/04 21:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:趙宇翔
研究生(外文):Yu-Hsiang Chao
論文名稱:抗百滅寧與抗安丹埃及斑蚊的比較轉錄體分析
論文名稱(外文):Comparative transcriptome analysis of permethrin-resistant and propoxur-resistant Aedes aegypti
指導教授:戴淑美
口試委員:許如君謝立青
口試日期:2017-07-21
學位類別:碩士
校院名稱:國立中興大學
系所名稱:昆蟲學系所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:72
中文關鍵詞:埃及斑蚊抗藥性合成除蟲菊比較轉錄體分析
外文關鍵詞:Aedes aegyptiresistancepyrethroidcomparative transcriptome analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:114
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
埃及斑蚊 (Aedes aegypti)為傳播重要蚊媒病毒感染症 (Mosquito-borne viral infection)登革熱 (dengue fever)與茲卡病毒感染症 (zika virus infection)的主要媒介,目前仍缺乏有效的登革熱及茲卡病毒感染症疫苗與處方藥劑,因此病媒蚊數量控制仍為防治疫情擴散的主要方式。目前埃及斑蚊的防治仍舊以化學藥劑防治為主,而持續的施用化學藥劑防治極易促使埃及斑蚊產生抗藥性,甚至於交互抗性,使原本數量極其有限的防治藥劑更顯侷促。因此本研究的首要目的是以抗百滅寧 (permethrin)的Per-R及抗安丹 (propoxur)的Prop-R品系埃及斑蚊為例子,探究此二品系埃及斑蚊是否對防治埃及斑蚊常用的藥劑產生交互抗性;其次利用次世代定序 (next generation sequencing)與比較轉錄體分析 (comparative transcriptome analysis),更全面的了解埃及斑蚊的抗藥性機制,以利抗藥性抑制劑的研究。
從抗百滅寧Per-R與抗安丹Prop-R品系埃及斑蚊的幼蟲及成蟲藥劑試驗得知:(1) Per-R品系幼蟲對合成除蟲菊酯類藥劑的抗藥性皆高於800倍,但是對於安丹、陶斯松與撲滅松等乙醯膽鹼酯酶抑制劑的抗藥性則低於10倍。(2) Per-R品系雌成蟲對合成除蟲菊酯類藥劑的抗擊昏倍率較幼蟲抗藥性低,介於2.9-32倍,對安丹卻只有3.2倍的抗擊昏倍率。(3) 源自於Per-R的Prop-R品系,經過安丹約30代的篩選,雖然幼蟲只對安丹產生6.8倍的抗藥性,雌成蟲也只對安丹產生6.6倍的抗擊昏能力,但是對合成除蟲菊酯類的藥劑仍保留一定程度的幼蟲抗藥性 (21-242倍)與雌成蟲抗擊昏能力(2-27倍)。簡言之,以百滅寧篩選的Per-R品系幼蟲對其他合成除蟲菊有極高的交互抗性 (cross resistance),對於安丹等乙醯膽鹼酯酶抑制劑的交互抗性卻很有限,但是雌成蟲對其他合成除蟲菊與安丹卻有不同程度的交互抗性,其中對賽扶寧的交互抗擊昏作用最低。另外,Per-R幼蟲抗藥程度遠高於雌成蟲的抗擊昏能力意味著,除了作用部位不敏感之外,尚有其他抗藥性機制參與其中。從NS感性品系與Per-R、Prop-R抗性品系的比較轉錄體分析 (comparative transcriptome analysis) 發現多個可能與表皮穿透能力降低、生物轉化 (biotransformation)作用增強、排泄能力增強相關的基因參與其中,例如:表皮蛋白 (cuticular protein)、細胞色素P450 (cytochrome P450, CYP)、穀胱甘肽轉移酶 (glutathione S-transferase)、酯酶 (esterase)、葡萄糖醛酸轉移酶 (UDP-glucuronosyltransferase)、ABC運輸蛋白 (ATP-binding cassette transporter)與溶質載體 (solute carrier)等基因。在這些基因產物中,表皮蛋白在Per-R與Prop-R品系埃及斑蚊幼蟲的表現量高低呈現相反趨勢,在Per-R及Prop-R品系幼蟲與雌成蟲發現過量表現的CYP多屬CYP6及CYP9。雖然大量溶質載體可能參與Per-R與Prop-R埃及斑蚊對百滅寧或安丹的抗藥性,但相關角色功能於昆蟲尚不清楚。
Aedes aegypti is the main vector that transmits the viruses for dengue fever and zika virus infection. Since there is no effective vaccine and prescription for dengue virus and zika virus, the management of vector population is still the primary way to prevent the epidemic of dengue fever and zika fever, and chemical control is the most efficient and frequent used method for vector control. However, long-term and frequent use of chemical control has speeded up the evolution of insecticide resistance and cross-resistance, which will impact the efficacy of vector management. The purpose of this study is using permethrin-resistant (Per-R) and propoxur-resistant (Prop-R) of A. aegypti as examples to study the cross-resistance of Per-R and Prop-R A. aegypti to insecticides used frequently for vector control and comparative transcriptome analysis using next generation sequence to understand more about the permethrin-resistant and propoxur-resistant mechanisms in A. aegypti.
According to the bioassay of Per-R and Prop-R larval and adult A. aegypti, three main results were observed. (1) The resistant ratios of Per-R larvae to pyrethroids were higher than 800-fold, but lower than 10-fold to propoxur, chlorpyrifos and fenitrothion. (2) The knockdown-resistant ratios of Per-R adult female to pyrethroids were much lower, 2.9-32 fold, than resistance ratios of larvae, but there was 3.2-fold knockdown resistance to propoxur. (3) Prop-R strain, which was derived from Per-R strain and has been selected by propoxur for about 30 generations, developed, only 6.8-fold resistance in larvae while 6.6-fold knockdown resistance in adult female to propoxur. Furthermore, Prop-R strain still retained certain pyrethroid resistance in larvae (21-242 fold) and knockdown resistance in adult female (2-27 fold). In briefly, Per-R larvae have highly cross-resistance to other pyrethroids and limited cross-resistance to acetylcholinesterase inhibitors, e.g. propoxur. However, adult female have different levels of cross-resistance to other pyrethroids and propoxur, with the lowest cross-resistance to cyfluthrin. The fact that resistance ratios of Per-R larvae to various pyrethroids were much higher than knockdown-resistant ratios of adult female indicates there are other mechanisms involved in permethrin resistance in addition to target site insensitivity. Based on the comparative transcriptome analysis of NS, Per-R and Prop-R A. aegypti, a number of genes were found to be associated with decrease of cuticle penetration, increase of biotransformation and excretion, such as cuticular protein, cytochrome P450 (CYP), glutathione S-transferase, UDP-glucuronosyltransferase, esterase, ATP-binding cassette transporter and solute carrier. The expression of cuticular protein gene in larvae of Per-R and Prop-R A. aegypti showed the opposite trend. In addition, the over expressed CYPs found in the Per-R and Prop-R larvae and adult female are mostly CYP6 and CYP9. Although solute carrier genes found in Per-R and Prop-R may be involved in the resistance of permethrin and propoxur, their roles in insect are not clear.
目次

中文摘要 i
英文摘要 ii
目次 iv
表目次 vii
圖目次 viii
附錄目次 ix
壹、 前言 1
貳、 前人研究 3
一、 埃及斑蚊 3
二、 埃及斑蚊傳播的主要疾病介紹 4
(一) 登革熱 4
1. 登革病毒 4
2. 登革病毒的複製與感染方式 4
3. 登革熱臨床症狀與指標轉變 4
4. 登革熱的疫情變化 6
5. 登革病毒的預防與治療發展現況 6
(二) 茲卡病毒感染症 8
1. 茲卡病毒 8
2. 茲卡感染症的臨床症狀 8
3. 茲卡病毒感染症疫情變化 8
4. 茲卡病毒的預防與治療發展現況 9
三、 埃及斑蚊防治手段 10
(一) 物理防治 10
(二) 生物性防治 10
(三) 生物轉殖技術防治 11
(四) 化學防治 12
四、抗藥性 13
五、抗藥性機制 14
(一) 表皮的阻隔 14
(二) 生物轉化作用與排泄作用 15
(三) 作用部位不敏感 16
六、轉錄體分析 16
參、 材料與方法 18
一、 供試埃及斑蚊品系簡介 18
二、 埃及斑蚊飼養 18
三、 使用藥劑 18
四、 藥膜製備 19
五、 藥劑試驗 19
(一) 埃及斑蚊幼蟲基礎感受性試驗 19
(二) 埃及斑蚊成蟲擊暈試驗 19
六、 抗性品系篩選 20
七、 總量RNA萃取 20
八、 RNA濃度測定 21
九、 DNase處理及RNA保存 21
十、轉錄組De novo分析 21
(一) RNA定序 21
(二) 定序數據篩選 22
(三) De novo組裝 22
(四) 功能註釋 23
(五) Unigene的編碼序列預测 23
(六) Unigene表現量計算 23
(七) 差異表達基因檢測 24
肆、 結果 25
一、 埃及斑蚊抗藥性品系篩選 25
二、 Per-R與Prop-R品系幼蟲對常用防治藥劑的交互抗性測試 25
三、 Per-R與Prop-R品系成蟲對常用防治藥劑的交互抗擊昏測試 25
四、 次世代定序資料分析 26
(一) 差異表達基因檢測 26
(二) Nt與KEGG代謝途徑(pathway)的比對註釋分析 27
伍、 討論 28
一、 Per-R與Prop-R對常用防治藥劑的感受性 28
二、 抗藥性基因的DEG數目與表現量分析 29
三、 次世代定序技術對昆蟲抗藥性帶來的突破 32
陸、 結論 33
柒、 引用文獻 34
圖表 45
附錄 69

表目次

表一、抗藥性篩選與感受性試驗的使用藥劑 45
表二、雌成蟲抗擊昏試驗所使用的藥劑種類與藥膜濃度 46
表三、抗百滅寧Per-R品系的篩選過程與抗藥性變化情形 47
表四、抗安丹Prop-R品系的篩選過程與抗藥性變化情形 48
表五、感性NS品系埃及斑蚊幼蟲對各種除蟲菊殺蟲劑與乙醯膽鹼抑制劑的感受性基礎資料 49
表六、抗性Per-R品系埃及斑蚊幼蟲對各種除蟲菊殺蟲劑與乙醯膽鹼抑制劑的感受性基礎資料 50
表七、抗性Prop-R品系埃及斑蚊幼蟲對各種除蟲菊殺蟲劑與乙醯膽鹼抑制劑的感受性基礎資料 51
表八、感性NS品系埃及斑蚊成蟲對各種除蟲菊殺蟲劑與安丹的感受性基礎資料 52
表九、抗性Per-R品系埃及斑蚊成蟲對各種除蟲菊殺蟲劑與安丹的感受性基礎資料 53
表十、抗性Prop-R品系埃及斑蚊成蟲對各種除蟲菊殺蟲劑與安丹的感受性基礎資料 54
表十一、埃及斑蚊雌成蟲轉錄體基因庫功能註釋摘要 55
表十二、埃及斑蚊雌成蟲轉錄體基因庫功能註釋摘要 56

圖目次

圖一、Per-R抗百滅寧與Prop-R抗安丹埃及斑蚊幼蟲對九種常用防治藥劑的抗藥性比 57
圖二、Per-R抗百滅寧與Prop-R抗安丹埃及斑蚊雌成蟲對七種常用防治藥劑的抗擊昏比 58
圖三、抗百滅寧Per-R、抗安丹Prop-R與感性NS埃及斑蚊幼蟲表現量有差異的基因數量 59
圖四、抗百滅寧Per-R、抗安丹Prop-R與感性NS埃及斑蚊雌成蟲表現量有差異的基因數量 60
圖五、抗百滅寧Per-R與感性NS埃及斑蚊幼蟲表現量有差異的基因依KEGG代謝途徑分類 61
圖六、抗安丹Prop-R與感性NS埃及斑蚊幼蟲表現量有差異的基因依KEGG代謝途徑分類 62
圖七、抗百滅寧Per-R與抗安丹Prop-R埃及斑蚊幼蟲表現量有差異的基因依KEGG代謝途徑分類 63
圖八、抗百滅寧Per-R與感性NS埃及斑蚊雌成蟲表現量有差異的基因依KEGG代謝途徑分類 64
圖九、抗安丹Prop-R與感性NS埃及斑蚊雌成蟲表現量有差異的基因依KEGG代謝途徑分類 65
圖十、抗百滅寧Per-R與抗安丹Prop-R埃及斑蚊雌成蟲表現量有差異的基因依KEGG代謝途徑分類 66
圖十一、與百滅寧及安丹抗藥性相關且表現量具有顯著性差異的埃及斑蚊幼蟲基因數量 67
圖十二、與百滅寧及安丹抗藥性相關且表現量具有顯著性差異的埃及斑蚊雌成蟲基因數量 68

附錄目次

附錄一、Per-R品系F35至F42篩選結果 69
附錄二、Bora、NS及Per-R品系埃及斑蚊的Aa-para突變基因頻度 70
附錄三、轉錄組分析簡要流程示意圖 71
附錄四、Unigene組裝示意圖 72
王尊。2015。類補體蛋白TEP1對埃及斑蚊生殖調控之決定性影響。國立臺灣大學微生物學研究所碩士論文。http://handle.ncl.edu.tw/11296/ndltd/74616085067964343533
沈文凱。2008。南台灣埃及斑蚊對合成除蟲菊殺蟲劑抗藥性之研究。國立中興大學昆蟲學系碩士論文。9頁。
吳懷慧、林鶯熹、白秀華、徐爾烈、張念台、羅怡珮。2014。台灣南部地區埃及斑蚊成蟲對殺蟲劑的抗藥性。台灣昆蟲33: 253-270頁。doi: 10.6661/TESFE.2013018
科技部。2016。登革熱的台灣經驗:從流行病學及臨床到基礎科學的新視野:科技部台灣重要新興感染症研究計畫成果報告。ISBN 978-986-04-8675-9。https://www.most.gov.tw/most/attachments/543a1f3a-ba7e-494b-939d-f4d337984159
張秉鈞。2009。埃及斑蚊對百滅寧及芬化利遺傳抗藥性之研究。國立中興大學昆蟲學系碩士論文。5頁;12頁。
衛生福利部疾病管制署。2016。登革熱病例管理流程圖。https://www.syndriver.com/portal/sharing/70a261f3dfff4affa2cee22cfcc920c2
衛生福利部疾病管制署。2017a。登革熱。
http://www.cdc.gov.tw/home/Dengue
衛生福利部疾病管制署。2017b。茲卡病毒感染症。http://www.cdc.gov.tw/home/Zika_virus
衛生福利部疾病管制署。2017c。傳染病統計資料查詢系統。https://nidss.cdc.gov.tw/ch/SingleDisease.aspx?dc=1&dt=2&disease=061
謝再添。2004。殺蟲劑化學分類及其特性。農藥及植物保護知能研習會。行政院農委會藥毒所。2-12頁。
Aïkpon R, Sezonlin M, Osse R, Akogbeto M. 2014. Evidence of multiple mechanisms providing carbamate and organophosphate resistance in field An. gambiae population from Atacora in Benin. Parasites & Vectors. 7:568. doi: 10.1186/s13071-014-0568-5.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. Journal of molecular biology. 215(3):403-10. doi: 10.1016/s0022-2836(05)80360-2.
Aravindan V, Muthukumaravel S, Gunasekaran K. 2014. Interaction affinity of Delta and Epsilon class glutathione-s-transferases (GSTs) to bind with DDT for detoxification and conferring resistance in Anopheles gambiae, a malaria vector. Journal of vector borne diseases. 51(1):8-15.
APRD. 2017. Arthropod Pesticide Resistance Database. East Lancing: Michigan State Univ. https://www.pesticideresistance.org/display.php?page=species&arId=7.
Audic S, Claverie JM. 1997. The significance of digital gene expression profiles. Genome research. 7(10):986-95.
Ayres C, Müller P, Dyer N, Wilding C, Rigden D, Donnelly M. 2011. Comparative Genomics of the Anopheline Glutathione S-Transferase Epsilon Cluster. PLoS One. 6(12). doi: 10.1371/journal.pone.0029237.
Bellinato DF, Viana-Medeiros PF, Araujo SC, Martins AJ, Lima JB, Valle D. 2016. Resistance Status to the Insecticides Temephos, Deltamethrin, and Diflubenzuron in Brazilian Aedes aegypti Populations. BioMed research international. 2016:8603263. doi: 10.1155/2016/8603263.
Bariami V, Jones CM, Poupardin R, Vontas J, Ranson H. 2012. Gene Amplification, ABC Transporters and Cytochrome P450s: Unraveling the Molecular Basis of Pyrethroid Resistance in the Dengue Vector, Aedes aegypti. PLoS neglected tropical diseases. 6(6). doi: 10.1371/journal.pntd.0001692.
Ben-Dov E. 2014. Bacillus thuringiensis subsp. israelensis and its dipteran-specific toxins. Toxins. 6(4):1222-43. doi: 10.3390/toxins6041222.
Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. 2013. The global distribution and burden of dengue. Nature. 496(7446):504-7. doi: 10.1038/nature12060.
Bollati M, Alvarez K, Assenberg R, Baronti C, Canard B, Cook S, et al. 2010. Structure and functionality in flavivirus NS-proteins: perspectives for drug design. Antiviral research. 87(2):125-48. doi: 10.1016/j.antiviral.2009.11.009.
Bravo A, Gill SS, Soberon M. 2007. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon : official journal of the International Society on Toxinology. 49(4):423-35. doi: 10.1016/j.toxicon.2006.11.022.
Brengues C, Hawkes NJ, Chandre F, McCarroll L, Duchon S, Guillet P, et al. 2003. Pyrethroid and DDT cross-resistance in Aedes aegypti is correlated with novel mutations in the voltage-gated sodium channel gene. Medical and veterinary entomology. 17(1):87-94.
Byrd CM, Dai D, Grosenbach DW, Berhanu A, Jones KF, Cardwell KB, et al. 2013. A novel inhibitor of dengue virus replication that targets the capsid protein. Antimicrobial agents and chemotherapy. 57(1):15-25. doi: 10.1128/aac.01429-12.
Calisher CH, Karabatsos N, Dalrymple JM, Shope RE, Porterfield JS, Westaway EG, et al. 1989. Antigenic relationships between flaviviruses as determined by cross-neutralization tests with polyclonal antisera. The Journal of general virology. 70 ( Pt 1):37-43. doi: 10.1099/0022-1317-70-1-37.
Carpenter SJ, LaCasse WJ. 1955. Mosquitoes of North America (North of Mexico). University of California Press, Berkeley, CA. 360 pp.
Castillo Ramirez JA, Urcuqui-Inchima S. 2015. Dengue Virus Control of Type I IFN Responses: A History of Manipulation and Control. Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research. 35(6):421-30. doi: 10.1089/jir.2014.0129.
CDC. Mosquito Life cycle. 2016. https://www.cdc.gov/dengue/resources/factSheets/MosquitoLifecycleFINAL.pdf
Chandor-Proust A, Bibby J, Regent-Kloeckner M, Roux J, Guittard-Crilat E, Poupardin R, et al. 2013. The central role of mosquito cytochrome P450 CYP6Zs in insecticide detoxification revealed by functional expression and structural modelling. The Biochemical journal. 455(1):75-85. doi: 10.1042/bj20130577.
Chareonviriyaphap T, Bangs MJ, Suwonkerd W, Kongmee M, Corbel V, Ngoen-Klan R. 2013. Review of insecticide resistance and behavioral avoidance of vectors of human diseases in Thailand. Parasites & Vectors. 6:280. doi: 10.1186/1756-3305-6-280.
Chen ZS, Tiwari AK. 2011. Multidrug Resistance Proteins (MRPs/ABCCs) in Cancer Chemotherapy and Genetic Diseases. The FEBS journal. 278(18):3226-45. doi: 10.1111/j.1742-4658.2011.08235.x.
Chi H. 1997. Computer program for probit analysis. National Chung Hsing University, Taichung, Taiwan.
Chu Y, Corey DR. 2012. RNA Sequencing: Platform Selection, Experimental Design, and Data Interpretation. Nucleic Acid Therapeutics. 22(4):271-4. doi: 10.1089/nat.2012.0367.
Coats JR. 1990. Mechanisms of toxic action and structure-activity relationships for organochlorine and synthetic pyrethroid insecticides. Environmental health perspectives. 87:255-62.
Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics (Oxford, England). 21(18):3674-6. doi: 10.1093/bioinformatics/bti610.
Cox BD, Stanton RA, Schinazi RF. 2015. Predicting Zika virus structural biology: Challenges and opportunities for intervention. Antiviral chemistry & chemotherapy. 24(3-4):118-26. doi: 10.1177/2040206616653873.
David JP, Ismail HM, Chandor-Proust A, Paine MJ. 2013. Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on Earth. Philosophical transactions of the Royal Society of London Series B, Biological sciences. 368(1612):20120429. doi: 10.1098/rstb.2012.0429.
David JP, Faucon F, Chandor-Proust A, Poupardin R, Riaz MA, Bonin A, et al. 2014. Comparative analysis of response to selection with three insecticides in the dengue mosquito Aedes aegypti using mRNA sequencing. BMC genomics. 15:174. doi: 10.1186/1471-2164-15-174.
de Hoon MJ, Imoto S, Nolan J, Miyano S. 2004. Open source clustering software. Bioinformatics (Oxford, England). 20(9):1453-4. doi: 10.1093/bioinformatics/bth078.
Deist BR, Rausch MA, Fernandez-Luna MT, Adang MJ, Bonning BC. 2014. Bt toxin modification for enhanced efficacy. Toxins. 6(10):3005-27. doi: 10.3390/toxins6103005.
Despre´s L, Stalinski R, Faucon F, Navratil V, Viari A, Paris M, et al. 2014. Chemical and biological insecticides select distinct gene expression patterns in Aedes aegypti mosquito. Biology letters. 10(12):20140716. doi: 10.1098/rsbl.2014.0716.
Diamond MS, Roberts TG, Edgil D, Lu B, Ernst J, Harris E. 2000. Modulation of Dengue virus infection in human cells by alpha, beta, and gamma interferons. Journal of virology. 74(11):4957-66.
Döring B, Petzinger E. 2014. Phase 0 and phase III transport in various organs: combined concept of phases in xenobiotic transport and metabolism. Drug metabolism reviews. 46(3):261-82. doi: 10.3109/03602532.2014.882353.
Enfissi A, Codrington J, Roosblad J, Kazanji M, Rousset D. 2016. Zika virus genome from the Americas. Lancet (London, England). 387(10015):227-8. doi: 10.1016/s0140-6736(16)00003-9.
Epis S, Porretta D, Mastrantonio V, Comandatore F, Sassera D, Rossi P, et al. 2014. ABC transporters are involved in defense against permethrin insecticide in the malaria vector Anopheles stephensi. Parasites & vectors. 7:349. doi: 10.1186/1756-3305-7-349.
Faita F, Vecoli C, Foffa I, Andreassi MG. 2012. Next generation sequencing in cardiovascular diseases. World Journal of Cardiology. 4(10):288-95. doi: 10.4330/wjc.v4.i10.288.
Fang F, Wang W, Zhang D, LV Y, Zhou D, Ma L, et al. 2015. The cuticle proteins: a putative role for deltamethrin resistance in Culex pipiens pallens. Parasitology research. 114(12):4421-9. doi: 10.1007/s00436-015-4683-9.
Fang S, Wang L, Guo W, Zhang X, Peng D, Luo C, et al. 2009. Bacillus thuringiensis bel protein enhances the toxicity of Cry1Ac protein to Helicoverpa armigera larvae by degrading insect intestinal mucin. Applied and environmental microbiology. 75(16):5237-43. doi: 10.1128/aem.00532-09.
Faucon F, Dusfour I, Gaude T, Navratil V, Boyer F, Chandre F, et al. 2015. Identifying genomic changes associated with insecticide resistance in the dengue mosquito Aedes aegypti by deep targeted sequencing. Genome research. 25(9):1347-59. doi: 10.1101/gr.189225.115.
Faucon F, Gaude T, Dusfour I, Navratil V, Corbel V, Juntarajumnong W, et al. 2017. In the hunt for genomic markers of metabolic resistance to pyrethroids in the mosquito Aedes aegypti: An integrated next-generation sequencing approach. PLoS neglected tropical diseases. 11(4). doi: 10.1371/journal.pntd.0005526.
Fernandez E, Diamond MS. 2017. Vaccination strategies against Zika virus. Current opinion in virology. 23:59-67. doi: 10.1016/j.coviro.2017.03.006.
Finney DJ. 1971. Probit analysis. Cambridge University Press, Cambridge, UK, London. 333pp.
Fu G, Lees RS, Nimmo D, Aw D, Jin L, Gray P, et al. 2010. Female-specific flightless phenotype for mosquito control. Proceedings of the National Academy of Sciences of the United States of America. 107(10):4550-4. doi: 10.1073/pnas.1000251107.
Georghiou GP, Wirth M, Tran H, Saume F, Knudsen AB. 1987. Potential for organophosphate resistance in Aedes aegypti (Diptera: Culicidae) in the Caribbean area and neighboring countries. Journal of medical entomology. 24(3):290-4.
Gibbons RV, Vaughn DW. 2002. Dengue: an escalating problem. BMJ (Clinical research ed). 324(7353):1563-6.
Gould EA, Solomon T. 2008. Pathogenic flaviviruses. Lancet (London, England). 371(9611):500-9. doi: 10.1016/s0140-6736(08)60238-x.
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature biotechnology. 29(7):644-52. doi: 10.1038/nbt.1883.
Grigoraki L, Lagnel J, Kioulos I, Kampouraki A, Morou E, Labbe P, et al. 2015. Transcriptome Profiling and Genetic Study Reveal Amplified Carboxylesterase Genes Implicated in Temephos Resistance, in the Asian Tiger Mosquito Aedes albopictus. PLoS neglected tropical diseases. 9(5):e0003771. doi: 10.1371/journal.pntd.0003771.
Gubler DJ. 1998. Dengue and dengue hemorrhagic fever. Clinical microbiology reviews. 11(3):480-96.
Gubler DJ. Dengue viruses. In: Mahy BWJ, Van Regenmortel MHV. Desk Encyclopedia of Human and Medical Virology. Boston: Academic Press. 2010; pp. 372–82. ISBN 0-12-375147-0.
Guzman MG, Halstead SB, Artsob H, Buchy P, Farrar J, Gubler DJ, et al. 2010. Dengue: a continuing global threat. Nature reviews Microbiology. 8(12 Suppl):S7-16. doi: 10.1038/nrmicro2460.
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature protocols. 8(8):1494-512. doi: 10.1038/nprot.2013.084.
Han Y, Gao S, Muegge K, Zhang W, Zhou B. 2015. Advanced Applications of RNA Sequencing and Challenges. Bioinformatics and Biology Insights. 9(Suppl 1):29-46. doi: 10.4137/bbi.s28991.
Harris E, Holden KL, Edgil D, Polacek C, Clyde K. 2006. Molecular biology of flaviviruses. Novartis Foundation symposium. 277:23-39; discussion 40, 71-3, 251-3.
Ilias A, Lagnel J, Kapantaidaki DE, Roditakis E, Tsigenopoulos CS, Vontas J, et al. 2015. Transcription analysis of neonicotinoid resistance in Mediterranean (MED) populations of B. tabaci reveal novel cytochrome P450s, but no nAChR mutations associated with the phenotype. BMC genomics. 16. doi: 10.1186/s12864-015-2161-5.
IRAC. The IRAC Mode of Action Classification. 2017. http://www.irac-online.org/documents/moa-classification/?ext=pdf.
Iseli C, Jongeneel CV, Bucher P. 1999. ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proceedings International Conference on Intelligent Systems for Molecular Biology.138-48.
Ishak IH, Riveron JM, Ibrahim SS, Stott R, Longbottom J, Irving H, et al. 2016. The Cytochrome P450 gene CYP6P12 confers pyrethroid resistance in kdr-free Malaysian populations of the dengue vector Aedes albopictus. Scientific reports. 6:24707. doi: 10.1038/srep24707.
Ishikawa T. 1992. The ATP-dependent glutathione S-conjugate export pump. Trends in biochemical sciences. 17(11):463-8.
Kamps R, Brandão RD, van den Bosch BJ, Paulussen ADC, Xanthoulea S, Blok MJ, et al. 2017. Next-Generation Sequencing in Oncology: Genetic Diagnosis, Risk Prediction and Cancer Classification. International Journal of Molecular Sciences. 18(2). doi: 10.3390/ijms18020308.
Kasai S, Komagata O, Itokawa K, Shono T, Ng LC, Kobayashi M, et al. 2014. Mechanisms of pyrethroid resistance in the dengue mosquito vector, Aedes aegypti: target site insensitivity, penetration, and metabolism. PLoS neglected tropical diseases. 8(6):e2948. doi: 10.1371/journal.pntd.0002948.
Kawada H, Oo SZ, Thaung S, Kawashima E, Maung YN, Thu HM, et al. 2014. Co-occurrence of point mutations in the voltage-gated sodium channel of pyrethroid-resistant Aedes aegypti populations in Myanmar. PLoS neglected tropical diseases. 8(7):e3032. doi: 10.1371/journal.pntd.0003032.
Kraemer MU, Sinka ME, Duda KA, Mylne AQ, Shearer FM, Barker CM, et al. 2015. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife. 4:e08347. doi: 10.7554/eLife.08347.
Lee HL, Rohani A. 2005. Transovarial transmission of dengue virus in Aedes aegypti and Aedes albopictus in relation to dengue outbreak in an urban area in Malaysia. Dengue Bulletin. 29:106.
Li B, Dewey CN. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC bioinformatics. 12:323. doi: 10.1186/1471-2105-12-323.
Lilly DG, Latham SL, Webb CE, Doggett SL. 2016. Cuticle Thickening in a Pyrethroid-Resistant Strain of the Common Bed Bug, Cimex lectularius L. (Hemiptera: Cimicidae). PLOS ONE. 11(4):e0153302. doi: 10.1371/journal.pone.0153302.
Lima EP, Goulart MO, Rolim Neto ML. 2014. Evaluation of the role of ATP-binding cassette transporters as a defence mechanism against temephos in populations of Aedes aegypti. Memorias do Instituto Oswaldo Cruz. 109(7):964-6.
Lin Y, Jin T, Zeng L, Lu Y. 2012. Cuticular penetration of β-cypermethrin in insecticide-susceptible and resistant strains of Bactrocera dorsalis. Pestic. Biochem. Physiol. 103 (3), 189–193.
Liu N. 2015. Insecticide resistance in mosquitoes: impact, mechanisms, and research directions. Annual review of entomology. 60:537-59. doi: 10.1146/annurev-ento-010814-020828.
López -Diaz JA, Canton PE, Gill SS, Soberon M, Bravo A. 2013. Oligomerization is a key step in Cyt1Aa membrane insertion and toxicity but not necessary to synergize Cry11Aa toxicity in Aedes aegypti larvae. Environmental microbiology. 15(11):3030-9. doi: 10.1111/1462-2920.12263.
Lumjuan N, Rajatileka S, Changsom D, Wicheer J, Leelapat P, Prapanthadara LA, et al. 2011. The role of the Aedes aegypti Epsilon glutathione transferases in conferring resistance to DDT and pyrethroid insecticides. Insect biochemistry and molecular biology. 41(3):203-9. doi: 10.1016/j.ibmb.2010.12.005.
Mlakar J, Korva M, Tul N, Popovic M, Poljsak-Prijatelj M, Mraz J, et al. 2016. Zika Virus Associated with Microcephaly. The New England journal of medicine. 374(10):951-8. doi: 10.1056/NEJMoa1600651.
Müller P, Donnelly MJ, Ranson H. 2007. Transcription profiling of a recently colonised pyrethroid resistant Anopheles gambiae strain from Ghana. BMC genomics. 8:36. doi: 10.1186/1471-2164-8-36.
Mustafa MS, Rastogi V, Gupta RK, Jain S, Singh PM, Gupta A. 2016. Wolbachia: The selfish Trojan Horse in dengue control. Medical journal, Armed Forces India. 72(4):373-6. doi: 10.1016/j.mjafi.2015.07.002.
Normile D. 2013. Tropical medicine. Surprising new dengue virus throws a spanner in disease control efforts. Science (New York, NY). 342(6157):415. doi: 10.1126/science.342.6157.415.
Oppenheim SJ, Baker RH, Simon S, DeSalle R. 2015. We can''t all be supermodels: the value of comparative transcriptomics to the study of non-model insects. Insect molecular biology. 24(2):139-54. doi: 10.1111/imb.12154.
Palma-Ocampo HK, Flores-Alonso JC, Vallejo-Ruiz V, Reyes-Leyva J, Flores-Mendoza L, Herrera-Camacho I, et al. 2015. Interferon lambda inhibits dengue virus replication in epithelial cells. Virology journal. 12:150. doi: 10.1186/s12985-015-0383-4.
Poupardin R, Riaz MA, Jones CM, Chandor-Proust A, Reynaud S, David JP. 2012. Do pollutants affect insecticide-driven gene selection in mosquitoes? Experimental evidence from transcriptomics. Aquatic toxicology (Amsterdam, Netherlands). 114-115:49-57. doi: 10.1016/j.aquatox.2012.02.001.
Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, et al. 2005. InterProScan: protein domains identifier. Nucleic acids research. 33(Web Server issue):W116-20. doi: 10.1093/nar/gki442.
Ranjit S, Kissoon N. 2011. Dengue hemorrhagic fever and shock syndromes. Pediatric critical care medicine : a journal of the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies. 12(1):90-100. doi: 10.1097/PCC.0b013e3181e911a7.
Reid WR, Thornton A, Pridgeon JW, Becnel JJ, Tang F, Estep A, et al. 2014. Transcriptional analysis of four family 4 P450s in a Puerto Rico strain of Aedes aegypti (Diptera: Culicidae) compared with an Orlando strain and their possible functional roles in permethrin resistance. Journal of medical entomology. 51(3):605-15.
Riaz MA, Chandor-Proust A, Dauphin-Villemant C, Poupardin R, Jones CM, Strode C, et al. 2013. Molecular mechanisms associated with increased tolerance to the neonicotinoid insecticide imidacloprid in the dengue vector Aedes aegypti. Aquatic toxicology (Amsterdam, Netherlands). 126:326-37. doi: 10.1016/j.aquatox.2012.09.010.
Saavedra-Rodriguez K, Urdaneta-Marquez L, Rajatileka S, Moulton M, Flores AE, Fernandez-Salas I, et al. 2007. A mutation in the voltage-gated sodium channel gene associated with pyrethroid resistance in Latin American Aedes aegypti. Insect molecular biology. 16(6):785-98. doi: 10.1111/j.1365-2583.2007.00774.x.
Saavedra-Rodriguez K, Strode C, Flores AE, Garcia-Luna S, Reyes-Solis G, Ranson H, et al. 2014. Differential transcription profiles in Aedes aegypti detoxification genes after temephos selection. Insect molecular biology. 23(2):199-215. doi: 10.1111/imb.12073.
Sabin AB. 1952. Research on dengue during World War II. The American journal of tropical medicine and hygiene. 1(1):30-50.
Schaffner F, Mathis A. 2014. Dengue and dengue vectors in the WHO European region: past, present, and scenarios for the future. The Lancet Infectious diseases. 14(12):1271-80. doi: 10.1016/s1473-3099(14)70834-5.
Smith LB, Kasai S, Scott JG. 2016. Pyrethroid resistance in Aedes aegypti and Aedes albopictus: Important mosquito vectors of human diseases. Pesticide biochemistry and physiology. 133:1-12. doi: 10.1016/j.pestbp.2016.03.005.
Soderlund DM, Clark JM, Sheets LP, Mullin LS, Piccirillo VJ, Sargent D, et al. 2002. Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment. Toxicology. 171(1):3-59.
Srisawat R, Komalamisra N, Apiwathnasorn C, Paeporn P, Roytrakul S, Rongsriyam Y, et al. 2012. Field-collected permethrin-resistant Aedes aegypti from central Thailand contain point mutations in the domain IIS6 of the sodium channel gene (KDR). The Southeast Asian journal of tropical medicine and public health. 43(6):1380-6.
Stramer SL, Hollinger FB, Katz LM, Kleinman S, Metzel PS, Gregory KR, et al. 2009. Emerging infectious disease agents and their potential threat to transfusion safety. Transfusion. 49 Suppl 2:1s-29s. doi: 10.1111/j.1537-2995.2009.02279.x.
Subramanya S, Kim SS, Abraham S, Yao J, Kumar M, Kumar P, et al. 2010. Targeted delivery of small interfering RNA to human dendritic cells to suppress dengue virus infection and associated proinflammatory cytokine production. Journal of virology. 84(5):2490-501. doi: 10.1128/jvi.02105-08.
Vale A, Lotti M. 2015. Organophosphorus and carbamate insecticide poisoning. Handbook of clinical neurology. 131:149-68. doi: 10.1016/b978-0-444-62627-1.00010-x.
Vannini L, Reed TW, Willis JH. 2014. Temporal and spatial expression of cuticular proteins of Anopheles gambiae implicated in insecticide resistance or differentiation of M/S incipient species. Parasites & Vectors. 7:24. doi: 10.1186/1756-3305-7-24.
Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McMeniman CJ, et al. 2011. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature. 476(7361):450-3. doi: 10.1038/nature10355.
WHO. 2005. Dengue, Dengue Haemorrhagic Fever and Dengue Shock Syndrome in the Context of the Integrated Management of Childhood Illness.
WHO. 2009. WHO Guidelines Approved by the Guidelines Review Committee. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition. World Health Organization.
WHO. 2017. Questions and Answers on Dengue Vaccines. http://www.who.int/immunization/research/development/dengue_q_and_a/en/.
Wikan N, Smith DR. 2016. Zika virus: history of a newly emerging arbovirus. The Lancet Infectious diseases. 16(7):e119-26. doi: 10.1016/s1473-3099(16)30010-x.
Wiwanitkit V. 2009. Unusual mode of transmission of dengue. Journal of infection in developing countries. 4(1):51-4.
Yacoub S, Wills B. 2014. Predicting outcome from dengue. BMC medicine. 12:147. doi: 10.1186/s12916-014-0147-9.
Yanola J, Somboon P, Walton C, Nachaiwieng W, Somwang P, Prapanthadara LA. 2011. High-throughput assays for detection of the F1534C mutation in the voltage-gated sodium channel gene in permethrin-resistant Aedes aegypti and the distribution of this mutation throughout Thailand. Tropical medicine & international health : TM & IH. 16(4):501-9. doi: 10.1111/j.1365-3156.2011.02725.x.
Yeap HL, Mee P, Walker T, Weeks AR, O''Neill SL, Johnson P, et al. 2011. Dynamics of the "popcorn" Wolbachia infection in outbred Aedes aegypti informs prospects for mosquito vector control. Genetics. 187(2):583-95. doi: 10.1534/genetics.110.122390.
Zalapa JE, Cuevas H, Zhu H, Steffan S, Senalik D, Zeldin E, et al. 2012. Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. American journal of botany. 99(2):193-208. doi: 10.3732/ajb.1100394.
Zanluca C, Melo VC, Mosimann AL, Santos GI, Santos CN, Luz K. 2015. First report of autochthonous transmission of Zika virus in Brazil. Memorias do Instituto Oswaldo Cruz. 110(4):569-72. doi: 10.1590/0074-0276015019
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔