跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2025/01/25 18:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許志豪
研究生(外文):Chih-Hao Hsu
論文名稱:使用化學浴法製備之硫化銅之氧化鋅/硫化銅奈米結構之研究
論文名稱(外文):A study of ZnO/CuS nanostructures using CBD-deposited CuS
指導教授:龔志榮
指導教授(外文):Jyh-Rong Gong
口試委員:許薰丰林泰源
口試委員(外文):Hsun-Feng HsuTai-Yuan Lin
口試日期:2017-07-19
學位類別:碩士
校院名稱:國立中興大學
系所名稱:物理學系所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:42
中文關鍵詞:化學浴氧化鋅硫化銅奈米結構
外文關鍵詞:CBDZnOCuSnanostructures
相關次數:
  • 被引用被引用:0
  • 點閱點閱:200
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文研究中,氧化鋅/硫化銅奈米結構分別採用原子層沉積法(ALD)及化學浴沉積法(CBD)製備而成。氧化鋅奈米柱ALD沈積使用二乙基鋅(DEZn)和氧化亞氮(N2O)前驅氣體將氧化鋅(ZnO)奈米柱沈積在c面藍寶石基板(c-plane sapphire)。硫化銅殼層結構則使用硫酸銅與硫代硫酸鈉溶液以CBD生長於氧化鋅奈米柱側壁。氧化鋅/硫化銅奈米結構之樣品分別採用高解像能穿透式電子顯微術(HRTEM),掃描式電子顯微術(SEM),X-射線繞射分析(XRD)分析其物理特性以及表面形貌。研究結果發現氧化鋅/硫化銅 核心/殼層結構可透過ALD-ZnO及CBD-CuS的沈積方式合成。
In this thesis, ZnO/CuS nanostructures were achieved by atomic-layer deposited (ALD) ZnO nanorods and chemical bath deposited(CBD) CuS shells. In this case, ZnO nanorods were deposited on a c-plane sapphire substrates by ALD, using diethylzinc (DEZn) and nitrous oxide (N2O) as precursors. CuS shells were then deposited on the side walls of ZnO nanorods by CBD using mixed copper sulfate and sodium thiosulfate solution. The physical properties and surface morphologies of ZnO /CuS nanostructures were investigated by high resolution transmission electron microscopy(HRTEM), scanning electron microscopy (SEM) and x-ray diffractometry (XRD). It was found that the ZnO/CuS core/shell structures had been successfully synthesis by the method of CBD
Table of contents
致謝辭...................................................i
中文摘要 ...............................................ii
Abstract ...............................................iii
Table of contents ......................................iv
List of tables .........................................v
List of figures.........................................vi
Chapter 1 Introduction .................................1
Chapter 2 backgrounds...................................3
§2-1 Introduction of nanomaterials......................3
§2-2Physical properties of ZnO..........................9
§2-3 Literature review of core/shell semiconductor structures..............................................12
§2-4 Motivation of this thesis...................................................14
Chapter 3 Experimental procedures and analytical tools..15
§3-1 Substrate cleaning.................................15
§3-2 Growth of ZnO nanostructures by ALD................16
§3-3 Deposition of CuS by CBD...........................20
3-3-1Chemicals for CBD................................20
3-3-2 Preparation of CBD solution for CuS growth......20
3-3-3 Experimental process of CuS film deposition..............................................20
3-3-4 Process of baking..................................................21
3-3-5 The annealing process of CBD-deposited CuS......22
§3-4Chatacterization tools..............................22
3-4-1 X-ray diffractometry.............................22
3-4-2Scanning electron microscopy (SEM)................23
3-4-3Transmission electron microscopy (TEM)............23
3-4-4TEM sample preparation............................23
Chapter 4 Results and discussion .......................27
§4-1Characterization of ZnO/CuS nanostructures .........27
§4-2 High-resolution TEM study of ZnO/CuS nanostructures..........................................30
Chapter 5 Conclusion and future works...................37
References..............................................38
List of tables
Table2-1The physical properties of ZnO.....................................................11
Table4-1A list of the chemical contents in the selected area of the ZnO/CuS nanostructure.......................34
List of figures
Figure 2-1 Zero-dimensional gold nanoparticles..........6
Figure 2-2 One-dimensional nanostructure: (a) ZnO nanobelt(b)ZnO nanorods.........................................7
Figure 2-3 Two-dimensional nanostructured tin oxide nanometer bowl .........................................7
Figure 2-4 (a) ZnO nanorods,(b)a schematic diagram of a ZnO nanorod film field effect transistor,and (c) a schematic diagram of a dye-sensitized solar cell using a ZnO nanorod array as a substrate....................................8
Fig2-5 ZnO structure....................................10
Fig2-6 A type-I & type-II energy band diagram...........13
Fig2-7 An example of a type II..........................13
Fig. 3-1 A schematic of the home-made ALD system in this study...................................................17
Fig. 3-2 A schematic diagram of graphite base and precursor injections..............................................18
Fig. 3-3 Temperature vs. time plot of the deposition process of ZnO/ZnS core-shell structure using double buffer-layer structure.........................................18
Fig. 3-4 A cross-sectional schematic of ZnO grown on (0001)-sapphire substrate.....................................19
Fig. 3-5 A photo of a D8 Discover SSS x-ray diffractometer..........................................24
Fig. 3-6 Schematic of the symmetric GID geometry........25
Fig.3-7 A photo of a JEOL JSM-6700F field –emission scanning electron ......................................25
Fig.3-8 A photo of a JEOL JEM-2010F field-emission high-resolution transmission electron microscope.............26
Fig.3-9 A schematic of TEM sample preparation process...26
Fig4-1 A SEM image of ZnO at low magnification nanostructures..........................................27
Fig4-2 A SEM image of ZnO nanostructures................28
Fig4-3 A SEM image of ZnO/CuS nanostructures............28
Fig4-4 A XRD plot of ZnO/CuS as-deposited by CBD........29
Fig 4-5 A XRD plot of ZnO/CuS annealed at 400oC for 30 min.....................................................29
Fig4-6 A HRTEM image of ZnO/CuS core-shell nanostructure...........................................31
Fig4-7 A TEM image of ZnO/CuS core-shell nanostructure with the thickness of CuS being~70 nm........................31
Fig.4-8 The (a) bright-field TEM image and (b)its selected area diffraction (SAD) pattern of the ZnO/CuS nanostructure...........................................32
Fig4.9 A selected area of the ZnO/CuS nanostructure for EDS analysis................................................33
Fig4-10 Energy-dispersive spectroscopy(EDS) data of the selected ZnO/CuS nanostructure..........................33
Fig4-11 A HRTEM image of the ZnO/CuS nanostructure .....34
Fig4-12 An enlargement of the HRTEM image showing the interplanar spacing of (002)ZnO being 0.26 nm...........35
Fig4-13 An enlargement of the HRTEM image showing the interplanar spacing of (103)CuS being 0.28nm............36
[1] Jianwei Miao, Hong Bin Yang, Si Yun Khoo and Bin Liu, Nanoscale, 22 (2013) 352.
[2] Chen M. , Tang Y. , Li B, Luo L. , Nanoscience Nanotechnology, 8 (2009) 1505.
[3] Guorui Yang, Wei Yan, Qian Zhang, Shaohua Shen and Shujiang Ding, Nanoscale, 24 (2013) 11983.
[4] Shawn M. Willis, Cheng Cheng, Hazel E. Assender and Andrew A. R. Watt, Nano Letters, 12 (2012) 1522.
[5] Dasom Park, Havid Aqoma, Ilhwan Ryu, Sanggyu Yim and Sung-Yeon Jang, IEEE Journal of Selected Topics in Quantum Electronics, 22 (2016) 352.
[6] R. Vogel, P. Hoyer, H. Weller, Phys. Chem.,12 (1994) 3183.
[7] Khaselev, O. and Turner J, Science, 28 (1998) 425.
[8] DekaS, GenoveseA, ZhangY, MisztaK, BertoniG, Krahne R, Giannini C and Manna L, Journal of the American Chemical Society
, 26 (2010) 132.
[9] Yue Wu, Cyrus Wadia , Wanli Ma, Bryce Sadtler and A. Paul Alivisatos, Nano Letters, 8 (2008) 2551.
[10] Buzea, Cristina, Pacheco, Ivan Robbie and Kevin, Biointerphases, 2 (2007) 1116.
[11] Y. Qiao, H. Chen, Y. Lin, and J. Huang, Langmuir, 27 (2011) 11090.
[12] Z. L. Wang, Materials Science and Engineering: R: Reports, 64 (2009) 33.
[13] Z. L. Wang, Advanced Materials, 15 (2007) 7.
[14] K. Kimoto and I. Nishida. Japanese Journal of Applied Physics, 22 (1967) 940.
[15] H. Wang, S. Baek, J. Song, J. Lee and S. Lim, Nanotechnology, 19 (2008) 756.
[16] SUMIO IIJIMA, Nature, 354 (1991) 56.
[17] J. G. Lu, P. Chang and Z. Fan, Materials Science and Engineering: R: Reports, 52 (2006) 49.
[18] S. Barth, F. H. Ramirez, J. D. Holmes, and A. R. Rodriguez, Progress in Materials Science, 55 (2010) 563.
[19] K. J. Choi and H. W. Jang, Sensors, 10 (2010)
4083.
[20] B. Sun, and H. Sirringhaus, Nano Letters, 5 (2005) 2408.
[21] M. Law, L. E. Greene, J. C. Johnson, R. Saykally and P. Yang, Nature Materials, 4 (2005) 455.
[22] Baldassare Di Bartolo and Clyfe Beckwith, “Optical Properties of Excited States in Solids”, Springer US (1992).
[23] W. W. Gerberich, W. M. Mook, C. R. Perrey, C. B. Carter, M. I. Baskes, R. Mukherjee, A. Gidwani, J. Heberlein, P. H. McMurry, and S. L. Girshick, J. Mech. Phys. Solids, 51 (2003) 979.
[24] A. B. Djuriˇsic ́, A. M. C. Ng, and X. Y. Chen, Material Properties and Device Applications, 34 (2010) 191.
[25] Mika Niskanen, Mikael Kuisma, Oana Cramariuc, Viacheslav Golovanov, Terttu I. Hukka, Nikolai Tkachenko and Tapio T. Rantala ,
Physical Chemistry Chemical Physics, 40 (2013) 164.
[26] F. Claeyssens, C. L. Freeman, N. L. Allan, Y. Sun, M. N. R. Ashfolda and J. H. Harding, Journal of Materials Chemistry, 15 (2005) 139.
[27] Y. W. Heo, D. P. Nortona, L. C. Tiena, Y. Kwon, B. S. Kangb, F. Renb, S. J. Pearton and J. R. LaRoche, Materials Science and Engineering: A., 47 (2004) 163.
[28] H. Yi, X. Chen, H. Wang, and X. Wang, Electrochimica Acta, 116 (2014) 372.
[29] Manoj B. Gawande, Anandarup Goswami, Dong-Liang Peng, Radek Zboril and Rajender S. Varma, Chemical Society Reviews, 21 (2015) 7431.
[30] Miri Kazes, Tsiala Saraidarov, Renata Reisfeld, Uri Banin, Advanced Materials, 17 (2012) 22.
[31] Sungjee Kim, Brent Fisher, Hans-Jürgen Eisler and Moungi Bawendi, Journal of the American Chemical Society ,125 (2003) 11466.
[32] P.K. Nair, V.M. Garcı́a,O.L. Arenas, Y. Peña, A. Castillo, I.T. Ayala, O. Gomezdaza, A. Sánchez. , J Campos, H.Hu, R. Suárez and M. ERincón, Solar Energy Materials and Solar Cells, 52 (1998) 313.
[33] DekaS, GenoveseA, ZhangY, MisztaK, BertoniG, Krahne R, Giannini C and Manna, Journal of the American Chemical Society
,132 (2010) 891.
[34] WuY, WadiaC, MaWL, Sadtler B and Alivisatos, Nano Letters, 8 (2008) 2551.

[35]A. Venkadesh, S. Radhakrishnan and J. Mathiyarasu, Electrochimica Acta, 6 (2017) 77.
[36] Shibin Li, Peng Zhang, Yafei Wang, Hojjatollah Sarvari, Detao Liu, Jiang Wu, Yajie Yang, Zhiming Wang and Zhi David Chen, Nano Research, 10 (2017)1092.
[37] Kheamrutai Thamaphat, Pichet Limsuwan and Boonlaer Ngotawornchai, Natural Science, 42 (2008)357.
[38]Dale E. Newbury, Patrick Echlin, David C. Joy and Eric Lifshin, “Scanning Electron Microscopy and X-Ray Microanalysis” , Springer(1992).
[39] Stokes, Debbie J, “Principles and Practice of Variable Pressure Environmental Scanning Electron Microscopy”, John Wiley & Sons (2008).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊