跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/08 11:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊詠涵
研究生(外文):Yung-Han Chuang
論文名稱:掃描電容顯微術於微波退火引致摻雜活化與去活化之研究
論文名稱(外文):A Study of scanning capacitance microscopy on dopant activation and deactivation induced by microwave annealing
指導教授:張茂男
口試委員:李耀仁吳建霆
口試日期:2017-07-14
學位類別:碩士
校院名稱:國立中興大學
系所名稱:物理學系所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:55
中文關鍵詞:掃描電容顯微術微波退火活化及去活化
外文關鍵詞:scanning capacitance microscopymicrowaveactive and deactivation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:350
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
掃描電容顯微術是一種量測半導體二維載子分布的重要技術,由於掃描電容顯微術可以分析樣品局部區域,加上對電容訊號的變化具有高靈敏度,所以非常適合分析半導體材料,例如量測電性接面的深度、空乏區寬度、以及等效通道長度。微波退火是種低熱預算的退火方法,可以有效的抑制熱擴散並使摻雜活化,本研究使用暗模式掃描電容顯微術探討微波時間對載子濃度分布的影響。實驗結果指出,在淺層佈植區中,硼和磷隨退火時間的增加有不同的活化及去活化行為。佈植硼的樣品,對於200秒以上的退火時間,先發生去活化現象,之後再度活化;而佈植磷的樣品,退火時間在100秒以上時,並未觀察到隨微波退火時間的增加而有明顯的去活化與活化現象。過去的研究指出低能量退火不易消除佈植硼所殘留的晶格缺陷,導致活化區域的不穩定,而微波退火比傳統退火的能量更低,所以殘存的缺陷更可能會影響摻雜硼的活化,於是本研究亦利用N型基板佈植硼的樣品,進行再微波退火的實驗,也觀察到微波退火所形成的接面是不穩定的。此外,磷原子在短微波退火時間就能活化,而且也不易因微波時間的增加而去活化,所以設計微波時間序列對磷活化的影響,結果發現第二階段微波退火除了使接面深度增加外,活化的程度亦受第一階段的退火結果所影響。
Scanning capacitance microscopy (SCM) is an important technique measuring two-dimensional carrier distribution in semiconductors. SCM is very suitable for characterizing semiconducting materials because SCM is able to analyze a local area on sample surfaces and highly sensitive to capacitance changes. For instance, one can employed SCM to measure electrical junction depths (EJD), depletion widths, and the effective channel lengths. Microwave annealing (MWA) is an annealing method with a low thermal budget, effectively suppressing dopant diffusion and activating dopant. In this thesis, I used dark-mode SCM to investigate the influence of MWA time on carrier concentration distribution. With MWA time increasing, experimental results indicated that boron and phosphorus in shallow implanted regions have different electrical activation and deactivation behavior. For boron, deactivation occurred prior to activation when the MWA time is longer than 200 seconds. While for phosphorus, significant activation and deactivation were not observed for MWA time longer than 100 seconds. Prior studies indicated that low energy annealing is hard to eliminate the residual lattice defects induced by boron implantation, leading to instability of the boron-active region. However, the energy of MWA is much lower than that of typical thermal annealing. Therefore, the residual lattice defects might affect electrically active boron atoms. In this study, I performed post-annealing MWA to treat boron-implanted n-type silicon substrates and observed instability of the PN junctions formed by MWA. In addition, the influence of MWA sequence on phosphorus activation was also investigated since phosphorus is easy to activate in a short MWA time and exhibits good electrical stability. Experimental results indicated that the post-annealing MWA increased the EJD and the EJD was also closely related to the prior annealing processes.
致謝 i
摘要 ii
Abstract iii
圖目錄 vi
表目錄 viii
第一章 前言 1
1.1研究背景 1
1.2研究動機 3
第二章 文獻回顧 5
2.1 掃描電容顯微術 5
2.1.1 樣品表面處理 5
2.1.2 暗模式 6
2.1.3 調制電壓 7
2.2 熱退火處理的物理現象 8
2.2.1 擴散現象 8
2.2.2 晶格修復 9
2.2.3 活化和去活化 9
2.2.4 微波退火 10
2.3 摻雜活化之穩定性 13
第三章 實驗方法 15
3.1試片的結構與製備流程 16
3.1.1淺接面製作 16
3.1.2退火處理 17
3.1.3橫截面樣品製備 18
3.2量測與分析儀器介紹 20
3.2.1掃描電容顯微鏡 20
3.2.2四點探針電阻分析儀(4-point probe) 22
3.2.3掃描展阻顯微鏡 22
第四章 結果與討論 24
4.1 淺層區域 24
4.1.1 佈植硼 25
4.1.2 佈植磷 33
4.2 深層區域 38
4.2.1 佈植硼 39
4.2.2 佈植磷 40
4.3 微波退火形成電性接面的穩定性 42
4.3.1 佈植硼所形成PN接面的穩定性 42
4.3.2微波順序對佈植磷電性接面的影響 44
第五章 結論與建議 49
5.1 結論 49
5.2 未來研究工作建議 49
第六章 參考文獻 53
[1] Hong Xiao, Introduction to Semiconductor Manufacturing Technology 3/E, 13, 13 (2014).
[2] K. J. Kramer, S. Talwar, I. T. Lewis, J. E. Davison, K. A. Williams, K. A. Benton, and K. H. Weiner, Applied Physics Letters, 68, 2320 (1996).
[3] T. K. Kwok, P. K. Chu, and C. Chan, Applied Physics Letters, 88, 3198 (2000).
[4] K. K. Seon, S. Y. Heub, P. K. Tea, K. Hiroyuki, M. Takashi, H. Kazuhiro, Thin Solid Films, 207 (2000).
[5] M. Nakano, H. Kotaki, K. Sugimoto, T. Okumine, F. Yoshioka, S. Kakimoto, K. Ohta, and N. Hashizume, Japanese Journal of Applied Physics, 39, 2155 (2000).
[6] P. A. Stolk, H. J. Gossmann, D. J. Eaglesham, D. C. Jacobson, C. S. Rafferty, G. H. Gilmer, M. Jaraiz, and J. M.PoateH. S. LuftmanT. E. Haynes, Journal of Applied Physics, 81, 6031 (1997).
[7] D. F. Downey and Judy W. Chow Emi Ishida ,Kevin S. Jones, Applied Physics Letters, 73, 1263 (1998).
[8] B. H. Lee, L. Kang, R. Nieh, W. J. Qi,and J. C. Lee, Applied Physics Letters, 76, 1926 (2000).
[9] G. Binnig, and H. Rohrer, Reviews of Modern Physics, 59, 615 (1987).
[10] G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Physical Review Letters, 49, 57 (1982).
[11] I. S. Hwang, R. L. Lo, and T. T. Tsong, Physical Review Letters, 78, 4797 (1997).
[12] H. F. Hess, R. B. Robinson, R. C. Dynes, J.M. Valls, Jr., and J. V. Waszczak, Physical Review Letters, 62, 214 (1989).
[13] G. Binning, C. F. Quate, and C. Gerber, Physical Review Letters, 56, 930 (1986).
[14] Y. M. Kim, G. Q. LO, H. Kinoshita, D. L. Kwong, H. H. Tseng, R. Hance, Journal of The Electrochemical Society, 138, 4 (1991).
[15] M. Nonnenmacher, M. P. O`Boyle, H. K. Wickramasinghe, Applied Physics Letters, 28, 2921 (1991).
[16] J. Colchero, A. Gil, and A. M. Baro, Physical Review B, 64, 245403 (2001).
[17] J. R. Matey, J. Blanc, Journal of Applied Physics, 57, 1437 (1995).
[18] J. M. Mativetsky, G. Pace, M. Elbing, M. A. Rampi, M. Mayor, P. Samori, Journal of the american chemical society, 29, 9192 (2008).
[19] Maria Stangoni, Mauro Ciappa, and Wolfgang Fichtner, M. Stangoni/ Microelectronics Reliability, 45, 1532 (2005)
[20] C. D. Bugg and P. J. King, Journal of Physics E: Scientific Instruments, 21, 147 (1988).
[21] C. C. Williams, W. P. Hough, and S. A. Rishton, Applied Physics Letters, 55, 203 (1989).
[22] C. C. Leu, C. Y. Chen, C. H. Chien, M. N. Chang, F. Y. Hsu, and C. T. Hu, Applied Physics Letters, 82, 3493 (2003).
[23] C. C. Williams, Annual Review of Materials Research, 29, 471 (1999).
[24] E. Bruno, S. Mirabella, G. Impelizzeri, F.Priolo, F. Giannazzo, V. Rainei, and E. Napolitani, Applied Physics Letters, 87, 133110 (2005).
[25] D. Goghero, F. Giannazzo , V. Raineri, Materials Science and Engineering, B102, 152 (2003).
[26] F. K. Hsueh, Y. J. Lee, K. L. Lin, Michael I. Current, C. Y. Wu, and T. S. Chao, IEEE Transactions on Electron Devices, 58, 2088 (2011).
[27] M. N. Chang, C. Y. Chen, W. W. Wan, and J. H. Liang, Applied Physics Letters, 84, 4704, (2004).
[28] J. Smoliner, B. Basnar, S. Golka, E. Gornik, B. Loffler, M. Schatzmayr, and H. Enichlmair, Applied Physics Letters, 79, 3182 (2001).
[29] M. N. Chang, C. Y. Chen, F.M. Pan, J. H. Lai, W. W. Wan, and J. H. Liang, Applied Physics Letters, 82, 3955 (2003).
[30] M. N. Chang, C. Y. Chen, W. J. Huang, and T. C. Cheng, Applied Physics Letters, 87, 023102 (2005).
[31] M. N. Chang, C. W. Hu, T. H. Chou, and Y. J. Lee, Applied Physics Letters, 101, 083503 (2012).
[32] P. A. Stolk, H. J. Gossmann, D. J. Eaglesham, D. C. Jacobson, C. S. Rafferty, G. H. Gilmer, M. Jaraiz, and J. M., PoateH. S. LuftmanT. E. Haynes, Journal of Applied Physics, 81, 6031 (1997).
[33] Y. Takamura, P. B. Griffin, and J. D. Plummer , Journal of Applied Physics, 92, 235 (2002).
[34] P. A. Tsai, C. Y. Chen, C. H. Lai, C. W. Lo, Y. J. Lee, nano communication, 20, 14 (2013).
[35] F. K. Hsueh, Y. J. Lee, K. L. Lin, Michael I. Current, C. Y. Wu, and T. S. Chao, IEEE Transactions on Electron Devices, 58, 2088 (2011).
[36] Y. J. Lee, T. C. Cho, S. S. Chuang, F. K. Hsueh, Y. L. Lu, P. J. Sung, H. C. Chen, Michael I. Current, T. Y. Tseng, IEEE Transactions on Electron Devices, 61, 651 (2014).
[37] L.B.Valdes, IEEE Proceedings of the IRE, 42, 420 (1954).
[38] Y. Z. Chen, 金奈米粒子和硒化鎘量子點於非揮發性記憶體元件電荷捕獲中心之研究, 國立交通大學, 28 (2006).
[39] Matiar M. R. Howlader, Fangfang Zhang, and M. J. Kim, Journal of Micro-electromechanical Systems, 20, 17, (2011).
[40] J. Smoliner, B. Basnar, S. Golka, E. Gornik, B. Loffler, M. Schatzmayr, and H. Enichlmair, Applied Physics Letters, 79, 3182 (2001).
[41] Charles Kittel, Introduction to Solid State Physics, eight edition, periodic table (2005).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top