跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/03/17 01:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:辛哈利
研究生(外文):Harrys Samosir
論文名稱:Sn-Sb-S半導體作為光敏化劑製作量子點敏化太陽能電池
論文名稱(外文):Sn-Sb-S liquid-junction semiconductor-sensitized solar cells
指導教授:李明威李明威引用關係
指導教授(外文):Ming-Way Lee
口試委員:李文獻施仁斌
口試委員(外文):Wen-Hsien LiP-C Lin
口試日期:2017-07-17
學位類別:碩士
校院名稱:國立中興大學
系所名稱:物理學系所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:55
中文關鍵詞:液態敏化太陽能電池Sn-Sb-S量子點
外文關鍵詞:liquid junction sensitized solar cellsSn-Sb-S semiconductor quantum dots (QDs)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:120
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Sn-Sb-S 液態敏化太陽能電池藉由SILAR法合成Sn-Sb-S量子點經由本實驗進行探討。最佳樣品條件為: SnS 8 cycles / SbS 6 cycles 並在氮氣下進行325 ℃ ,12 分鐘的退火流程,並且以多碘(I-/I3-)當作電解液,白金(Pt)當作對電極。
由XRD分析及TEM分析證明Sn-Sb-S確實生長在孔隙型(mp)-TiO2中,其顆粒大小約為 23 nm 。並經由UV-VIS 光譜儀分析,附加一層ZnSe passivation在最佳樣品條件下製作的成品,其能隙為 1.38 eV而其吸收範圍為300 – 850 nm。
在表現最佳的ZnSe passivation layer電池中,在一個太陽光源強度下所得到的轉換效率為 2.58 %,其短路電流 Jsc 為 14.04 mA/cm2,開路電壓 Voc為 0.46 V,FF (Fill factor)為39.91 % 。
當光源強度降低至0.05個太陽光時,所得到的轉換效率為4.89 %,短路電流為 1.36 mA/cm2 (歸一化後為27.2 mA/cm2)。
最後經由EQE量測得到,在波長為500 nm時轉換效率可達72%。
Tin antimony sulfide as a sensitizer for liquid junction sensitized solar cells has been investigated. Sn-Sb-S semiconductor quantum dots (QDs) were grown by using the successive ionic layer adsorption and reaction (SILAR) method. The best condition for the growth process is 8 cycles for Sn-S and 6 cycles for Sb-S annealing at 325 ℃ for 12 min in N2, using polyiodide (I-/I3-) as the electrolyte, and platinum (Pt) the as counter electrode. The X-Ray diffaction (XRD) patterns and transmission electron microscope (TEM) images confirmed that Sn-Sb-S was successfully grown into mesoporous (mp)-TiO2 with a particle size of ~23 nm. UV-Visible measurements showed that Sn-Sb-S grown using the best condition with ZnSe passivation layer has an energy gap of 1.38 eV which covers 300-850 nm of the optical wavelength.
The best cell with a ZnSe passivation layer yielded a short-circuit current density Jsc of 14.04 mA/cm2, an open-circuit voltage Voc of 0.46 V, a fill factor FF of 39.91%, and a power conversion efficiency η of 2.58% under 1 sun. At the reduced light intensity of 0.05 sun, the η increased 4.89% with Jsc = 1.36 mA/cm2 (which could be normalized to 27.2 mA/cm2 ). The external quantum efficiency (EQE) spectrum covered the spectral range of 300–850 nm with a maximal EQE = 72% at λ = 500 nm.
Acknowledgment i
Abstract (Chinese) iii
Abstract (English) iv
List of Tables viii
List of Figures x
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Study Objective 4
Chapter 2 Theoretical Background 5
2.1. Quantum Dot Semiconductor-Sensitized Solar Cells (QD-SSC) 5
2.2 The Properties of Sn-Sb-S 7
2.3 Physical Properties of Titanium Dioxide (TiO2) 8
2.4 Prepare Titanium (IV) isopropoxide (TTIP) 10
2.5 Succesive Ionic Layer Adsorption and Reaction (SILAR) Method 10
2.6 Passivation materials for QDSSCs 12
2.7 Counter Electrode 13
2.8 Air Mass 14
Chapter 3 Experimental Details 15
3.1 Chemicals and Substrates for Sn-Sb-S Liquid Junction Semiconductor-Sensitized Solar Cells 15
3.2 Instrument 16
3.3 Experimental Steps 18
3.3.1 Preparation of Substrate 18
3.3.2 Preparation of Photoanode 19
3.3.2.1 Preparation of Blocking Layer 19
3.3.2.2 Preparation of mp-TiO2 Sensitizer and Scattering Layer 20
3.3.2.3 Synthesis of Sn-Sb-S into mp-TiO2 Photoelectrode 21
3.3.3 Passivation Sn-Sb-S QDSSCs 24
3.3.3.1 Coating ZnS Passivation Layer 24
3.3.3.2 Coating ZnSe Passivation Layer 24
3.3.4 Preparation of Counter Electrode 24
3.3.5 Assembling of Sn-Sb-S QD-SSCs 26
3.3.6 Preparation of Electrolyte 26
3.3.7 Preparation of Structural and optical characteristics sample of Sn-Sb-S QDs 26
3.3.7.1 Preparation of Measurement Sample 27
3.3.7.2 Preparation of XRD Sample 27
3.3.7.3 Preparation of TEM Sample 27
3.3.7.4 Preparation of EDS Sample 27
3.4. Optical and Photovoltaic Measurement 28
3.4.1 Absorption Spectra Measurement 28
3.4.2 Photovoltaic Measurement and Calculation 28
3.4.3 External Quantum Efficiency Measurement 32
Chapter 4 Result and Discussion 33
4.1 Structural Characteristics of Sn-Sb-S QDs Coated into mp-TiO2 33
4.2 Energy Dispersive X-Ray Spectroscopy (EDS) Analysis 36
4.3 Electro Impedance Spectra (EIS) Analysis 36
4.4 Optical Characteristic of Sn-Sb-S QDs Coated Into mp-TiO2 38
4.5 Morphological Characteristic of Sn-Sb-S QDs Coated Into mp-TiO2 39
4.6 Photovoltaic Measurement of Sn-Sb-S QDs Coated Into TiO2 Photoelectrode 40
4.6.1 Optimal Dipping Time 40
4.6.2 Optimal SILAR Cycles Number 41
4.6.3 Optimal Annealing Temperature and Time 43
4.6.4 Comparing without, ZnS and ZnSe Passivation 45
4.6.5 Comparing of Electrolyte 47
4.7 Measurement on Power Dependence of the Sn-Sb-S QDs Coated into TiO2 Photoelectrode. 49
4.8 External Quantum Effeciency of Sn-Sb-S QDs Coated into TiO2 photoelectrode. 50
Chapter 5 Conclusion 51
5.1 Conclusion 51
5.2 Futher works and suggestion 51
References 52
[1] Solar Photovoltaic, [online] available
https://en.wikipedia.org/wiki/Photovoltaic_effect
[2] Nelson, Jenny, The Physics of Solar cells, United Kingdom: Imperial College Press, p.2-15 (2003).
[3] https://www.techopedia.com/definition/14995/photovoltaic-cell-pv-cell
[4] A.M Bagher, M.M Abadi, and M.Mohsen, Types of Solar Cells and Application, American Journal of Optics and Photonics, Vol. 3, No. 5, 94-113 (2015).

[5] J.Tian, and G.Cao, Semiconductor quantum dot-sensitized solar cells, Nano Reviews, Vol 4, 22578 (2013).
[6] Y. Wang, N. Peng, H. Li, and X. Bai, High-Efficiency CdS Quantum-Dots Sensitized Solar Cells with Compressed Nanocrystalline TiO2 Photoelectrodes, Journal of Nanomaterials, Volume 2012, 858693 (2012).
[7] S. Abdallah, N. Al-Hosiny, and A. Badawi, Photoacoustic Study of CdS QDs for Application in Quantum-Dot-Sensitized Solar Cells, Journal of Nanomaterials, Volume 2012, 498286 (2012).
[8] H.J. Lee, H.C. Leventis, S.J. Moon, P.Chen, S. Ito, S.A. Haque, T.Torres, F.Nüesch, T.Geiger, S.M. Zakeeruddin, M.Grätzel, M.K.Nazeeruddin, PbS and CdS Quantum Dot-Sensitized Solid-State Solar Cells: “Old Concepts, New Results”, Advanced Functional Material, Volume 19, Issue 17, 2735–2742 (2009).
[9] Y.C.Chang, N. Suriyawong, B. A. Aragaw, J.B. Shi, P.Chen, M.W.Lee, Lead antimony sulfide (Pb5Sb8S17) solid-state quantum dot-sensitized solar cells with an efficiency of over 4%, Journal of Power Sources, 312 ,86-92(2016).
[10] D. Abdelkader, M.B Rabeh, N.Khemiri, and M. Kanzari, Investigation on optical properties of SnxSbySz sulfosalts thin films. Journal of Materials Science in Semiconductor Processing, 14–19, 21 (2014).
[11] H. Dittrich, A. Stadler, D. Topa, H.J. Schimper, and A. Basch, Progress in sulfosalt research, Journal Phys Status Solidi A, 206, No. 5, 1034–1041 (2009).
[12] Y. Fadhli, A. Rabhi1, and M. Kanzari, Optical Constant and Electrical Resistivity of Annealed Sn3Sb2S6 Thin Films, The Chinese Society for Metals and Springer-Verlag Berlin Heidelberg, (2016).

[13] J. Tian and G. Cao. Semiconductor quantum dot-sensitized solar cells. Journal Nano Reviews, Volume 4 (2013).

[14] P. P. K. SMITH, Structure Determination of Diantimony Tritin Hexasulphide, Sn3Sb2S6, by High-Resolution Transmission Electron Microscopy, Journal Acta Cryst. C40, 581-584 (1984).

[15] O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide, Progress in Solid State Chemistry, 32, 33-177(2004).
[16] A. Fujishima, T. N. Rao, D. A. Tryk, Titanium dioxide photocatalysis, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 1, 1–21(2000).
[17] U. Diebold, The surface science of Titanium dioxide, Surface Science Reports, 48, 53-229 (2003).
[18] H.M. Pathan And C.D.Lokhande, Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method. Journal Bulletin of Materials Science, Vol. 27, No. 2, 85–111 (2004).
[19] F. Huang, Q. Zhang, B.X. Juan Hou, C.Y. Wang, R. Masse, S. Peng, J. Liu and G. Cao, A comparison of ZnS and ZnSe passivation layers on CdS/CdSe cosensitized quantum dot solar cells. J. Mater. Chem. A,4, 14773-14780 (2016).

[20] X.M.Fang, T.L. Ma, G.Q.Guan, M. Akiyama, T. Kida, E. Abe, Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell, Journal of Electroanalytical Chemistry, 570, 257–263 (2004).
[21] P.Sudhagar, E.J. Juaraz-Perez, Y.S.Kang, and Ivan, Mora-Sero, Quantum Dot-Sensitized Solar Cells, Low-cost Nanomaterials, DOI:10.1007/978-1-4471-6473-9-5, Springer-Verlag: London (2014).
[22] C. Riordan and R. Hulstrom, What Is An Air Mass 1.5 Spectrum?, IEEE, 0160-8371/90/0000-1085, 1085-1088 (1990).
[23] A.Tubtimtae and M.W.Lee, Synthesis, optical and photovoltaic properties of silver chalcogenides-Ag2S and Ag2Se quantum dots as sensitizers for solar cells application, A Dissertation, Department of Physics and Institute of Nanoscience, National Chung Hsing University (2011).
[24] P. Wang, S.M. Zakeeruddin, P. Comte, R. Charvet, R. Humphry-Baker, M. Grätzel, Enhance the Performance of Dye-Sensitized Solar Cells by Co-grafting Amphiphilic Sensitizer and Hexadecylmalonic Acid on TiO2 Nanocrystals, The Journal of Physical Chemistry letters, 107, 14336-14341 (2003).

[25] S. Horea, C. Vetter, R. Kerna, H.Smit, A.Hinsch, Influence of scattering layers on efficiency of dye-sensitized solar cells, Solar Energy Materials & Solar Cells, 90, 1176 –1188 (2006).
[26] D.J. Kwak, B.H. Moon, D.K. Lee, C.S. Park and Y.M. Sung, Comparison of transparent conductive indium tin oxide, titanium-doped indium oxide, and fluorine-doped tin oxide films for dye-sensitized solar cell application, Journal of Electrical Engineering & Technology Vol. 6, No. 5, 684 - 687 (2011).

[27] A. Hauch and A. Georg, Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells. Journal electrochimica Acta, 46 3457–3466, (2001).

[28] https://www.newport.com/t/introduction-to-solar-radiation

[29] Lee-Ping. Sn-Sb-S liquid-junction semiconductor-sensitized solar cells. National Chung Hsing University.2016.
[30] Ne´stor Guijarro, J.M. Campin, Qing Shen, Taro Toyoda, Teresa Lana-Villarreala and Roberto Go´mez, Uncovering the role of the ZnS treatment in the performance of quantum dot sensitized solar cells, Journal Phys. Chem., 13, 12024–12032 (2011).

[31] Siti Utari Rahayu, Chia-Ling Chou, Nipapon Suriyawong, Belete Asefa Aragaw, Jen-Bin Shi, and Ming-Way Lee, Sodium antimony sulfide (NaSbS2): Turning an unexpected impurity into a promising, environmentally friendly novel solar absorber material, Journal Apl Materials 4, 116103 (2016).

[32] Michael Grätzel, Photoelectrochemical cells, Nature, 414, 338-344 (2001).

[33] H.selhoferr, Vacum thin film, agust, 15 (1999).

[34] V. Baglio, M. Girolamo, V. Antonucci, A. S. Aricò. Influence of TiO2 Film Thickness on the Electrochemical Behaviour of Dye-Sensitized Solar Cells. Int. J. Electrochem. Sci., 6, 3375 – 3384 (2011).

[35] A. Dakkaa, J. Lafaitb, M. Abd-Lefdila and C. Sellab, Optical study of titanium dioxide thin films prepared by R.F. sputtering, Journal M.J.Condensed Matter, Volume 2, Number 2 (1999).

[36] Xiaodan Cui, Wangwang Xu, Zhiqiang Xie and Ying Wang, High-performance dye-sensitized solar cells based on Ag-doped SnS2 counter electrodes, J. Mater. Chem. A, 4, 1908-1914 (2016).

[37] R. Ahmed, L. Zhao, A. J. Mozer, G. Will, J. Bell and H. Wang, J. Phys. Chem. C, 119, 2297-2307 (2015).

[38] X. Wang, R. Liu, T. Wang, B. Wang, Y. Xu and H. Wang, Acs Appl. Mater. Interfaces, 5, 3312-3316 (2013).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top