跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/01/15 04:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐子昀
研究生(外文):Tzu-Yun Hsu
論文名稱:消費者對非現金支付接受度之研究
論文名稱(外文):The Study of Consumer Acceptance of Non-cash Payment
指導教授:何建達何建達引用關係
口試委員:祝道松王榮祖
口試日期:2017-05-23
學位類別:碩士
校院名稱:國立中興大學
系所名稱:科技管理研究所
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:56
中文關鍵詞:非現金支付科技接受模型知覺兼容性知覺安全性主觀規範
外文關鍵詞:Non-cash PaymentTechnology Acceptance ModelPerceived CompatibilityPerceived SecuritySubjective Norm
相關次數:
  • 被引用被引用:0
  • 點閱點閱:413
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在台灣,現金依然是主要的支付工具,但是現金存在許多缺點,例如: 容易被偽造、容易被竊取、攜帶不方便、無法在網路上購物……等等,然而,在許多非現金支付的研究都指出使用非現金支付將帶來許多效益,例如: 付款容易、節省交易時間、線上付款、提高經濟成長,此外,政府也機極推動無現金社會計畫,預計在2020年將台灣的電子支付比率從26%提升至52%,因此,非現金支付勢必成為未來趨勢。
本研究將以科技接受模式(Technology Acceptance Model, TAM)為基礎,加入三個外在因素為知覺兼容性、知覺安全性及主觀規範,來建構出完整之研究模型。本研究使用網路問卷調查方法收集了356份實際樣本資料,以統計軟體AMOS和SPSS來進行驗證性因素分析(CFA)和結構方程模型(SEM)等資料分析。研究結果顯示知覺兼容性對於知覺有用性、行為態度及行為意圖是有正向顯著的關係,主觀規範對於行為態度有正向顯著的關係,而知覺安全性對於行為態度是沒有正向顯著的關係。最後,結論將會對於研究結果給予產業以及學術上的建議,以供未來作為改善之方向及往後研究相似主題之研究者為參考。
In Taiwan, cash remains the primary method for payment. Cash has some shortcomings, such as it must be created such that is hard to forge, must be transported from one place to another place, must be stored safely and cannot be used for payments over the phone or the Internet. However, many previous studies indicated that non-cash payment has many benefits, such as easy payment, saving payment time, online payment, economic growth. Otherwise, Taiwan’s government actively promotes a cashless society and set the goal for electronic payments in the proportion from the current 26% to 52% in 2020. Thus, this paper considers non-cash payment is bound to become a future trend for business trades. This study attempts to predict users’ behavioral intentions of using non-cash payment.
This study is based on Technology Acceptance Model (TAM) which is proposed by Davis (1989). We add three external factors which are perceived compatibility, perceived security and subjective norm to establish the research framework. We collected 356 valid samples from the web-based survey, and use the statistic software of AMOS and SPSS to analyze the confirmatory factor analysis (CFA) and structural equation modeling (SEM) in this study. The results show that perceived compatibility was found to have significant relationship with PU, AT and BI, subjective norm was found to have significant relationship with AT, but perceived security was found to have no significant relationship with AT. Finally, the findings have both theoretical and practical implications for industries and academics.
CHEPTER 1 INTRODUCTION 1
1.1 Research Background and Motivation 1
1.2 Research Objectives 3
1.3 Research Process 4
1.4 Organization of This Research 5
CHAPTER 2 LITERATURE REVIEW 6
2.1 Overview of Non-cash Payment 6
2.2 Technology Acceptance Model 8
2.3 External Variables on TAM 10
2.3.1 Perceived Compatibility 10
2.3.2 Perceived Security 11
2.3.3 Subjective Norm 12
CHAPTER 3 METHODOLOGY 13
3.1 Framework and Hypothesis 13
3.2 Development of Measures 16
3.2.1 Perceived Ease of Use 16
3.2.2 Perceived Usefulness 17
3.2.3 Perceived Security 17
3.2.4 Perceived Compatibility 18
3.2.5 Subjective Norm 19
3.2.6 Attitude toward using 19
3.2.7 Intention to Use 20
3.3 Questionnaire design 22
3.4 Data collection 24
3.5 Data analysis approach 24
CHAPTER 4 DATA ANALYSIS AND RESULTS 26
4.1 Descriptive Statistics Structure 26
4.1.1 Sample Structure 26
4.1.2 Non-cash Payment Adoption Circumstance of Respondents 28
4.1.3 Mean and Deviation 30
4.2 The Measurement Model 31
4.2.1 Reliability 31
4.2.2 Construct Validity 32
4.3 The Structure Model 34
CHAPTER 5 CONCLUSIONS 38
5.1 Conclusions 38
5.2 Contributions of the Research 40
5.3 Limitations and Future Study 40
Reference 42
Appendix I 52
1.Abrazhevich, D. (2004). Electronic Payment Systems: A User-Centered Perspective and Interaction Design. Eindhoven: Technische Universiteit Eindhoven.
2.Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211.
3.Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social behaviour. Englewood Cliffs: Prentice-Hall.
4.Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103(3), 411-423.
5.Bagozzi, R. P., & Yi, Y. (1988). On the Evaluation of Structure Equation Models. Journal of the Academy of Marketing Science, 16(1), 74-94.
6.Benamati, J., Fuller, M. A., Serva, M. A., & Baroudi, J. (2010). Clarifying the Integration of Trust and TAM in E-Commerce Environments: Implications for Systems Design and Management. IEEE Transactions on Engineering Management, 57(3), 380-393.
7.Bhattacherjee, A. (2001). Understanding Information Systems Continuance: An Expectation-Confirmation Model. MIS Quarterly, 25(3), 351-370.
8.Bollen, K. A. (1987). Total, Direct, and Indirect Effects in Structural Equation Models. Sociological Methodology, 17, 37-69.
9.Brown, S. A., & Venkatesh, V. (2005). Model of Adoption of Technology in Households: A Baseline Model Test and Extension Incorporating Household Life Cycle. MIS Quarterly, 29(3), 399-426.
10.Central Bank of the Republic of China. (2009). Republic of China Payment and Clearing System. [Web document]. Available: https://www.cbc.gov.tw/public/Attachment/972016463871.pdf [2016, 16 Oct]
11.Chiu, C.-M., Lin, H.-Y., Sun, S.-Y., & Hsu, M.-H. (2009). Understanding costomers’ loyalty intentions towards online shopping: an integration of technology acceptance model and fairness theory. Behaviour & Information Technology, 28(4), 347-360.
12.Chou, Y., Lee, C., & Chung, J. (2004). Understanding M-commerce payment systems through the analytic hierarchy process. Journal of Business Research, 57(12), 1423-1430.
13.Comrey, A., Reise, S., & Waller, N. (2000). Factor Analysis and Scale Revision. Psychological Assessment, 12(3), 287-297.
14.Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297-334.
15.Cronbach, L. J., & Meehl, P. E. (1955). Construct validity in psychological tests. Psychological Bulletin, 52(4), 281-302.
16.Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340.
17.Denecker, O., Istace, F., & Niederkorn, M. (2013). Forging a path to payments digitization. [Web document]. Available: http://www.mckinsey.com/~/media/mckinsey/dotcom/client_service/financial%20services/latest%20thinking/payments/mop16_forging_a_path_to_payments_digitization.ashx [2016, 25 Nov]
18.Devaraj, S., Fan, M., & Kohli, R. (2002). Antecedents of B2C Channel Satisfaction and Preference: Validating e-Commerce Metrics. Information Systems Research, 13(3), 316-333.
19.El-Gohary, H. (2012). Factors affecting E-Marketing adoption and implementation in tourism firms: An empirical investigation of Egyptian small tourism organisations. Tourism Management, 33(5), 1256-1269.
20.Financial Supervisory Commission. (2016a). Credit card, cash card and electronic ticket business information. [Web document]. Available: http://www.fsc.gov.tw/ch/home.jsp?id=96&parentpath=0,2&mcustomize=news_view.jsp&dataserno=201607280005&aplistdn=ou=news,ou=multisite,ou=chinese,ou=ap_root,o=fsc,c=tw&dtable=News [2016, Nov 09]
21.Financial Supervisory Commission. (2016b). Financial Technology Development Strategy White Paper. [Web document]. Available: http://www.fsc.gov.tw/ch/home.jsp?id=96&parentpath=0,2&mcustomize=news_view.jsp&dataserno=201605120002&aplistdn=ou=news,ou=multisite,ou=chinese,ou=ap_root,o=fsc,c=tw&dtable=News [2016, 19 Oct]
22.Fishbein, M., & Ajzen, I. (1975). Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research. Boston: Addison-Wesley.
23.Flavian, C., & Guinaliu, M. (2006). Consumer trust, perceived security and privacy policy: Three basic elements of loyalty to a web site. Industrial Management & Data Systems, 106(5), 601-620.
24.Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservables and Measurement Error. Journal of Marketing Research, 18(1), 39-50.
25.Gefen, D., Karahanna, E., & Straub, D. W. (2003). Trust and TAM in online shopping: an integrated model. MIS Quarterly, 27(1), 51-90.
26.Gorsuch, R. L. (1990). Common factor analysis versus component analysis: Some well and little known facts. Multivariate Behavioral Research, 25(1), 33-39.
27.Gou, F.-Z., & Shi, W.-Q. (2014). Small payment big change: debit card. [Web document]. Available: https://www.fisc.com.tw/Upload/d8bcb29c-5c2c-4641-a3cb-9d126a0b75da/TC/7901.pdf [2016, 17 Oct]
28.Granello, D. H., & Wheaton, J. E. (2004). Online data collection: Strategies for research. Journal of Counseling & Development. Journal of Counseling & Development, 82(4), 387-393.
29.Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2009). Multivariate data analysis. Upper Saddle River: Pearson Prentice Hall.
30.Heijden, H. v. d. (2003). Factors influencing the usage of Websites: the case of a generic portal in The Netherlands. Information and Management, 40(6), 541-549.
31.Hinton, P. R., McMurray, I., & Brownlow, C. (2004). SPSS Explained. London: Routledge.
32.Holak, S. L., & Lehmann, D. R. (1990). Purchase Intentions and the Dimensions of Innovation: An Exploratory Model. The Journal of Product Innovation Management, 7(1), 59-73.
33.Holden, R. J., & Karsh, B.-T. (2010). The Technology Acceptance Model: Its past and its future in health care. Journal of Biomedical Informatics, 43(1), 159-172.
34.Hoyle, R. H. (1995). The structural equation modeling approach: Basic concepts and fundamental issues. In R. H. Hoyle (Ed.), Structural equation modeling: Concepts, issues, and applications. Thousand Oaks: Sage Publications.
35.Hsieh, C. (2001). E-commerce payment systems: critical issues and management strategies. Human Systems Management, 20(2), 131-138.
36.Hu, L.-T., & Bentler, P. M. (1995). Evaluating model fit. Thousand Oaks: Sage Publications.
37.Humphrey, D., Willesson, M., Lindblom, T., & Bergendahl, G. (2003). What Does it Cost to Make a Payment? Review of Network Economics, 2(2), 1-16.
38.Jahangir, N., & Begum, N. (2008). The role of perceived usefulness, perceived ease of use, security and privacy, and customer attitude to engender customer adaptation in the context of electronic banking. African Journal of Business Management, 2(1), 32-40.
39.Kalakota, R., & Whinston, A. B. (1996). Frontiers of Electronic Commerce. Boston: Addison Wesley
40.Kanchanatanee, K., Suwanno, N., & Jarernvongrayab, A. (2014). Effects of Attitude toward Using, Perceived Usefulness, Perceived Ease of Use and Perceived Compatibility on Intention to Use E-Marketing. Journal of Management Research, 6(3), 1-13.
41.Khiaonarong, T. (2009). An Economic Analysis Of E-Payments Diffusion In Asia. In UK Academy for Information Systems Conference Proceedings 2009 (pp. 31-31). United Kingdom.
42.Kniberg, H. (2002). What Makes a Micropayment Solution Succeed? (Masters thesis), Institution for Applied Information Technology, Stockholm, Sweden.
43.Kolsaker, A., & Payne, C. (2002). Engendering trust in e‐commerce: a study of gender‐based concerns. Marketing Intelligence & Planning, 20(4), 206-214.
44.Kotler, P. (2003). Marketing Management. Englewood Cliffs: Prentice Hall.
45.Laforet, S., & Li, X. (2005). Consumers’ attitudes towards online and mobile banking in China. International Journal of Bank Marketing, 23(5), 362-380.
46.Laudon, K. C., & Traver, C. G. (2001). E-Commerce: Business, Technology, Society. Boston: Addison Wesley Publishing.
47.Lawrence, E., Newton, S., Corbitt, B., Braithwaite, R., & Parker, C. (2002). Technology of Internet Business. New York: John Wiley & Sons.
48.Lederera, A. L., Maupin, D. J., Sena, M. P., & Zhuang, Y. (2000). The Technology Acceptance Model and the World Wide Web. Decision Support Systems, 29(3), 269-282.
49.Lim, B., & Kurnia, S. (2007). Exploring the Reasons for a Failure of Electronic Payment Systems: A Case Study of an Australian Company. Journal of Research and Practice in Information Technology, 39(4), 34-67.
50.Lin, C.-P., & Bhattacherjee, A. (2010). Extending technology usage models to interactive hedonic technologies: a theoretical model and empirical test. Information Systems Journal, 20(2), 163-181.
51.Luarna, P., & Lin, H.-H. (2005). Toward an understanding of the behavioural intention to use mobile banking. Computers in Human Behavior, 21(6), 873-891.
52.Market Intelligence & Consulting Institute. (2016). Mobile payment consumer survey. [Web document]. Available: https://mic.iii.org.tw/IndustryObservations_PressRelease02.aspx?sqno=425 [2016, 06 Nov]
53.Mansour, K. B. (2016). An analysis of business’ acceptance of internet banking: an integration of e-trust to the TAM. Journal of Business & Industrial Marketing, 31(8), 982-994.
54.Moon, J.-W., & Kim, Y.-G. (2001). Extending the TAM for a World-Wide-Web Context. Information & Management, 38(4), 217–230.
55.Moore, G. C., & Benbasat, I. (1991). Development of an Instrument to Measure the Perceptions of Adopting an Information Technology Innovation. Information Systems Research, 2(3), 192-222.
56.Moschis, G. P., Goldstucker, J. L., & Stanley, T. J. (1985). At-home shopping: Will consumers let their computers do the walking? Business Horizons, 28(2), 22-29.
57.Ngai, E. W. T., Poon, J. K. L., & Chan, Y. H. C. (2007). Empirical examination of the adoption of WebCT using TAM. Computers and Education, 48(2), 250-267.
58.Nielsen. (2014). Nelson: Less than 40% of Taiwan consumers spend their daily preferences on plastic currency payments. [Web document]. Available: http://www.nielsen.com/tw/zh/press-room/2014/newsTaiwanPayment0225.html [2016, 01 Nov]
59.O’Cass, A., & Fenech, T. (2003). Web retailing adoption: exploring the nature of internet users Web retailing behaviour. Journal of Retailing and Consumer Services, 10(2), 81-94.
60.Oh, S., Ahn, J., & Kim, B. (2003). Adoption of broadband Internet in Korea: the role of experience in building attitudes. Journal of Information Technology, 18(4), 267-280.
61.Ozkan, S., Bindusara, G., & Hackney, R. (2004). Facilitating the adoption of e‐payment systems: theoretical constructs and empirical analysis. Journal of Enterprise Information Management, 23(3), 305-325.
62.Parasuraman, A., Zeithaml, V. A., & Malhotra, A. (2005). E-S-QUAL: a multiple-item scale for assessing electronic service quality. Journal of Service Research, 7(3), 213-233.
63.Park, S. Y. (2009). An Analysis of the Technology Acceptance Model in Understanding University Students’ Behavioral Intention to Use e-Learning Educational Technology & Society, 12(3), 150-162.
64.Pavlou, P., & Fygenson, M. (2006). Understanding and predicting electronic commerce adoption: an extension of the theory of planned behavior. MIS Quarterly, 30(1), 115-143.
65.Plouffe, C. R., Vandenbosch, M., & Hulland, J. (2001). Intermediating technologies and multi-group adoption: A comparison of consumer and merchant adoption intentions toward a new electronic payment system. Journal of Product Innovation Management, 18(2), 65-81.
66.Porter, C. E., & Donthu, N. (2006). Using the technology acceptance model to explain how attitudes determine Internet usage: The role of perceived access barriers and demographics. Journal of Business Research, 59(9), 999–1007.
67.Rogers, E. M. (1995). Diffusion of Innovations (Fourth ed.). New York: Free Press.
68.Tarhini, A., Hone, K., Liu, X., & Tarhini, T. (2017). Examining the moderating effect of individual-level cultural values on users’ acceptance of E-learning in developing countries: a structural equation modeling of an extended technology acceptance model. Interactive Learning Environments, 25(3), 306-328.
69.Schneider, F. (2013). The Shadow Economy in Europe, 2013. [Web document]. Available: https://www.atkearney.com/documents/10192/1743816/The+Shadow+Economy+in+Europe+2013.pdf [2016, 12 Dec]
70.Sekaran, U., & Bougie, R. (2010). Research Methods for Business: A Skill Building Approach. United Kingdom: John Wiley & Sons.
71.Slyke, C. V., Belanger, F., & Comunale, C. L. (2004). Factors influencing the adoption of web-based shopping: the impact of trust. ACM SIGMIS Database, 35(2), 32-49.
72.Stern, B. B., Royne, M. B., Stafford, T. F., & Bienstock, C. C. (2008). Consumer Acceptance of Online Auctions: An Extension and Revision of the TAM. Psychology and Marketing, 25(7), 619–636.
73.Stroborn, K., Heitmann, A., Leibold, K., & Frank, G. (2004). Internet payments in Germany: a classificatory framework and empirical evidence. Journal of Business Research, 57(12), 1431–1437.
74.Taylor, S., & Todd, P. A. (1995). Understanding information technology usage: A test of competing models. Information Systems Research, 6(2), 144-176.
75.Tee, H.-H., & Ong, H.-B. (2016). Cashless payment and economic growth. Financial Innovation, 2(1), 4-13.
76.Tong, X. (2010). Across-national Investigation of an Extended Technology Acceptance Model in the Online Shopping Contenxt. Retail and Distribution Management, 38(10), 742-759.
77.Udo, G. J., Bagchi, K. K., & Kirs, P. J. (2010). An assessment of customers’ e-service quality perception, satisfaction and intention. International Journal of Information Management, 30(6), 481–492.
78.Venkatesh, V. (2000). Determinants of Perceived Ease of Use: Integrating Control, Intrinsic Motivation, and Emotion into the Technology Acceptance Model. Information Systems Research, 11(4), 342-365.
79.Venkatesh, V. (2001). Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information Systems Research, 11(4), 342–365.
80.Venkatesh, V., & Davis, F. D. (1996). A Model of the Antecedents of Perceived Ease of Use: Development and Test. Decision Sciences, 27(3), 451-481.
81.Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: four longitudinal field studies. Management Science, 46(2), 186-204.
82.Verhoefa, P. C., & Langerak, F. (2001). Possible determinants of consumers’ adoption of electronic grocery shopping in the Netherlands. Journal of Retailing and Consumer Services, 8(5), 275–285.
83.Wang, C.-C., Lo, S.-K., & Fang, W. (2008). Extending the technology acceptance model to mobile telecommunication innovation: The existence of network externalities. Journal of Consumer Behaviour, 7(2), 101-110.
84.Wang, H., & Zhang, Y. (2001). Untraceable Off-line Electronic Cash Flow in E-Commerce. 191-198.
85.Whiteley, D. (2000). E-Commerce: Strategy, Technologies And Applications. London: McGraw‐Hill International.
86.Wright, D. (2002). Comparative Evaluation Of Electronic Payment Systems. INFOR, 40(1), 71-85.
87.Wu, J.-H., & Wang, S.-C. (2005). What drives mobile commerce?: An empirical evaluation of the revised technology acceptance model. Information & Management, 42(5), 719-729.
88.Yang, H.-d., & Yoo, Y. (2004). It’s all about attitude: revisiting the technology acceptance model. Decision Support Systems, 38(1), 19-31.
89.Yenisey, M., Ozok, A., & Salvendy, G. (2005). Perceived security determinants in e-commerce among Turkish university students. Behaviour & Information Technology, 24(4), 259-274.
90.Yoon, Y., & Uysal, M. (2005). An examination of the effects of motivation and satisfaction on destination loyalty: a structural model. Tourism Management, 26(1), 45-56.
91.Zandi, M., Singh, V., & Irving, J. (2013). The Impact of Electronic Payments on Economic Growth. [Web document]. Available: http://www.nocash.info.ro/wp-content/uploads/2013/02/moodys-economy-white-paper1.pdf [2016, 11 Nov]
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊