跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/01/14 04:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林弦信
研究生(外文):Hsien-Hsin Lin
論文名稱:探討消費者對於行動型虛擬實境眼鏡之接受意願
論文名稱(外文):The Study of the Factors Influence on Consumer’s Intention of Smartphone Virtual Reality Headset
指導教授:謝焸君謝焸君引用關係
口試委員:吳彥濬王啟泰
口試日期:2017-06-26
學位類別:碩士
校院名稱:國立中興大學
系所名稱:科技管理研究所
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:78
中文關鍵詞:創新擴散理論科技接受模型虛擬實境行動型虛擬實境眼鏡
外文關鍵詞:Innovation Diffusion Theory(IDT)Technology Acceptance Model(TAM)Virtual RealitySmartphone Virtual Reality Headsets
相關次數:
  • 被引用被引用:1
  • 點閱點閱:665
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著現代新興科技的快速進步以及網際網路的高度普及化,虛擬實境漸漸地成為了未來科技發展的趨勢。但是由於開發虛擬實境時,對於研發資金跟技術都十分要求,使得虛擬實境在其發展上備受挑戰。再者,在現有的研究中鮮少有討論到消費者對於這類創新科技的反應。為了協助業者了解消費者對於採用虛擬實境的影響因素為何,本研究將以消費者對於行動型虛擬實境眼鏡的使用意願為例,以量化的方式瞭解並探討實際影響消費者行為意圖之因素,提供往後研究者在這方面的研究上更加完整及全面性的方向及幫助。

本研究主要結合創新擴散理論以及Davis(1989)提出之科技接受模型(TAM)為理論基礎並且加入知覺風險建立研究架構模型,採用線上問卷調查方式搜集資料,並利用所搜集的資料,透過一系列以偏最小平方法為主的分析方法進行資料處理及分析。結果發現:行動型虛擬實境頭戴式需藉由提升消費者正面態度以提升使用者的行為意願。而知覺風險在此項科技中,對於消費者的態度及行為意願皆無直接或間接的影響。最後,依據結果統整對學術研究及業界實務上的建議。此研究結果可以提供虛擬實境製造商作為未來產品改善之方向及往後研究相似主題之研究者為參考。
Owing to new technological advances and the high penetration of internet, virtual reality is not only gradually becoming more and more popular, but also such a challenging business since the costs and techniques of development are required. Furthermore, few studies have discussed about consumers’ reaction toward such innovation. This research aims to explore the antecedents which possibly effect consumers’ adoption of virtual reality based on discussing the case of behavioral intention to use the smartphone virtual reality headset by questionnaire method with using online questionnaire to collect data.
This research is based on Innovation Diffusion Theory (IDT) and Technology Acceptance Model (TAM), which is proposed by Davis (1989). We add perceived risk to establish research framework. Partial least square (PLS) method is used for data analysis, the findings and then summarized into the implications for both academics and practitioners. The result will provide new understanding of user’s intention to adopt virtual reality and make an available research model for future research in this field in the future.
TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION ..…………………………………………………….. 1
1.1. Research Background and Motivations …………..…………………………….. 1
1.2. Research Objectives …..………………..……………………………………..... 3
1.3. Research Scope …………………..…………………………………………….. 3
1.4. Research Process ………………..…………………………………………….. 4
1.5. Organization of This Research …...…………………………………………... 5
CHAPTER 2 LITERATURE REVIEW ……………………………………………….. 7
2.1. Overview of Reality Technology………………………………………………7
2.1.1. Virtual Reality (VR) ……………………………………………………. 7
2.1.2. Augmented Reality (AR) ………………………………………………. 8
2.1.3. Mixed Reality (MR) ……………………………………………………. 9
2.1.4. Substitutional Reality (SR) ……………………………………………. 9
2.2. Theories Related to Technology Acceptance ………………………………… 9
2.2.1. Theory of Reasoned Action (TRA) .……………………………………… 10
2.2.2. Theory of Planned Behavior (TPB) …………….………………………… 11
2.2.3. Technology Acceptance Model (TAM) ……….……………………………12
2.2.4. Innovation Diffusion Theory (IDT) ……….……………………………. 13
2.3. Extended Variable ……….……………………………………………………. 17
2.3.1. Perceived Risk …….……………………………………………………. 17
2.4. Framework and Hypotheses ………..……………………………………… 18
CHAPTER 3 METHOD ……………………………………………………………… 21
3.1. Development of Measures ………………………………………………… 21
3.2. Questionnaire Design ………………………………………………..……….. 21
3.2.1. Perceived Risk ….…………………………………………………………. 25
3.2.2. Relative Advantage ….……………………………………………………. 25
3.2.3. Triability …………………………………………………………………... 26
3.2.4. Perceived Ease of Use …………………………………………………….. 26
3.2.5. Perceived Usefulness ……………………………………………………... 27
3.2.6. Attitude Toward Using …………………………………………………… 27
3.2.7. Behavioral Intention ……………………………………………………… 28
3.3. Data Collection ………………………………………………………………… 28
3.4. Data Analysis Methods ………………………………………………………... 29
CHAPTER 4 RESULTS ……………………………………………………………… 30
4.1. Descriptive Analysis for Sample Characteristics …………………………. 30
4.2. The Measurement Model ……………………………………………………… 32
4.2.1. Independent Samples t Test ……....………………………………………. 32
4.2.2. Exploratory Factor Analysis …………………..……….…………………. 40
4.2.3. Reliability …………………………………………………………………. 49
4.2.4. Construct Validity ………………………………………………………… 50
4.3. Hypotheses Validation ………………………………………………………… 53
4.3.1. Attitude on Behavioral Intention (Hypothesis 1) ………………………… 53
4.3.2. Perceived Risk on Behavioral Intention (Hypothesis 2a) ……………… 54
4.3.3. Perceived Risk on Attitude (Hypothesis 2b) ………………………………54
4.3.4. Relative Advantage on Behavioral Intention (Hypothesis 3a) ……………54
4.3.5. Relative Advantage on Attitude (Hypothesis 3b) …………………………54
4.3.6. Triability on Attitude (Hypothesis 4)………55
4.3.7. Perceived Ease of Use on Attitude (Hypothesis 5) …………………….……55
4.3.8. Perceived Usefulness on Attitude (Hypothesis 6a) …………………………55
4.3.9. Perceived Usefulness on Behavioral Intention (Hypothesis 6b) …………………………………… 55
CHAPTER 5 CONCLUSIONS …………………………………… 58
5.1. Summary ………………………………………………………...……………58
5.2. Contributions of this research ……………………….………...……………59
5.3. Limitations………………………………………..……..…...………………..……60
REFERENCES……………………………………………………………………….61
APPENDIX I ………………………………………………………………………..….74

LIST OF TABLES
Table 2.1 Root Definitions of Constructs ………………………………………………13
Table 2.2 Root Definitions of Constructs ………………………………………………16
Table 2.3 Root Definition of Construct ………………………………………………18
Table 3.1 Operational Definition of Variable …………………………………………..23
Table 3.2 Structure of the Questionnaire ……………………………………………….24
Table 4.1 Demographic Data for Valid Samples (N=163) …………………………31
Table 4.2 Independent Samples t Test ……………………..…………………………..33
Table 4.3 KMO and Bartlett’s Test of Hypothesis 1……………….…..………………41
Table 4.4 Rotated Component Matrix of Hypothesis 1 .……………………………….41
Table 4.5 KMO and Bartlett’s Test of Hypothesis 2a……………….…..………………41
Table 4.6 Rotated Component Matrix of Hypothesis 2a …...………………………….42
Table 4.7 KMO and Bartlett’s Test of Hypothesis 2b……………….…..………………42
Table 4.8 Rotated Component Matrix of Hypothesis 2b……………………………….43
Table 4.9 KMO and Bartlett’s Test of Hypothesis 3a …………….…..………………43
Table 4.10 Rotated Component Matrix of Hypothesis 3a .…………………………….44
Table 4.11 KMO and Bartlett’s Test of Hypothesis 3b………………..………………44
Table 4.12 Rotated Component Matrix of Hypothesis 3b .…………………………….45
Table 4.13 KMO and Bartlett’s Test of Hypothesis 4………………..………………45
Table 4.14 Rotated Component Matrix of Hypothesis 4 ...…………………………….46
Table 4.15 KMO and Bartlett’s Test of Hypothesis 5……………….…..………………46
Table 4.16 Rotated Component Matrix of Hypothesis 5 ...…………………………….47
Table 4.17 KMO and Bartlett’s Test of Hypothesis 6a………………..………………47
Table 4.18 Rotated Component Matrix of Hypothesis 6a .…………………………….48
Table 4.19 KMO and Bartlett’s Test of Hypothesis 6b………………..………………48
Table 4.20 Rotated Component Matrix of Hypothesis 6b .…………………………….49
Table 4.21 Reliability Analysis .….…..……………………..…………………………50
Table 4.22 Table of Factor Loading, Composite Reliability and AVE ……………….52
Table 4.23 Denotation of Significance Level …………………………………………53
Table 4.24 Results of Hypotheses Test ………………………………………………..56

LIST OF FIGURES
Figure 1-1: Research Process …………………………………………………………..5
Figure 2-1: Theory of Reasoned Action ……………………………………………….11
Figure 2-2: Theory of Planned Behavior ………………………………………………12
Figure 2-3: Technology Acceptance Model (TAM) ……………………………………13
Figure 2-4: Innovation Diffusion Theory (IDT) ……………………………………….15
Figure 2-5: Research Framework ………………………………………………………19
Figure 4-1: Structural Model Testing Result …………………………………………57
REFERENCES
Agudo-PeregrinaFélix, Ángel F., Pascual-Miguel, J., Julián Chaparro-Peláez (2014).
Behavioral intention, use behavior and the acceptance of electronic learning
systems: Differences between higher education and lifelong learning.Computers
in Human Behavior, Volume 34, May 2014, Pages 301-314
Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. In J. Kuhl,
& J. Beckmann, (Eds.), Action control: From cognition to behavior (pp. 11-39).
Berlin: Springer.
Ajzen, I. (2002). Perceived Behavioral Control, Self-Efficacy, Locus of Control, and the
Theory of Planned Behavior1. Journal of Applied Social Psychology, 32, 665–
683.
Ajzen, L. (2002) Attitude and related psychosocial constructs. Thousand Oaks: Sage.
Andrews, F. M. (1991). Measures of Personality and social Psychological Attitudes. Gulf
Professional Publishing.
Alsajjan B., Dennis C. Internet Banking Acdeptance Model: Cross-Market Examination.
J of Business Research 2010; 63: 957-963.
Analysis of users and non-users of smartphone applications. Telematics and
Informatics, 27(3), 242-255. doi: 10.1016/j.tele.2009.11.001
Bagozzi, R. P., & Yi, Y. (1988). On the Evaluation of Structure Equation Models.
Journal of the Academy of Marketing Science, 16(1), 74-94.
Bauer, R.A. (1960). Consumer behavior as risk taking. In Risk Taking and Information
Handling in Consumer Research, Cox, D. F. (Ed.), Cambridge, MA: Harvard
University Press, pp. 23-33.
Baregheh, A., Rowley, J., & Sambrook, S. (2009). Towards a multidisciplinary
definition of innovation. Management Decision, 47(8), 1323-1339. doi:
10.1108/00251740910984578
Benbasat, I., & Barki, H. (2007). Quo vadis, TAM? Journal of the Association for
Information Systems, 8(4).
Bennett, J., & Bennett, L. (2003). A review of factors that influence the diffusion of
innovation when structuring a faculty training program. The Internet and Higher
Education, 6(1), 53-63.
Blythe, J. (1999). Innovativeness and newness in high‐tech consumer durables. Journal
Brown, S. A., & Venkatesh, V. (2005). Model of adoption of technology in households:
A baseline model test and extension incorporating household life cycle. MIS
Quarterly, 399-426.
Business Next (2015). Twitch Interview. Retrieved from
http://www.bnext.com.tw/article/view/id/35925.
Cantoni, V., Cellario, M., & Porta, M. (2004). Perspectives and challenges in e-
learning: Towards natural interaction paradigms. Journal of Visual Languages
and Computing, 15(5),333–345.
Capital, credit, interest, and the business cycle (Vol. 55): Transaction publishers.
CERTAINTY. Louisiana State University.
Chan, S. C. & Lu, M. T. (2004). Understanding internet banking adoption and use
behavior: a Hong Kong perspective. Journal of Global Information Management,
12(3), 21-43.
Chin-Yang, Lin. (2016). Exploring the factors that affect Behavior Intention to use Live
Streaming Video Platform.
Chin, W. W. (1998). The partial least squares approach to structural equation modeling.
Chin, W. W., Marcolin, B. L., & Newsted, P. R. (2003). A partial least squares latent
variable modeling approach for measuring interaction effects: Results from a
Monte Carlo simulation study and an electronic-mail emotion/adoption study.
Information Systems Research, 14(2), 189-217.
Chiu C. M. Lin H. Y., Sun S. Y., Hus M. H. Understanding customers’ loyalty
intentions towards online shopping: an integration of technology acceptance
model and fairness theory. Behavior& Information Technology.2009; 28: 347-
360.
Comrey, AL; Reise, SP; Waller, NG. (2000). Factor analysis and scale
revision.psychological assessment,12(3), 287-297
Coursaris, C. K., Osch, W. V., Sung, J., & Yun, Y. (2013). Disentangling Twitter's
Adoption and Use (Dis)Continuance: A Theoretical and Empirical Amalgamation
of Uses and Gratifications and Diffusion of Innovations. AIS Transactions on
Human-Computer Interaction, 5(1).
Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests.
Psychometrika, 16(3),297-334.
Cronbach, L. J., & Meehl, P. E. (1955). Construct validity in psychological tests.
Phycological Bulletin, 52(4), 281-302.
Davis, F. D. (1986). A technology acceptance model for empirically testing new
Davis, F. D. (1986). Technology acceptance model for empirically testing new end-user
information systems: Theory and results. MA, USA: Massachussetts Institute of
Technology.
Davis, F. D. (1989). Perceived Usefulness, Ease of Use, and User Acceptance of
Information Technology. MIS Quarterly.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of
information technology. MIS Quarterly, 13, 319–339.
Davis, F. D. (1993). User acceptance of information technology: System characteristics,
user perceptions and behavioral impacts. International Journal of Man–Machine
Studies, 38, 475–487.
Davis, F. D., Bagozzi, R. P., & Warchaw, P. R. (1989). User Acceptance of Computer
Technology: A Comparison of Two Theoretical Models. Management Science,
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). Extrinsic and Intrinsic Motivation
to Use Computers in the Workplace. Journal of applied social psychology,
22(14), 1111-1132.
Davis, S., (1987). Future Perfect. Addison Wesley, MA.
De Freitas, S., & Oliver, M. (2006). How can exploratory learning with games and
simulations within the curriculum be most effectively evaluated? Computer &
Education, 46(3), 249–264.
Dohoon Kim, Hyejung Chang (2006). Key functional characteristics in designing and
operating health information websites for user satisfaction: An application of the
extended technology acceptance model.INTERNATIONAL JOURNAL OF
MEDICAL INFORMATICS, 76(11-12), 790-800.
Dorn, J., Hrastnik, P., Rainer,A. (2007). Web service discovery and composition for
virtual enterprises. Int. J. Web Serv. Res., 4 (2007), pp. 23–39.
Dowling, Grahame R. and Richard Staelin (1994), “A Model of Perceived Risk and
Intended Risk-handling Activity,” Journal of Consumer Research, 21 (June), 119-
34.
Dupagne, M. & Driscoll, P. (2005, May). First phase of a scale development project to
measure perceived attributes of consumer communication technologies. Paper
presented at the annual meeting of the International Communication Association,
Sheraton New York, New York, NY.
End-user information systems: Theory and results. Massachusetts Institute of
Technology.
Equation models. Sociological methodology, 13(1982), 290-312.
Ernst, C.-P. H., Pfeiffer, J., & Rothlauf, F. (2013). The Influence of Perceived Belonging
on Social Network Site Adoption.
EXPECTATION CORRELATES OF COLLEGE STUDENTS’INTENTION
Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and behavior: An
introduction to theory and research.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with
unobservable variables and measurement error. Journal of marketing research,
39-50.
Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with
Unobservables and Measurement Error. Journal of Marketing Research.
Forseeing Innovative New Digiservices (FIND) (2014). The population statistics of
Internet users in Taiwan before April 2014. Retrieved from
http://www.find.org.tw/market_info.aspx?n_ID=8510,
Framingham, M. (2015). Worldwide Wearables Market Forecast to Reach 45.7 Million
Units Shipped in 2015 and 126.1 Million Units in 2019, According to IDC.
Worldwide Quarterly Wearable Device Tracker. 2015, from
http://www.idc.com/getdoc.jsp?containerId=prUS25519615
Gefen, D., & Straub, D. (2005). A practical guide to factorial validity using PLS-Graph:
Tutorial and annotated example. Communications of the Association for
Information systems, 16(1), 5.
Gökhan, M. (2008). Wearable technologies for emotion communication. Middle East
Technical University Journal of the Faculty of Architecture, 25(1), 153.
Gorsuch, R. L. (1990). Common factor analysis versus component analysis: Some well
and little known facts. Multivariate Behavioral Research, 25(1), 33-39.
Granello, D. H., & Wheaton, J. E. (2004). Online data collection: Strategies for
research. Journal of Counseling & Development, 82(4), 387-393.
Ha, I., Yoon, Y., & Choi, M. (2007). Determinants of adoption of mobile games under
mobile broadband wireless access environment. Information & Management,
44(3), 276-286.
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2009). Multivariate data
analysis (7th ed.). Upper Saddle River, NJ: Pearson Prentice Hall.

Hinton, P. R., McMurry, I., & Brownlow, C. (2004). SPSS Explained. Routledge.
Holden, R. J., & Karsh, B.-T. (2010). The technology acceptance model: its past and its
future in health care. Journal of Biomedical Informatics, 43(1), 159–172.
Hoyle, R. H. (1995). The structural equation modeling approach: Basic concepts and
fundamental issues. In R. H. Hoyle (Ed.), Structural equation modeling:
Concepts, issues, and applications. Thousand Oaks, CA: Sage Publications.
Hsu, C.-L., & Lu, H.-P. (2004). Why do people play on-line games? An extended TAM
with social influences and flow experience. Information & Management, 41(7),
853-868.
Information & Management, 38(4), 217-230.
Jarvenpaa, S. L., Tractinsky, N., and Vitale, M. ìConsumer trust in an Internet store,î
Information Technology and Management (1), 2000, pp. 45ñ71
Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31-36.
Karahanna, E., Ahuja, M., Srite, M., & Galvin, J. (2002). Individual differences and
relative advantage: the case of GSS. Decision Support Systems, 32(4), 327-341.
Karahanna, E., Straub, D. W., & Chervany, N. L. (1999). Information technology
adoption across time: a cross-sectional comparison of pre-adoption and post-
adoption beliefs. MIS Quarterly, 183-213.
Kim, D. J., Yue, K., Hall, S. P., Gates, T. (2009).Global diffusion of the Internet XV:
Web 2.0 technologies, principles, and applications: a conceptual framework from
technology push and demand pull perspective. Commun. AIS, 24 (2009), pp.
657–672.
Koufaris, M. (2002). Applying the technology acceptance model and flow theory to
online consumer behavior. Information Systems Research, 13(2), 205-223.
Landry, C. C. (2003). SELF-EFFICACY, MOTIVATION, AND OUTCOME
Lederer A. L., Maupin D. J., Sena M. P., Zhuang Y. The Technology Acceptance
Model and the World Wide Web. Decision Support Systems 2000; 29: 269-282.
Lee, C. and Green, R. T., Cross-Culture Examination of the Fishbein Behavioral
Intentions Model, Journal of International Business Studies, 1991, Vol. 2, pp.289-
305.
Liaw, S. S., Huang, H. M., & Chen, G. D. (2007). An activity–theoretical approach to
investigate learners’ factors toward e-learning systems. Computers in Human
Behavior, 23, 1906–1920.
Liu S. H., Liao H. L., Peng C. J. Applying the Technology Acceptance Model and Flow
Theory to Online E-learning User’s Accepance Behavior. Issues in Information
Systems 2005; VI:175-181.
Liu, I. F., Chen, M. C., Sun, Y. S., Wible, D., & Kuo, C. H. (2010). Extending the TAM
model to explore the factors that affect Intention to Use an Online Learning
Community. Computers and Education, 54(2), 600–610.
Lowry, P. B., & Gaskin, J. (2014). Partial least squares (PLS) structural equation
modeling (SEM) for building and testing behavioral causal theory: When to
choose it and how to use it. Professional Communication, IEEE Transactions on,
57(2), 123-146.
Management Science, 32(5), 590-607.
Mao, E., & Palvia, P. (2006). Testing an Extended Model of IT Acceptance in the
Chinese Cultural Context. The DATA BASE for Advances in Information Systems,
37.
McConnell, S., Kolopack, P., & Davis, A. M. (2001). The Western Ontario and
McMaster Universities Osteoarthritis Index (WOMAC): a review of its utility and
measurement properties. Arthritis Care & Research, 45(5), 453-461.
Miyazaki, Anthony D. and Ana Fernandez. Consumer Perceptions of Privacy and
Security Risks for Online Shopping. The Journal of Consumer Affairs, Volume
35, No. 1. Summer 2001, pg. 27.
Modern methods for business research, 295(2), 295-336.
Moon, J.-W., & Kim, Y.-G. (2001). Extending the TAM for a World-Wide-Web
context.
Moore, G. C., & Benbasat, I. (1991). Developing of an instrument to measure the
perceptions of adopting an information technology innovation. Information
Systems Research, 2, 192-222.
Netemeyer, r. G. & Bearden, W. O., A Comparative Analysis of Two Models of
Behavioral Intention, Journal of Academy of Marketing, 1992, Vol. 20, No. 1,
pp. 49-59.
Ngai, E. W. T., Poon, J. K. L., & Chan, Y. H. C. (2007). Empirical examination of the
adoption of WebCT using TAM. Computers and Education, 48, 250–267.
Numally, J. C. (1978). Psychometric theory. NY: McGraw-Hill.
Product & Brand Management, 8(5), 415-429. doi: 10.1108/10610429910296028
Padilla-Meléndez, A., Del Aguila-Obra, A. R., & Garrido-Moreno, A. (2013). Perceived playfulness, gender differences and technology acceptance model in a
blended learning scenario. Computers and Education, 63, 306–317.
Park, Y., & Chen, J. V. (2007). Acceptance and adoption of the innovative use of
smartphone. Industrial Management & Data Systems, 107(9), 1349-1365. doi:
10.1108/02635570710834009
Pavlou, P., & Fygenson, M. (2003). Understanding and predicting electronic commerce
adoption: an extension of the theory of planned behavior. MIS Quarterly, 30(1),
115–143.
Poter C. E., Donthu N. Using the Technology Acceptance Model to Explain How
Attidudes Determine Internet Usage: The Role of Percieved Access Barriers and
Demographics. J of Business Research 2006; 59: 999-1007.
R. Chang et al. / Journal of Development Economics 90 (2009) 33–49
Rivera, J., & ven der Meulen, R. (2014). Gartner Says Worldwide Smartwatch and
Wristband Market Is Poised for Take Off. 2015, from
http://www.gartner.com/newsroom/id/2848817
Rogers, E. M. (2003). Diffusion of Innovation (Fifth ed.). New York: The Free Press.
Roselius, T.(1971), ”Consumer rankings of risk reduction methods”, Journal of
Marketing, Vol.35(Jan), pp.56-61.
Ryan, M. J. and Bonfield, E. H., Fishbein’s Intentions Model: A test of External and
Pragmatic Validity, Journal of Marketing, 1980, Vol. 44( Spring), pp.82-95.
Ryan, M. J. and Bonfield, E. H., The Fishbein Extended Model and Consumer
Behavior, Journal of Consumer Research, 1975, Vol. 2(September), pp.118-136.
Schiffman, L. G., & Kanuk, L. L. (2009). Consumer behaviour. New Delhi: PHI. Schumpeter, J. A. (1934). The theory of economic development: An inquiry into profits,
Sekaran, U., & Bougie, R. (2010). Research Methods for Business: A Skill Building
approach. John Wiley & Sons.
Shih, H.-P. (2004). An empirical study on predicting user acceptance of e-shopping on
the Web. Information & Management, 41(3), 351-368.
Shin, D.-H. (2009). Towards an understanding of the consumer acceptance of mobile
wallet. Computers in Human Behavior, 25(6), 1343-1354. doi:
10.1016/j.chb.2009.06.001
Shou-Chi, Chang, (2016). Exploring Consumers’ Intention to Accept Wearable
Technology: A Study on the Smartwatch.
Sobel, M. E. (1982). Asymptotic confidence intervals for indirect effects in structural
Soper, D. S. (2015). Sobel Test Calculator for the Significance of Mediation [Software].
http://www.danielsoper.com/statcalc.
Sun, H., & Zhang, P. (2005). An empirical study on causal relationships between
perceived enjoyment and perceived ease of use. SIGHCI 2005 Proceedings, 8.
Sun, H., & Zhang, P. (2006). Causal Relationships between Perceived Enjoyment and
Perceived Ease of Use - An Alternative Approach. Journal of the Association for
Information Systems.
Tong X. Across-national Investigation of an Extended Technology Acceptance Model
in the Online Shopping Contenxt. International J of Retail & Distribution
Management 2010; 38: 742-759.
Tseng, W.-T., Dörnyei, Z., & Schmitt, N. (2006). A new approach to assessing strategic
learning: The case of self-regulation in vocabulary acquisition. Applied
Linguistics, 27(1), 78-102.
Turel, O., Serenko, A., & Bontis, N. (2010). User acceptance of hedonic digital artifacts:
A theory of consumption values perspective. Information & Management, 47(1),
53-59.
Van de Ven, A. H. (1986). Central problems in the management of innovation.
Van der Heijden, H. (2003). Factors influencing the usage of websites: the case of a
generic portal in The Netherlands. Information & Management, 40(6), 541-549.
doi: 10.1016/s0378-7206(02)00079-4
Van der Heijden, H. (2004). User acceptance of hedonic information systems. MIS
Quarterly, 695-704.
Venkatesh, V. (2000). Determinants of perceived ease of use: Integrating control,
intrinsic motivation, and emotion into the technology acceptance model.
Information Systems Research, 11(4), 342-365.
Venkatesh, V. (2001). Determinants of perceived ease of use: Integrating control,
intrinsic motivation, and emotion into the technology acceptance model.
Information Systems Research, 11(4), 342–365.

Venkatesh, V., & Bala, H. (2008). Technology acceptance model 3 and a research
agenda on interventions. Decision sciences, 39(2), 273-315.

Venkatesh, V., & Davis, F. D. (1996). A model of the antecedents of perceived ease of
use: Development and test. Decision Sciences, 27, 451–481.

Venkatesh, V., & Davis, F. D. (2000). A Theoretical Extension of the Technology
Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2),
186-204.
Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology
acceptance model: four longitudinal field studies. Management Science, 46(2),
186–204.
Venkatesh, V., Morris, M. G., Gordon, D., & Davis, F. D. (2003). User Acceptance of
Information Technology: Toward a Unified View. MIS Quarterly, 27, 425-478.
Venkatesh, V., Speier, C., & Morris, M. G. (2002). User acceptance enablers in
individual decision making about technology: toward an integrated model.
Decision Sciences, 33(2), 297–316.
Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer acceptance and use of
information technology: extending the unified theory of acceptance and use of
technology. MIS Quarterly, 36(1), 157-178.
Verkasalo, H., López-Nicolás, C., Molina-Castillo, F. J., & Bouwman, H. (2010).
Veryzer, R. W., Jr. (1998). Discontinuous Innovation and the New Product Development
Process. Journal of product innovation management, 15, 304-321.
Wang C. C., Lo S. K., Fang W. Extending the Technology Acceptance Model to Mobil
Telecommunication Innovation: The Existence of network Externalities. J of
Customer Behaviour 2008; 7:101-110.
Wang L, Jiang T and Gusfield D. 2000. A more efficient approximation scheme for tree
alignment. SIAM Journal on Computing, 30(1), 283- 299.
Wang, Y.-S., Wu, M.-C., & Wang, H.-Y. (2009). Investigating the determinants and age
and gender differences in the acceptance of mobile learning. British Journal of
Educational Technology, 40(1), 92-118. doi: 10.1111/j.1467-8535.2007.00809.x
Warshaw, P. R., & Davis, F. D. (1985). Disentangling behavioral intention and
behavioral expectation. Journal of experimental social psychology, 21(3), 213-
228.
Wetzels, M., Odekerken-Schröder, G., & Van Oppen, C. (2009). Using PLS path
modeling for assessing hierarchical construct models: guidelines and empirical
illustration. MIS Quarterly, 177-195.
Yi, M. Y., & Hwang, Y. (2003). Predicting the use of web-based information systems: self-efficacy, enjoyment, learning goal orientation, and the technology acceptance
model. International Journal of Human-Computer Studies, 59(4), 431-449. doi: 10.1016/s1071-5819(03)00114-9
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊