跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/10 16:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃俊皓
研究生(外文):Chun-Hao Huang
論文名稱:運用動態社群網絡概念於專利探勘探討遠距健康照護產業的潛在技術機會
論文名稱(外文):Using the Dynamic Social Network Concept for Patent Mining to Discover Technological Opportunities in the Telehealthcare Industry
指導教授:王瑞德王瑞德引用關係
口試委員:許瓊文巫亮全
口試日期:2017-06-26
學位類別:碩士
校院名稱:國立中興大學
系所名稱:科技管理研究所
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:39
中文關鍵詞:動態社群網路遠距健康照護專利探勘技術機會
外文關鍵詞:Dynamic social network analysisOpportunity analysistele-healthcarepatent mining
相關次數:
  • 被引用被引用:0
  • 點閱點閱:200
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於人口高齡化,醫療保健逐漸成為一個非常重要的課題。而這個問題正在推動著遠距健康照護市場的發展,並同時提升其競爭力。這項研究提出了一種專利探勘的方法來定義遠距醫療照護產業的技術機會。專利是基於從USPTO資料庫所收集的專利文獻,並使用彼此之間的引用關係來建構專利網絡。研究使用Girvan-Newman演算法識別不同時間序列中的專利社群,並且使用Group Evolution Discovery(GED)演算法來觀察專利社群的演化模式。其中一些不斷發展的專利社群,值得作為潛在的技術機會來進一步探索,而研究使用文字探勘中的主題模型方法來探索這些社群的潛在技術機會。結果中所發現的可能潛在技術機會有遠距健康照護機器人、生物奈米植入式裝置和可靠的IOT傳輸技術。這些研究結果可能有助於台灣的遠距健康照護產業製定研發策略。
Due to growing aging population, medical care has been becoming a very important issue. This issue is driving up the tele-healthcare market, while increasing its competition intensity. This research presents a patent mining methodology to identify technological opportunities in the tele-healthcare industry. The patent citation network is constructed based on patent documents collected from the USPTO database. The Girvan–Newman algorithm is used to identify patent communities along different time windows and the Group Evolution Discovery (GED) algorithm is used to discover evolution patterns of patent communities. Some evolving patent communities are worth further exploring potential technology opportunities using the topic modeling approach in text mining. The potential technological opportunities may include tele-healthcare robots, bio-nanoparticle implantable devices, and the reliable IOT transmission. The research findings may help Taiwan’s tele-healthcare industry to formulate their R&D strategies.
摘要 i
Abstract ii
圖目錄 iv
表目錄 v
第一章 緒論 1
第一節 研究背景 1
第二節 研究目的 2
第二章 文獻探勘 4
第一節 文字探勘 4
第二節 專利探勘 5
第三節 社群網絡分析 6
第四節 遠距健康照護產業 6
第三章 研究方法 8
第一節 研究架構 8
第二節 專利文件蒐集與專利網絡建立 10
第三節 專利網絡建立 10
第四節 目標社群定義 11
第五節 文字探勘與技術機會 12
第四章 研究結果 15
第一節 社群網絡 15
第二節 技術機會—合併 16
第三節 技術機會—成長 21
第四節 技術機會—成型 27
第五章 結論與建議 32
第一節 結論 32
第二節 研究限制與建議 33
參考文獻 34
徐業良, & 黃于珍. (2014). 善用資通訊科技協助高齡者照護-從遠距居家照護到溝通與關懷. 公共治理季刊, 2(2), 58-68.
李幸宜. (2016). 健康新思維 產業新契機. 工業技術與資訊月刊, 24(6),16-23.
陳怡靜, & 王瑞德. (2016,9月). 關鍵字專利分析探討遠距健康照護產業的潛在機會.科技管理年會. 新竹市:清華大學.
劉麗惠. (2017). 從智慧城市出發 看見智慧健康大商機. 工業技術與資訊月刊, 25(6),16-19.
Adai, A. T., Date, S. V., Wieland, S., & Marcotte, E. M. (2004). LGL: creating a map of protein function with an algorithm for visualizing very large biological networks. Journal of molecular biology, 340(1), 179-190.
Berry, M. W., Dumais, S. T., & O’Brien, G. W. (1995). Using linear algebra for intelligent information retrieval. SIAM review, 37(4), 573-595.
Bródka, P., Saganowski, S., & Kazienko, P. (2013). GED: the method for group evolution discovery in social networks. Social Network Analysis and Mining, 3(1), 1-14.
Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine Learning research, 3(Jan), 993-1022.
Blei, D. M., & Lafferty, J. D. (2007). A correlated topic model of science. The Annals of Applied Statistics, 17-35.
Chen, L. S., Tsai, C. Y., Liu, T. Y., Tung, T. H., Chiu, Y. H., Chan, C. C., ... & Chen, T. H. H. (2004). Feasibility of tele-ophthalmology for screening for eye disease in remote communities. Journal of telemedicine and telecare, 10(6), 337-341.
Cross, R., Borgatti, S. P., & Parker, A. (2002). Making invisible work visible: Using social network analysis to support strategic collaboration. California management review, 44(2), 25-46.
Daim, T. U., Rueda, G., Martin, H., & Gerdsri, P. (2006). Forecasting emerging technologies: Use of bibliometrics and patent analysis. Technological Forecasting and Social Change, 73(8), 981-1012.
Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (1990). Indexing by latent semantic analysis. Journal of the American society for information science, 41(6), 391.
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the royal statistical society. Series B (methodological), 1-38.
Dennis, S., Landauer, T., Kintsch, W., & Quesada, J. (2003). Introduction to latent semantic analysis. In Slides from the tutorial given at the 25th Annual Meeting of the Cognitive Science Society, Boston.
Dimitrov, D. V. (2016). Medical internet of things and big data in healthcare. Healthcare informatics research, 22(3), 156-163.
DIGITIMES(民104年7月2日). 遠距醫護已成趨勢 相關技術前景看【新聞群組】. 取自http://www.digitimes.com.tw/tw/dt/n/shwnws.asp?CnlID=13&packageid=9554&id=0000432074_IEA1BZQE6YB5Y35SA7RVY&cat=50&ct=1
Dorsey, E. R., & Topol, E. J. (2016). State of telehealth. New England Journal of Medicine, 375(2), 154-161.
Ernst, H. (2003). Patent information for strategic technology management. World patent information, 25(3), 233-242.
Ernst, H., Fabry, B., & Soll, J. H. (2004). Enhancing market-oriented R&D planning by integrated market and patent portfolios.
Fischer, T., & Leidinger, J. (2014). Testing patent value indicators on directly observed patent value—An empirical analysis of Ocean Tomo patent auctions. Research Policy, 43(3), 519-529.
Fleisher, C. S., & Bensoussan, B. E. (2003). Strategic and competitive analysis: methods and techniques for analyzing business competition (p. 457). Upper Saddle River, NJ: Prentice Hall.
Girvan, M., & Newman, M. E. (2002). Community structure in social and biological networks. Proceedings of the national academy of sciences, 99(12), 7821-7826.
Greenhalgh, T., Procter, R., Wherton, J., Sugarhood, P., & Shaw, S. (2012). The organising vision for telehealth and telecare: discourse analysis. BMJ open, 2(4), e001574.
Guo, J., Wang, X., Li, Q., & Zhu, D. (2016). Subject–action–object-based morphology analysis for determining the direction of technological change. Technological forecasting and social change, 105, 27-40.
Healthcare Intelligence Network (2017, May 25). Guest Post: 5 Legal Considerations for Maximizing Telehealth Security[Blog]. Retrieved from http://hin.com/blog/2017/05/25/guest-post-5-legal-considerations-for-maximizing-telehealth-security/
Hofmann, T. (1999, August). Probabilistic latent semantic indexing. In Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval (pp. 50-57). ACM.
Kazienko, P., & Ruta, D. (2011). The impact of customer churn on social value dynamics. In Virtual Communities: Concepts, Methodologies, Tools and Applications (pp. 2086-2096). IGI Global.
Kasravi, K., & Risov, M. (2007, January). Patent Mining-Discover y of Business Value from Patent Repositor ies. In System Sciences, 2007. HICSS 2007. 40th Annual Hawaii International Conference on (pp. 54-54). IEEE.
Kim, Y. G., Suh, J. H., & Park, S. C. (2008). Visualization of patent analysis for emerging technology. Expert Systems with Applications, 34(3), 1804-1812.
Kruskal, J. B. (1964). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29(1), 1-27.
Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato's problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review, 104(2), 211.
Lee, J. L., Chen, W. Y., Tzu-Chun, C., & Hung-Chan, H. (2013). Tele-Healthcare in Taiwan: Status quo and future challenges. Journal of Medicine and Health, 2(2e).
Lee, S., Yoon, B., & Park, Y. (2009). An approach to discovering new technology opportunities: Keyword-based patent map approach. Technovation, 29(6), 481-497.
Li, Z., Wang, C., Xie, X., Wang, X., & Ma, W. Y. (2007, September). Exploring LDA-based document model for geographic information retrieval. In Workshop of the Cross-Language Evaluation Forum for European Languages (pp. 842-849). Springer, Berlin, Heidelberg.
Ma, T., Porter, A. L., Guo, Y., Ready, J., Xu, C., & Gao, L. (2014). A technology opportunities analysis model: applied to dye-sensitised solar cells for China. Technology Analysis & Strategic Management, 26(1), 87-104.
Marketsandmarkets (2017, April). Active Implantable Medical Devices Market worth 26.75 Billion USD by 2022[News group]. Retrieved from http://www.marketsandmarkets.com/Market-Reports/active-implantable-medical-devices-market-102063992.html
Marketsandmarkets (2015, September). Home Healthcare Market by Product (BP & Heart Rate Monitor, Ovulation Kit, HIV Test, ECG, EKG, Nebulizer, Hearing Aids, Pedometer, Cane, Walker, Wheelchairs), Software, Services (Rehabilitation, Skilled, Hospice), & Telehealth - Global Forecasts to 2020[News group]. Retrieved from http://www.marketsandmarkets.com/Market-Reports/home-healthcare-equipment-market-696.html
McLean, S., Protti, D., & Sheikh, A. (2011). Telehealthcare for long term conditions. Bmj, 342(5), 449-457.
Mihai; Mayer Lupu (Katja; Tait, John; Trippe, Anthony J.(Eds.)). (2011). Current Challenges in Patent Information. Springer.
Molloy, M., Shaw, R. J., Vaughn, J., & Hueckel, R. (2016). An Innovative Use of Telepresence Robots for Educating Healthcare Professional. Studies in health technology and informatics, 225, 989-990.
Mooney, R. J., & Bunescu, R. (2005). Mining knowledge from text using information extraction. ACM SIGKDD explorations newsletter, 7(1), 3-10.
Musiał, K., Kazienko, P., & Bródka, P. (2009, June). User position measures in social networks. In Proceedings of the 3rd Workshop on Social Network Mining and Analysis (p. 6). ACM.
Netzer, O., Feldman, R., Goldenberg, J., & Fresko, M. (2012). Mine your own business: Market-structure surveillance through text mining. Marketing Science, 31(3), 521-543.
Newman, M. E. (2006). Modularity and community structure in networks. Proceedings of the national academy of sciences, 103(23), 8577-8582.
Newman, M. E. J. (2016). Community detection in networks: Modularity optimization and maximum likelihood are equivalent. arXiv preprint arXiv:1606.02319.
Otte, E., & Rousseau, R. (2002). Social network analysis: a powerful strategy, also for the information sciences. Journal of information Science, 28(6), 441-453.
Scott, J., & Carrington, P. J. (2011). The SAGE handbook of social network analysis. SAGE publications.
Serrat, O. (2017). Social network analysis. In Knowledge solutions (pp. 39-43). Springer Singapore.
Shibata, N., Kajikawa, Y., & Sakata, I. (2010). Extracting the commercialization gap between science and technology—Case study of a solar cell. Technological Forecasting and Social Change, 77(7), 1147-1155.
Sievert, C., & Shirley, K. E. (2014, June). LDAvis: A method for visualizing and interpreting topics. In Proceedings of the workshop on interactive language learning, visualization, and interfaces (pp. 63-70).
Smith, T., & Sweeney, R. (2010). Fusion Trends & Opportunities Medical Devices and Communications. NERAC Publication, Connecticut, AnalystReport.
Stuart, T. E., & Podolny, J. M. (1996). Local search and the evolution of technological capabilities. Strategic Management Journal, 17(S1), 21-38.
Teichert, T., & Mittermayer, M. A. (2002). Text mining for technology monitoring. In Engineering Management Conference, 2002. IEMC'02. 2002 IEEE International (Vol. 2, pp. 596-601). IEEE.
Thorleuchter, D., Van den Poel, D., & Prinzie, A. (2010). Mining ideas from textual information. Expert Systems with Applications, 37(10), 7182-7188.
Tirunillai, S., & Tellis, G. J. (2014). Mining marketing meaning from online chatter: Strategic brand analysis of big data using latent dirichlet allocation. Journal of Marketing Research, 51(4), 463-479.
Trappey, C. V., Wu, H. Y., Taghaboni-Dutta, F., & Trappey, A. J. (2011). Using patent data for technology forecasting: China RFID patent analysis. Advanced Engineering Informatics, 25(1), 53-64.
Trobec, R., & Stanič, U. (2011, May). Telehealth: A myth or reality?. In MIPRO, 2011 Proceedings of the 34th International Convention (pp. 295-300). IEEE.
Tseng, Y. H., Lin, C. J., & Lin, Y. I. (2007). Text mining techniques for patent analysis. Information Processing & Management, 43(5), 1216-1247.
Wei, X., & Croft, W. B. (2006, August). LDA-based document models for ad-hoc retrieval. In Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval (pp. 178-185). ACM.
Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications (Vol. 8). Cambridge university press.
Yang, Y., Akers, L., Klose, T., & Yang, C. B. (2008). Text mining and visualization tools–impressions of emerging capabilities. World Patent Information, 30(4), 280-293.
Yoon, B., & Park, Y. (2004). A text-mining-based patent network: Analytical tool for high-technology trend. The Journal of High Technology Management Research, 15(1), 37-50.
Yoon, B., & Park, Y. (2005). A systematic approach for identifying technology opportunities: Keyword-based morphology analysis. Technological Forecasting and Social Change, 72(2), 145-160.
Yoon, B. (2008). On the development of a technology intelligence tool for identifying technology opportunity. Expert Systems with Applications, 35(1), 124-135.
Yoon, J., & Kim, K. (2012). Detecting signals of new technological opportunities using semantic patent analysis and outlier detection. Scientometrics, 90(2), 445-461.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top