跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/18 21:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張敏修
研究生(外文):Min-Hsiu Chang
論文名稱:乳酸菌分離株之抗菌活性與細菌素基因探討及應用
論文名稱(外文):Study on antibacterial activity and bacteriocin gene of lactic acid bacteria isolates and their application
指導教授:陳錦樹陳錦樹引用關係王淑珍王淑珍引用關係
指導教授(外文):Chin-Shuh ChenShu-Chen Wang
口試委員:郭建民蔡永祥龔賢鳳
口試日期:2017-01-24
學位類別:博士
校院名稱:國立中興大學
系所名稱:食品暨應用生物科技學系所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:114
中文關鍵詞:抗菌活性Plantaricin 基因乳酸菌豆腐廢水抗氧化
外文關鍵詞:Antibacterial activityPlantaricin geneLactic acid bacteriaTofu waste waterAntioxidant
相關次數:
  • 被引用被引用:1
  • 點閱點閱:682
  • 評分評分:
  • 下載下載:116
  • 收藏至我的研究室書目清單書目收藏:0
病原性大腸桿菌 (Escherichia coli, E. coli)、金黃色葡萄球菌 (Staphylococcus aureus, S. aureus) 和沙門氏腸炎桿菌 (Salmonella enterica serovar Enteritidis, Sal. Enteritidis) 是常見引起食物中毒的食品病原菌。全球的研究中發現,由食物中分離出的病原菌對抗生素耐受性有持續增加的趨勢,而乳酸桿菌具有產生有機酸和細菌素的特定蛋白質或胜肽之能力,可抑制多種病原菌的生長。本研究自發酵芥菜、醃菜和其他植物發酵產品中分離出 50 株乳酸菌,研究其對抗 E. coli、S. aureus 和具抗藥性 Sal. Enteritidis 的抗菌活性,並利用聚合酶鏈反應 (PCR) 方法鑑定菌種及 plantaricin 基因。結果顯示乳酸菌分離株具有抑制 S. aureus、E. coli 及 Sal. Enteritidis 生長之能力,其中B0055、B0106、B0115 和 B0126 利用 PCR 方法檢測出含有 plnABCD、plnEFI、plnJ/ K 和 plnG/ V 的基因,且經由 16S rDNA 序列鑑定之結果為 Lactobacillus plantarm (L. plantarm),推測所產生抑菌活性物質可能為蛋白質或胜肽類之細菌素。後續研究以 B0106 之發酵上清液 (spent culture supernatants, SCS) 進行穩定性試驗,結果顯示 B0106 之 SCS 對熱及酵素具有穩定性。B0106 菌體對人類結腸腺癌 (Caco-2) 細胞模擬腸道上皮細胞組織具有良好的吸附能力,而 B0106 菌體及其 SCS 亦能有效降低 Sal. Enteritidis SE07吸附於 Caco-2 細胞。另外本研究亦利用豆腐製作過程中所產生之廢水 (簡稱豆腐水,TFW) 作為乳酸菌的培養基,並探討乳酸菌發酵後之 TFW 上清液抗氧化及抗菌的活性。結果顯示 L. plantarm B0106 培養於 TFW 中,經 20 小時培養可獲得菌數高達9 log CFU/ ml,且具有抑制抗耐甲氧西林金黄色葡萄球菌 (methicillin-resistant S. aureus, BCRC 15211) 生長之能力,可於 6 個小時達到 90% 以上之抑制效果。本乳酸菌分離株含有大部分的 plantaricin 細菌素基因,且對於病原菌及具抗藥性之病原菌有著高度的抑制活性,L. plantarm B0106 亦能利用 TFW 中的營養物質達到 9 log CFU/ ml菌量,其發酵液亦具有良好的抗氧化活性及GABA含量。在未來有潛力發展成為抗菌劑來降低致病菌的感染發生,亦可減少抗藥性菌株的產生,且在保健食品及化妝品上亦具應用潛力。
Pathogenic Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Salmonella enterica serovar Enteritidis (Sal. Enteritidis) are food pathogens that cause severe food poisoning. In the global studies, it has been found that pathogens isolated from food have a tendency to continue to increase resistance to antibiotics, whereas lactic acid bacteria (LAB) has the ability to produce specific proteins or peptides that can inhibit the growth of many pathogens. In this study, 50 strains of LAB were isolated from fermented mustard, pickle and other plant fermentation products, and their antibacterial activities against E. coli, S. aureus and Sal. Enteritidis were studied. The strains with antibacterial activity were determined by polymerase chain reaction (PCR) to identify strains and plantaricin genes. The results showed that the strains of LAB in this study were identified as Lactobacillus plantarm. Among of the tested LAB, B0055, B0106, B0115 and B0126 were detected positively in plnABCD, plnEFI, plnJ/ K and plnG/ V gene by PCR, suggesting that the antibacterial activity of the substance may be protein or peptides of plantaricin. B0106 spend culture supernatants (SCS) was stable to heat and enzyme. B0106 and its spend culture supernatants (SCS) could effectively reduce the adsorption of Sal.Enteritidis SE07 on human colonic adenocarcinoma cells (Caco-2). In addition, the waste water of tofu (TFW) was tested as the culture medium of LAB and the antioxidant, antimicrobial activity of the fermented TFW were also studied. The results showed that L. plantarm B0106 inoculated in TFW could grow up to 9 log CFU / ml after 20 hours and had the ability to inhibit the growth of methicillin-resistant S. aureus (BCRC 15211) to 90% after 6 hours. In this study, LAB strains contained most of the plantaricin genes and with inhibitory activity against pathogens. The TFW culture of L. plantarm B0106 has a good antioxidant activity and GABA content. In the future, it will be possible to use an antibacterial agent to reduce the incidence of pathogenic bacteria and reduce the emergence of drug-resistant strains, and application in health food and cosmetics has unlimited potential.
摘要....................................................i
Abstract..............................................iii
第一章 前言..............................................1
第二章 文獻回顧..........................................3
2.1. 食品傳染性病原菌..................................3
2.1.1. 金黃色葡萄球菌 (S. aureus)....................5
2.1.2. 大腸桿菌 (E. coli)...........................5
2.1.3. 沙門氏菌 (Salmonella spp.)...................6
2.2. 乳酸菌...........................................6
2.2.1. 乳酸菌的分類..................................7
2.2.2. 植生型乳酸菌..................................9
2.2.3. 乳酸菌在食品工業上的應用......................10
2.2.4. 細菌素之介紹.................................11
2.2.5. 乳酸菌對人體之保健功效........................16
2.3. 豆腐製作過程之廢棄物介紹..........................24
第三章 從發酵蔬菜中分離的 Lactobacillus plantarum 之抗菌活性
和 plantaricin 基因的探討........................26
3.1. 摘要............................................26
3.2. 前言............................................26
3.3. 材料與方法.......................................28
3.3.1. 實驗材料....................................28
3.3.2. 實驗方法....................................32
3.4. 結果與討論.......................................35
3.4.1. 乳酸菌之抗菌活性.............................35
3.4.2. 乳酸菌分離株之鑑定...........................37
3.4.3. plantaricin 基因的增幅與偵測.................40
3.5. 結論............................................44
第四章 乳酸菌對沙門氏菌之抗菌活性及抑制其吸附細胞之能力.....45
4.1. 摘要............................................45
4.2. 前言............................................45
4.3. 材料與方法.......................................47
4.3.1. 實驗材料....................................47
4.3.2. 實驗方法....................................51
4.4. 結果與討論......................................56
4.4.1. Sal. Enteritidis VSE01 與 SE07 抗生素敏感性試
驗..........................................56
4.4.2. 乳酸菌發酵上清液對 Sal. Enteritidis 的抗菌活
性..........................................58
4.4.3. 乳酸菌菌種鑑定及 plantaricin 基因偵測.........60
4.4.4. 乳酸菌 SCS 經加熱和酵素處理對抑菌活性之影響....63
4.4.5. 乳酸菌吸附 Caco-2 細胞能力試驗................66
4.4.6. B0106 及其 SCS 防止 Sal. Enteritidis 吸附 Caco-
2 細胞之試驗.................................66
4.4.7. B0106-SCS 對 Sal. Enteritidis 生長情形之影響.69
4.5. 結論............................................71
第五章 豆腐廢水特性及其應用於乳酸菌培養之評估..............72
5.1. 摘要............................................72
5.2. 前言............................................72
5.3. 材料與方法.......................................75
5.3.1. 實驗材料....................................75
5.3.2. 實驗方法....................................77
5.4. 結果與討論.......................................81
5.4.1. TFW 及發酵後之蛋白質、胜肽及 GABA 含量變化.....81
5.4.2. 乳酸菌在 TFW 中之生長曲線及添加糖類或蛋白質對乳酸
菌生長之影響.................................84
5.4.3. TFW 發酵後之抗氧化活性分析....................87
5.4.4. 乳酸菌發酵 TFW 抑制病原菌 MRSA 之能力.........89
5.5. 結論............................................91
第六章 參考文獻.........................................92
附錄一................................................111
附錄二................................................112
附錄三................................................113
附錄四................................................114
王鈺婷、黃翠萍、何旻臻、塗子毅、曾思堯、劉宗彥、蔡行恩、蘇美安、許仲霆、林澤揚、林旭陽、鍾月容、周秀冠、陳惠芳。2015。103年市售食品之微生物調查。食品藥物研究年報(6), 118-125。
吳聲怡。2012。乳酸菌對糖尿病併發症的影響。中華醫事科技大學生物醫學研究所。碩士論文。
呂珮嘉。2009。[6]-生薑醇美白活性及抗氧化能力之研究。弘光科技大學化妝品科技研究所。碩士論文。
李俊霖。2003。提高紅麴中monacolinK、GABA與降低citrinin生成量之研究。國立臺灣大學農業化學研究所。碩士論文。
李勝森、陳怡文、吳峻瑋、謝鈞任、馬雅均、朱紀實、羅至佑、呂英震。2016。篩選以大豆為發酵基質生產血管收縮素轉換酶抑制能力最佳之乳酸菌株。嘉大農林學報, 13, 95-104。
周政輝、吳淑靜、柯易昌。2001。市售黃豆加工食品之嘌呤含量分析。嘉南學報, 27, 185-194。
林芝伃。2011。植物性乳酸菌發酵豆渣之研究。國立嘉義大學食品科學系研究所。碩士論文。
林寅申。2003。發酵豆漿之乳清對血管升壓素轉換酶及脂氧合酶之抑制及其降低高血壓的效果。國立海洋大學食品科學系。碩士論文。
柯智元。2011。乳酸菌發酵黑豆奶最適產 γ-胺基丁酸條件及以強迫游泳試驗探討其抗憂鬱效果。國立臺灣海洋大學食品科學系。碩士論文。
洪建龍。2006。發芽糙米產製過程中微生物調控及其發酵生理活性產物之探討。國立臺灣大學植物病理與微生物學研究所。博士論文。
洪唯真。2014。以天然農業作物為發酵原料固態培養靈芝菌絲體及所得靈芝菌絲米基開發富含γ-胺基丁酸之乳酸菌發酵產品。國立臺灣海洋大學食品科學系。碩士論文。
唐嘉偉。2014。以乳酸菌發酵生產含 gamma-胺基丁酸之發酵乳及益生菌特性之分析。國立臺灣海洋大學食品科學系。碩士論文。
戚祖沅, 郭家維, & 鄭維智。2012。100年度台灣地區食品中毒案件分析。食品藥物研究年報(3), 138-144。
陳俞伶。2004。發酵豆乳中活性胜月太之生產。國立臺灣海洋大學食品科學系。碩士論文。
陳義昌。2005。抑制幽門桿菌發酵乳之研究。屏東科技大學食品科學系。碩士論文。
陳德祐。2009。牛與羊初乳乳清對益生菌生長影響及抗氧化作用之研究。亞洲大學生物科技學系。碩士論文。
曾上賢。2013。乳酸菌抑制血管收縮素轉換酶活性之及不同素材對其抑制活性之探討。嘉南藥理科技大學生物科技系。碩士論文。
黃欣珮。2013。利用大豆豆渣液態培養Aureobasidium pullulans NCH-218生產聚甘露糖酶及酵素特性分析。國立中興大學食品暨應用生物科技學系。碩士論文。
葉容安。2010。研究發酵與熱處理對金棗釀酒之機能性成分與其抗氧化性之影響。國立宜蘭大學食品科學系。碩士論文。
劉亞玲。2004。市售鮮乳乳酸菌之分離、鑑定及特性探討。嘉南藥理科技大學生物科技系。碩士論文。
賴南廷、李婉媜、李明鑫、陳惠芳。2014。102年度金黃色葡萄球菌檢驗之能力試驗。食品藥物研究年報(5), 326-333。
龍湘美。2004。乳酸菌細菌素抗菌作用及其在食品上應用之回顧。國立臺灣海洋大學食品科學系。碩士論文。
Abedi, D., Feizizadeh, S., Akbari, V., & Jafarian-Dehkordi, A. (2013). In vitro anti-bacterial and anti-adherence effects of Lactobacillus delbrueckii subsp bulgaricus on Escherichia coli. Research in Pharmaceutical Sciences, 8(4), 260-268.
Abee, T., Krockel, L., & Hill, C. (1995). Bacteriocins: modes of action and potentials in food preservation and control of food poisoning. International Journal of Food Microbiology, 28(2), 169-185.
Anderssen, E. L., Diep, D. B., Nes, I. F., Eijsink, V. G., & Nissen-Meyer, J. (1998). Antagonistic activity of Lactobacillus plantarum C11: two new two-peptide bacteriocins, plantaricins EF and JK, and the induction factor plantaricin A. Appl Environ Microbiol, 64(6), 2269-2272.
Anyogu, A., Awamaria, B., Sutherland, J. P., & Ouoba, L. I. I. (2014). Molecular characterisation and antimicrobial activity of bacteria associated with submerged lactic acid cassava fermentation. Food Control, 39, 119-127.
Ayeni, F. A., Sánchez, B., Adeniyi, B. A., de los Reyes-Gavilán, C. G., Margolles, A., & Ruas-Madiedo, P. (2011). Evaluation of the functional potential of Weissella and Lactobacillus isolates obtained from Nigerian traditional fermented foods and cow's intestine. International Journal of Food Microbiology, 147(2), 97-104.
Bacci, C., Boni, E., Alpigiani, I., Lanzoni, E., Bonardi, S., & Brindani, F. (2012). Phenotypic and genotypic features of antibiotic resistance in Salmonella enterica isolated from chicken meat and chicken and quail carcasses. International Journal of Food Microbiology, 160(1), 16-23.
Bachir, R. G., & Benali, M. (2012). Antibacterial activity of the essential oils from the leaves of Eucalyptus globulus against Escherichia coli and Staphylococcus aureus. Asian Pacific Journal of Tropical Biomedicine, 2(9), 739-742.
Bah, C. S. F., Carne, A., McConnell, M. A., Mros, S., & Bekhit, A. E. D. A. (2016). Production of bioactive peptide hydrolysates from deer, sheep, pig and cattle red blood cell fractions using plant and fungal protease preparations. Food Chemistry, 202, 458-466.
Balciunas, E. M., Martinez, F. A. C., Todorov, S. D., de Melo Franco, B. D. G., Converti, A., & de Souza Oliveira, R. P. (2013). Novel biotechnological applications of bacteriocins: A review. Food Control, 32(1), 134-142.
Cálix-Lara, T. F., Rajendran, M., Talcott, S. T., Smith, S. B., Miller, R. K., Castillo, A., Sturino, J. M., & Taylor, T. M. (2014). Inhibition of Escherichia coli O157:H7 and Salmonella enterica on spinach and identification of antimicrobial substances produced by a commercial Lactic Acid Bacteria food safety intervention. Food Microbiology, 38, 192-200.
Chang, M. H., Hong, S. F., Chen, J. H., Lin, M. F., Chen, C. S., & Wang, S. C. (2016). Antibacterial activity Lactobacillus plantarum isolated from fermented vegetables and investigation of the plantaricin genes. African Journal of Microbiology Research, 10(22), 796-803.
Chen, C. C., Chang, C. K., Duh, P. D., Wang, P. S., & Wang, S. C. (2013). Antibacterial properties of Lactobacillus plantarum isolated from fermented mustards against Streptococcus mutans. African Journal of Microbiology Research, 7(40), 4787-4793.
Chen, C. H., Huang, C. C., Chen, Y. J., Wang, H. F., & Yih, K. H. (2013). Study of total phenolic contents, DPPH free-radical scavenging activity, trolox equivalent antioxidant capacity and their major chemical components analyses of twenty-eight commonly used essential oils. Hungkuang Academic Review(69), 1-11.
Chen, Z. Y., Peng, C., Jiao, R., Wong, Y. M., Yang, N., & Huang, Y. (2009). Anti-hypertensive nutraceuticals and functional foods. Journal of Agricultural and Food Chemistry, 57(11), 4485-4499.
Chiang, S. S., & Pan, T. M. (2011). Antiosteoporotic effects of Lactobacillus -fermented soy skim milk on bone mineral density and the microstructure of femoral bone in ovariectomized mice. Journal of Agricultural and Food Chemistry, 59(14), 7734-7742.
Chimchang, J., Theparee, T., Ladda, B., Tanasupawat, S., Wongsatayanon, B. T., & Taweechotipatr, M. (2015). Antimicrobial properties of a potential probiotic Lactobacillus from Thai newborn feces. Journal of the Medical Association of Thailand = Chotmaihet Thangphaet, 98(Suppl 9), S116-122.
Chiu, C. H., Lu, T. Y., Tseng, Y. Y., & Pan, T. M. (2006). The effects of Lactobacillus-fermented milk on lipid metabolism in hamsters fed on high-cholesterol diet. Applied Microbiology and Biotechnology, 71(2), 238-245.
Cleveland, J., Montville, T. J., Nes, I. F., & Chikindas, M. L. (2001). Bacteriocins: safe, natural antimicrobials for food preservation. International Journal of Food Microbiology, 71(1), 1-20.
Crim, S. M., Griffin, P. M., Tauxe, R., Marder, E. P., Gilliss, D., Cronquist, A. B., Cartter, M., Tobin-D'Angelo, M., Blythe, D., Smith, K., Lathrop, S., Zansky, S., Cieslak, P. R., Dunn, J., Holt, K. G., Wolpert, B., & Henao, O. L. (2015). Preliminary incidence and trends of infection with pathogens transmitted commonly through food—Foodborne Diseases Active Surveillance Network, 10 US sites, 2006–2014. Morbidity and Mortality Weekly Report, 64(18), 495-499.
da Silva Sabo, S., Vitolo, M., González, J. M. D., & de Souza Oliveira, R. P. (2014). Overview of Lactobacillus plantarum as a promising bacteriocin producer among lactic acid bacteria. Food Research International, 64, 527-536.
Dan, S. D., Tabaran, A., Mihaiu, L., & Mihaiu, M. (2015). Antibiotic susceptibility and prevalence of foodborne pathogens in poultry meat in Romania. The Journal of Infection in Developing Countries, 9(1), 35-41.
Das, J. K., Mishra, D., Ray, P., Tripathy, P., Beuria, T. K., Singh, N., & Suar, M. (2013). In vitro evaluation of anti-infective activity of a Lactobacillus plantarum strain against Salmonella enterica serovar Enteritidis. Gut Pathogens, 5(1), 11.
Di Rienzo, T., D'Angelo, G., D'Aversa, F., Campanale, M. C., Cesario, V., Montalto, M., Gasbarrini, A., & Ojetti, V. (2013). Lactose intolerance: from diagnosis to correct management. Eur Rev Med Pharmacol Sci, 17 (Suppl 2), 18-25.
Diep, D. B., Håvarstein, L. S., & Nes, I. F. (1995). A bacteriocin-like peptide induces bacteriocin synthesis in Lactobacillus plantarum C11. Mol Microbiol, 18(4), 631-639.
Diep, D. B., Håvarstein, L. S., & Nes, I. F. (1996). Characterization of the locus responsible for the bacteriocin production in Lactobacillus plantarum C11. Journal of Bacteriology, 178(15), 4472-4483.
Diep, D. B., Håvarstein, L. S., Nissen-Meyer, J., & Nes, I. F. (1994). The gene encoding plantaricin A, a bacteriocin from Lactobacillus plantarum C11, is located on the same transcription unit as an agr-like regulatory system. Appl Environ Microbiol, 60(1), 160-166.
Diep, D. B., Mathiesen, G., Eijsink, V. G. H., & Nes, I. F. (2009a). Use of Lactobacilli and their pheromone-based regulatory mechanism in gene expression and drug delivery. Current Pharmaceutical Biotechnology, 10(1), 62-73.
Diep, D. B., Myhre, R., Johnsborg, O., Aakra, A., & Nes, I. F. (2003). Inducible bacteriocin production in Lactobacillus is regulated by differential expression of the pln operons and by two antagonizing response regulators, the activity of which is enhanced upon phosphorylation. Mol Microbiol, 47(2), 483-494.
Diep, D. B., Straume, D., Kjos, M., Torres, C., & Nes, I. F. (2009b). An overview of the mosaic bacteriocin pln loci from Lactobacillus plantarum. Peptides, 30(8), 1562-1574.
Doulgeraki, A. I., Paraskevopoulos, N., Nychas, G. J. E., & Panagou, E. Z. (2013). An in vitro study of Lactobacillus plantarum strains for the presence of plantaricin genes and their potential control of the table olive microbiota. Antonie van Leeuwenhoek, 103(4), 821-832.
Drider, D., Fimland, G., Hechard, Y., McMullen, L. M., & Prevost, H. (2006). The continuing story of class IIa bacteriocins. Microbiology and Molecular Biology Reviews, 70(2), 564-582.
Eijsink, V. G. H., Axelsson, L., Diep, D. B., Håvarstein, L. S., Holo, H., & Nes, I. F. (2002). Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication. Antonie van Leeuwenhoek, 81(1), 639-654.
Etkin, A., & Wager, T. D. (2007). Functional neuroimaging of anxiety: A meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. American Journal of Psychiatry, 164(10), 1476-1488.
Gao, Y., Jia, S., Gao, Q., & Tan, Z. (2010). A novel bacteriocin with a broad inhibitory spectrum produced by Lactobacillus sakei C2, isolated from traditional Chinese fermented cabbage. Food Control, 21(1), 76-81.
García-Ruiz, A., Requena, T., Peláez, C., Bartolomé, B., Moreno-Arribas, M. V., & Martínez-Cuesta, M. C. (2013). Antimicrobial activity of lacticin 3147 against oenological lactic acid bacteria. Combined effect with other antimicrobial agents. Food Control, 32(2), 477-483.
Gerdes, K., Christensen, S. K., & Lobner-Olesen, A. (2005). Prokaryotic toxin-antitoxin stress response loci. Nature Reviews Microbiology, 3(5), 371-382.
Guerra, N. P., & Pastrana, L. (2002). Nisin and pediocin production on mussel-processing waste supplemented with glucose and five nitrogen sources. Lett Appl Microbiol, 34(2), 114-118.
Hammi, K. M., Jdey, A., Abdelly, C., Majdoub, H., & Ksouri, R. (2015). Optimization of ultrasound-assisted extraction of antioxidant compounds from Tunisian Zizyphus lotus fruits using response surface methodology. Food Chemistry, 184, 80-89.
Hashemi, S. M. B., Shahidi, F., Mortazavi, S. A., Milani, E., & Eshaghi, Z. (2014). Potentially probiotic Lactobacillus strains from traditional kurdish cheese. Probiotics and Antimicrobial Proteins, 6(1), 22-31.
Hauge, H. H., Mantzilas, D., Moll, G. N., Konings, W. N., Driessen, A. J. M., Eijsink, V. G. H., & Nissen-Meyer, J. (1998). Plantaricin A is an amphiphilic α-helical bacteriocin-like pheromone which exerts antimicrobial and pheromone activities through different mechanisms. Biochemistry, 37(46), 16026-16032.
Hernández, D., Cardell, E., & Zárate, V. (2005). Antimicrobial activity of lactic acid bacteria isolated from Tenerife cheese: initial characterization of plantaricin TF711, a bacteriocin-like substance produced by Lactobacillus plantarum TF711. Journal of Applied Microbiology, 99(1), 77-84.
Honda, K., Moto, M., Uchida, N., He, F., & Hashizume, N. (2012). Anti-diabetic effects of lactic acid bacteria in normal and type 2 diabetic mice. Journal of Clinical Biochemistry and Nutrition, 51(2), 96-101.
Hur, J., Jawale, C., & Lee, J. H. (2012). Antimicrobial resistance of Salmonella isolated from food animals: A review. Food Research International, 45(2), 819-830.
Ismail, D., Rizkytata, B. T., Gumelar, M. T., & Abdullah, T. H. (2014). Industrial tofu wastewater as a cultivation medium of microalgae Chlorella vulgaris. Energy Procedia, 47, 56-61.
Jankowska, A., Laubitz, D., Antushevich, H., Zabielski, R., & Grzesiuk, E. (2008). Competition of Lactobacillus paracasei with Salmonella enterica for adhesion to Caco-2 cells. Journal of Biomedicine and Biotechnology, 2008.
Johnsborg, O., Diep, D. B., & Nes, I. F. (2003). Structural analysis of the peptide pheromone receptor PlnB, a histidine protein kinase from Lactobacillus plantarum. Journal of Bacteriology, 185(23), 6913-6920.
Johnsborg, O., Godager, L. H., & Nes, I. F. (2004). Identification of a region involved in the pheromone receptor function of the histidine kinase PlnB. Archives of Microbiology, 182(6), 450-457.
Kalliomäki, M., Salminen, S., Arvilommi, H., Kero, P., Koskinen, P., & Isolauri, E. (2001). Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. The Lancet, 357(9262), 1076-1079.
Karska-Wysocki, B., Bazo, M., & Smoragiewicz, W. (2010). Antibacterial activity of Lactobacillus acidophilus and Lactobacillus casei against methicillin-resistant Staphylococcus aureus (MRSA). Microbiological Research, 165(8), 674-686.
Kintz, E., Brainard, J., Hooper, L., & Hunter, P. (2017). Transmission pathways for sporadic Shiga-toxin producing E. coli infections: A systematic review and meta-analysis. International Journal of Hygiene and Environmental Health, 220(1), 57-67.
Kleerebezem, M., Boekhorst, J., van Kranenburg, R., Molenaar, D., Kuipers, O. P., Leer, R., Tarchini, R., Peters, S. A., Sandbrink, H. M., Fiers, M. W. E. J., Stiekema, W., Lankhorst, R. M. K., Bron, P. A., Hoffer, S. M., Groot, M. N. N., Kerkhoven, R., de Vries, M., Ursing, B., de Vos, W. M., & Siezen, R. J. (2003). Complete genome sequence of Lactobacillus plantarum WCFS1. Proceedings of the National Academy of Sciences, 100(4), 1990-1995.
Kostinek, M., Specht, I., Edward, V. A., Schillinger, U., Hertel, C., Holzapfel, W. H., & Franz, C. M. A. P. (2005). Diversity and technological properties of predominant lactic acid bacteria from fermented cassava used for the preparation of Gari, a traditional African food. Systematic and Applied Microbiology, 28(6), 527-540.
Kujala, T. S., Loponen, J. M., Klika, K. D., & Pihlaja, K. (2000). Phenolics and betacyanins in red beetroot (Beta vulgaris) root: distribution and rffect of cold storage on the content of total phenolics and three individual compounds. Journal of Agricultural and Food Chemistry, 48(11), 5338-5342.
Kumari, A., Akkoç, N., & Akçelik, M. (2012). Purification and partial characterization of bacteriocin produced by Lactococcus lactis ssp. lactis LL171. World Journal of Microbiology and Biotechnology, 28(4), 1647-1655.
Lü, X., Yi, L., Dang, J., Dang, Y., & Liu, B. (2014). Purification of novel bacteriocin produced by Lactobacillus coryniformis MXJ 32 for inhibiting bacterial foodborne pathogens including antibiotic-resistant microorganisms. Food Control, 46, 264-271.
Le Loir, Y., Baron, F., & Gautier, M. (2003). Staphylococcus aureus and food poisoning. Genetics and Molecular Research, 2(1), 63-76.
Lee, B. H., Lo, Y. H., & Pan, T. M. (2013). Anti-obesity activity of Lactobacillus fermented soy milk products. Journal of Functional Foods, 5(2), 905-913.
Leite, A. M. O., Miguel, M. A. L., Peixoto, R. S., Ruas-Madiedo, P., Paschoalin, V. M. F., Mayo, B., & Delgado, S. (2015). Probiotic potential of selected lactic acid bacteria strains isolated from Brazilian kefir grains. Journal of Dairy Science, 98(6), 3622-3632.
Li, B., Qiao, M., & Lu, F. (2012). Composition, nutrition, and utilization of okara (soybean residue). Food Reviews International, 28(3), 231-252.
Li, Y., Fraser, A., Chen, X., Cates, S., Wohlgenant, K., & Jaykus, L. A. (2014). Microbiological analysis of environmental samples collected from child care facilities in North and South Carolina. American Journal of Infection Control, 42(10), 1049-1055.
Lin, C. K., Tsai, H. C., Lin, P. P., Tsen, H. Y., & Tsai, C. C. (2008). Lactobacillus acidophilus LAP5 able to inhibit the Salmonella choleraesuis invasion to the human Caco-2 epithelial cell. Anaerobe, 14(5), 251-255.
Lin, X., Chen, X., Chen, Y., Jiang, W., & Chen, H. (2015). The effect of five probiotic lactobacilli strains on the growth and biofilm formation of Streptococcus mutans. Oral Diseases, 21(1), e128-e134.
Liu, C. F., Tung, Y. T., Wu, C. L., Lee, B. H., Hsu, W. H., & Pan, T. M. (2011). Antihypertensive effects of Lactobacillus-fermented milk orally administered to spontaneously hypertensive rats. Journal of Agricultural and Food Chemistry, 59(9), 4537-4543.
Liu, Y. W., Liu, W. H., Wu, C. C., Juan, Y. C., Wu, Y. C., Tsai, H. P., . . . Tsai, Y. C. (2016). Psychotropic effects of Lactobacillus plantarum PS128 in early life-stressed and naive adult mice. Brain Research, 1631, 1-12.
Lu, H. F., Zhang, G. M., & Zhou, J. J. (2014). Using yeast to treat soybean wastewater and realize resource recovery. Applied Mechanics and Materials, 675-677, 733-737.
Lu, N., Samuels, M. E., Shi, L., Baker, S. L., Glover, S. H., & Sanders, J. M. (2004). Child day care risks of common infectious diseases revisited. Child: Care, Health and Development, 30(4), 361-368.
M., K. (2004). Quorum sensing control of lantibiotic production; nisin and subtilin autoregulate their own biosynthesis. Peptides, 25(9), 1405-1414.
Majamaa, H., Isolauri, E., Saxelin, M., & Vesikari, T. (1995). Lactic acid bacteria in the treatment of acute rotavirus gastroenteritis. Journal of Pediatric Gastroenterology and Nutrition, 20(3), 333-338.
Maldonado-Barragán, A., Ruiz-Barba, J. L., & Jiménez-Díaz, R. (2009). Knockout of three-component regulatory systems reveals that the apparently constitutive plantaricin-production phenotype shown by Lactobacillus plantarum on solid medium is regulated via quorum sensing. International Journal of Food Microbiology, 130(1), 35-42.
Maldonado, A., Jiménez-Díaz, R., & Ruiz-Barba, J. L. (2004). Induction of plantaricin production in Lactobacillus plantarum NC8 after coculture with specific gram-positive bacteria is mediated by an autoinduction mechanism. Journal of Bacteriology, 186(5), 1556-1564.
Maldonado, A., Ruiz-Barba, J. L., & Jiménez-Díaz, R. (2003). Purification and genetic characterization of plantaricin NC8, a novel coculture-inducible two-peptide bacteriocin from Lactobacillus plantarum NC8. Appl Environ Microbiol, 69(1), 383-389.
Man, L. L., Meng, X. C., Zhao, R. H., & Xiang, D. J. (2014). The role of plNC8HK-plnD genes in bacteriocin production in Lactobacillus plantarum KLDS1.0391. International Dairy Journal, 34(2), 267-274.
Martinez, F. A. C., Balciunas, E. M., Converti, A., Cotter, P. D., & de Souza Oliveira, R. P. (2013). Bacteriocin production by Bifidobacterium spp. A review. Biotechnology Advances, 31(4), 482-488.
Martinez, R. C. R., Wachsman, M., Torres, N. I., LeBlanc, J. G., Todorov, S. D., & de Melo Franco, B. D. G. (2013). Biochemical, antimicrobial and molecular characterization of a noncytotoxic bacteriocin produced by Lactobacillus plantarum ST71KS. Food Microbiology, 34(2), 376-381.
Mihaiu, L., Lapusan, A., Tanasuica, R., Sobolu, R., Mihaiu, R., Oniga, O., & Mihaiu, M. (2014). First study of Salmonella in meat in Romania. The Journal of Infection in Developing Countries, 8(1), 50-58.
Moorthy, G., Murali, M. R., & Devaraj, S. N. (2007). Protective role of lactobacilli in Shigella dysenteriae 1–induced diarrhea in rats. Nutrition, 23(5), 424-433.
Moreno, M. R. F., Sarantinopoulos, P., Tsakalidou, E., & De Vuyst, L. (2006). The role and application of enterococci in food and health. International Journal of Food Microbiology, 106(1), 1-24.
Motlagh, A. M., Holla, S., Johnson, M. C., Ray, B., & Field, R. A. (1992). Inhibition of Listeria spp. in sterile food systems by pediocin AcH, a bacteriocin produced by Pediococcus acidilactici H. Journal of Food Protection, 55(5), 337-343.
Nandre, R. M., Jawale, C. V., & Lee, J. H. (2013). Adjuvant effect of Escherichia coli heat labile enterotoxin B subunit against internal egg contamination in domestic fowl immunised with a live Salmonella enterica serovar Enteritidis vaccine. The Veterinary Journal, 197(3), 861-867.
Nes, I. F., Diep, D. B., Håvarstein, L. S., Brurberg, M. B., Eijsink, V., & Holo, H. (1996). Biosynthesis of bacteriocins in lactic acid bacteria. Antonie van Leeuwenhoek, 70(2), 113-128.
Newell, D. G., Koopmans, M., Verhoef, L., Duizer, E., Aidara-Kane, A., Sprong, H., . . . Kruse, H. (2010). Food-borne diseases — The challenges of 20 years ago still persist while new ones continue to emerge. International Journal of Food Microbiology, 139, S3-S15.
Nissen-Meyer, J., Larsen, A. G., Sletten, K., Daeschel, M., & Nes, I. F. (1993). Purification and characterization of plantaricin A, a Lactobacillus plantarum bacteriocin whose activity depends on the action of two peptides. Microbiology, 139(9), 1973-1978.
Nissen-Meyer, J., Rogne, P., Oppegard, C., Haugen, H. S., & Kristiansen, P. E. (2009). Structure-function relationships of the non-lanthionine-containing peptide (class II) bacteriocins produced by gram-positive bacteria. Current Pharmaceutical Biotechnology, 10(1), 19-37.
Omar, N. B., Abriouel, H., Keleke, S., Valenzuela, A. S., Martínez-Cañamero, M., López, R. L., Ortega, E., & Gálvez, A. (2008). Bacteriocin-producing Lactobacillus strains isolated from poto poto, a Congolese fermented maize product, and genetic fingerprinting of their plantaricin operons. International Journal of Food Microbiology, 127(1–2), 18-25.
Pal, G., & Srivastava, S. (2014). Inhibitory effect of plantaricin peptides (Pln E/F and J/K) against Escherichia coli. World Journal of Microbiology and Biotechnology, 30(11), 2829-2837.
Parisien, A., Allain, B., Zhang, J., Mandeville, R., & Lan, C. Q. (2008). Novel alternatives to antibiotics: bacteriophages, bacterial cell wall hydrolases, and antimicrobial peptides. Journal of Applied Microbiology, 104(1), 1-13.
Qun, W., Yumei, S., Jun, Z., & Peng, Q. (2013). Research on resource utilization of wastewater from the production of soybean products. Journal of Biobased Materials and Bioenergy, 7(4), 529-532.
Randazzo, C. L., Pino, A., Ricciardi, L., Romano, C., Comito, D., Arena, E., . . . Caggia, C. (2015). Probiotic supplementation in systemic nickel allergy syndrome patients: study of its effects on lactic acid bacteria population and on clinical symptoms. Journal of Applied Microbiology, 118(1), 202-211.
Ren, D., Li, C., Qin, Y., Yin, R., Li, X., Tian, M., . . . Jin, N. (2012). Inhibition of Staphylococcus aureus adherence to Caco-2 cells by lactobacilli and cell surface properties that influence attachment. Anaerobe, 18(5), 508-515.
Rojo-Bezares, B., Sáenz, Y., Navarro, L., Jiménez-Díaz, R., Zarazaga, M., Ruiz-Larrea, F., & Torres, C. (2008). Characterization of a new organization of the plantaricin locus in the inducible bacteriocin-producing Lactobacillus plantarum J23 of grape must origin. Archives of Microbiology, 189(5), 491-499.
Rojo-Bezares, B., Sáenz, Y., Navarro, L., Zarazaga, M., Ruiz-Larrea, F., & Torres, C. (2007). Coculture-inducible bacteriocin activity of Lactobacillus plantarum strain J23 isolated from grape must. Food Microbiology, 24(5), 482-491.
Sáenz, Y., Rojo-Bezares, B., Navarro, L., Díez, L., Somalo, S., Zarazaga, M., . . . Torres, C. (2009). Genetic diversity of the pln locus among oenological Lactobacillus plantarum strains. International Journal of Food Microbiology, 134(3), 176-183.
Salva, S., Villena, J., & Alvarez, S. (2010). Immunomodulatory activity of Lactobacillus rhamnosus strains isolated from goat milk: Impact on intestinal and respiratory infections. International Journal of Food Microbiology, 141(1–2), 82-89.
Sebastià, N., Meca, G., Soriano, J. M., & Mañes, J. (2011). Antibacterial effects of enniatins J1 and J3 on pathogenic and lactic acid bacteria. Food and Chemical Toxicology, 49(10), 2710-2717.
Shahdordizadeh, M., Taghdisi, S. M., Ansari, N., Langroodi, F. A., Abnous, K., & Ramezani, M. (2017). Aptamer based biosensors for detection of Staphylococcus aureus. Sensors and Actuators B: Chemical, 241, 619-635.
Shokryazdan, P., Sieo, C. C., Kalavathy, R., Liang, J. B., Alitheen, N. B., Faseleh Jahromi, M., & Ho, Y. W. (2014). Probiotic potential of Lactobacillus strains with antimicrobial activity against some human pathogenic strains. BioMed Research International, 2014.
Song, D. F., Zhu, M. Y., & Gu, Q. (2014). Purification and characterization of plantaricin ZJ5, a new bacteriocin produced by Lactobacillus plantarum ZJ5. PLoS ONE, 9(8), e105549.
Spelhaug, S. R., & Harlander, S. K. (1989). Inhibition of foodborne bacterial pathogens by bacteriocins from Lactococcus lactis and Pediococcus pentosaceous. Journal of Food Protection, 52(12), 856-862.
Tagg, J. R., Dajani, A. S., & Wannamaker, L. W. (1976). Bacteriocins of gram-positive bacteria. Bacteriological Reviews, 40(3), 722-756.
Tanner, M. A., Everett, C. L., & Youvan, D. C. (2000). Molecular phylogenetic evidence for noninvasive zoonotic transmission of Staphylococcus intermedius from a canine pet to a human. Journal of Clinical Microbiology, 38(4), 1628-1631.
Thirabunyanon, M., & Thongwittaya, N. (2012). Protection activity of a novel probiotic strain of Bacillus subtilis against Salmonella Enteritidis infection. Research in Veterinary Science, 93(1), 74-81.
Todorov, S. D., Ho, P., Vaz-Velho, M., & Dicks, L. M. T. (2010). Characterization of bacteriocins produced by two strains of Lactobacillus plantarum isolated from Beloura and Chouriço, traditional pork products from Portugal. Meat Science, 84(3), 334-343.
Torpdahl, M., Lauderdale, T. L., Liang, S. Y., Li, I., Wei, S. H., & Chiou, C. S. (2013). Human isolates of Salmonella enterica serovar Typhimurium from Taiwan displayed significantly higher levels of antimicrobial resistance than those from Denmark. International Journal of Food Microbiology, 161(2), 69-75.
Tsai, T. Y., Chu, L. H., Lee, C. L., & Pan, T. M. (2009). Atherosclerosis-preventing activity of lactic acid bacteria-fermented milk-soymilk supplemented with Momordica charantia. Journal of Agricultural and Food Chemistry, 57(5), 2065-2071.
Tsai, Y. T., Cheng, P. C., Fan, C. K., & Pan, T. M. (2008). Time-dependent persistence of enhanced immune response by a potential probiotic strain Lactobacillus paracasei subsp. paracasei NTU 101. International journal of food microbiology, 128(2), 219-225.
Twomey, D., Ross, R. P., Ryan, M., Meaney, B., & Hill, C. (2002). Lantibiotics produced by lactic acid bacteria: structure, function and applications. Antonie van Leeuwenhoek, 82(1), 165-185.
Villena, J., Oliveira, M. L. S., Ferreira, P. C., Salva, S., & Alvarez, S. (2011). Lactic acid bacteria in the prevention of pneumococcal respiratory infection: future opportunities and challenges. International immunopharmacology, 11(11), 1633-1645.
Vlková, E., Rada, V., Popelářová, P., Trojanová, I., & Killer, J. (2006). Antimicrobial susceptibility of bifidobacteria isolated from gastrointestinal tract of calves. Livestock Science, 105(1), 253-259.
Wang, D., Wang, L. J., Zhu, F. X., Zhu, J. Y., Chen, X. D., Zou, L., . . . Li, L. T. (2008). In vitro and in vivo studies on the antioxidant activities of the aqueous extracts of Douchi (a traditional Chinese salt-fermented soybean food). Food Chemistry, 107(4), 1421-1428.
Wang, J., Zhang, H., Chen, X., Chen, Y., Menghebilige, & Bao, Q. (2012). Selection of potential probiotic lactobacilli for cholesterol-lowering properties and their effect on cholesterol metabolism in rats fed a high-lipid diet. Journal of Dairy Science, 95(4), 1645-1654.
Wang, S. C., Chang, C. K., Chan, S. C., Shieh, J. S., Chiu, C. K., & Duh, P. D. (2014). Effects of lactic acid bacteria isolated from fermented mustard on lowering cholesterol. Asian Pacific Journal of Tropical Biomedicine, 4(7), 523-528.
Wang, S. J. (2008). Rapid and specific detection of enterotoxigenic Escherichia coil and Salmonella strains by multiplex PCR systems. Journal of Food and Drug Analysis, 16(2), 81-87.
Wang, S. J., Yeh, D. B., & Wei, C. I. (2009). Specific PCR primers for the identification of Salmonella enterica serovar Enteritidis in chicken-related samples. Journal of Food and Drug Analysis, 17(3), 183-189.
Wei, S. H., Huang, A. S., Liao, Y. S., Liu, Y. L., & Chiou, C. S. (2014). A large outbreak of salmonellosis associated with sandwiches contaminated with multiple bacterial pathogens purchased via an online shopping service. Foodborne Pathog Dis, 11(3), 230-233.
Wong, S., Jamous, A., O'Driscoll, J., Sekhar, R., Weldon, M., Yau, C. Y., Hirani, S. P., Grimble, G., & Forbes, A. (2014). A Lactobacillus casei Shirota probiotic drink reduces antibiotic-associated diarrhoea in patients with spinal cord injuries: a randomised controlled trial. British Journal of Nutrition, 111(4), 672-678.
Yamazaki, M., Ohtsu, H., Yakabe, Y., Kishima, M., & Abe, H. (2012). In vitro screening of lactobacilli isolated from chicken excreta to control Salmonella Enteritidis and Typhimurium. British Poultry Science, 53(2), 183-189.
Yao, Z. P., & Wu, F. (2013). Enrichment of GABA in wastewater of tofu by lactic acid bacteria. Food Science and Technology, 4(16), 7-10.
Yonezawa, N., Matsuura, H., Shiho, M., Kaya, K., & Watanabe, M. M. (2012). Effects of soybean curd wastewater on the growth and hydrocarbon production of Botryococcus braunii strain BOT-22. Bioresource Technology, 109, 304-307.
Zhu, X., Zhao, Y., Sun, Y., & Gu, Q. (2014). Purification and characterisation of plantaricin ZJ008, a novel bacteriocin against Staphylococcus spp. from Lactobacillus plantarum ZJ008. Food Chemistry, 165, 216-223.
Zou, M., Keelara, S., & Thakur, S. (2012). Molecular characterization of Salmonella enterica serotype Enteritidis isolates from humans by antimicrobial resistance, virulence genes, and pulsed-field gel electrophoresis. Foodborne Pathog Dis, 9(3), 232-238.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top