跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/19 22:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:韓美香
研究生(外文):Nathania Dwiwahyundari
論文名稱:評估莓果果泥之調節血脂功能與添加膳食纖維對其功能之影響
論文名稱(外文):Evaluation of blood lipid-lowering activity of berry puree and its enhancement by dietary fiber addition
指導教授:周志輝
指導教授(外文):Chi-Fai Chau
口試委員:許輔蘇南維潘敏雄
口試委員(外文):Fuu HseuNan-Wei SuMin-Hsiung Pan
口試日期:2017-07-14
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品暨應用生物科技學系所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:83
中文關鍵詞:莓果膳食纖維柑橘纖維血脂膽固醇高血脂病倉鼠
外文關鍵詞:berriesdietary fibercitrus fiberblood lipidcholesterolhyperlipidemiahamsters
相關次數:
  • 被引用被引用:0
  • 點閱點閱:536
  • 評分評分:
  • 下載下載:143
  • 收藏至我的研究室書目清單書目收藏:0
高脂飲食和久坐不動的生活方式已成為民眾根深蒂固的習慣。因此,許多食品業者開發各種能藉由調節血脂來降低心血管疾病發生的保健食品。莓果富含的營養成分對心血管有益,因此被視為機能性食品的原料。膳食纖維因具有調節血脂的功能,常被添加於多種類的產品中,從而可提高產品之營養價值。
本研究分為兩階段,利用高血脂之倉鼠作為實驗動物模式評估莓果飲品調節血脂的功效。第一階段所使用的樣品為莓果果泥(B)和莓果加黑木耳的果泥(M)。為了提高此產品調節血脂之功效,在第二階段設計了三個新配方,依B為基礎,添加三種膳食纖維來源,分別為柑橘纖維(I)、小麥糊精(W)及燕麥纖維(O),並評估其調節血脂功效。高脂控制組(F)為倉鼠餵食無添加樣品之高脂飼料。餵食八週後評估血清中之總膽固醇(TC)、三酸甘油酯(TG)、高密度脂蛋白膽固醇(HDL-C)和低密度脂蛋白膽固醇(LDL-C)含量。另外也評估糞便中水分、總膽固醇以及三酸甘油酯含量。
第一階段結果顯示,與F組比較,攝取B和M樣品能顯著(p < 0.05)降低倉鼠血清中TC含量,及增加糞便TG含量。另外,B組的血清LDL-C顯著降低,而M組的糞便水分顯著增加。從第二階段可看到膳食纖維有增強B樣品調節血脂的效果。添加柑橘纖維有助於血清TC下降更低。在I組和O組能看到血清HDL-C/TC比例有顯著提高,而在I組和W組看到糞便水分的增加。添加柑橘纖維、小麥糊精和燕麥纖維皆能降低血清LDL-C含量,從而使血清LDL-C/TC比例顯著降低。但攝取這五種樣品對血清TG和糞便TC含量則無明顯差異。
總而言之,莓果果泥(B)比莓果-黑木耳果泥(M)具有更好的調節血脂功效。柑橘纖維則是增強B樣品調節血脂效果最佳的膳食纖維,其次為燕麥纖維和小麥糊精。本研究為莓果果泥及相關膳食纖維素材調節血脂的潛力提供了有用的資料。
Considering that high-fat diet and sedentary lifestyle have become so ingrained in the society, many food companies have produced various kinds of functional food products which are able to reduce blood cholesterol levels to achieve a lower prevalence of CVD in the society. Berries, with their rich nutrition content and beneficial effects on cardiovascular health, can be taken into consideration as a functional food ingredient. Dietary fiber (DF) has been commonly added in many food products with a wide range of purposes, one of which is to increase their health benefits because it has been known to lower blood lipid levels.
The first stage of this study used hyperlipidemic Golden Syrian hamsters to evaluate the lipid-lowering effect of two berry-based beverages: a puree of berries (B) and a puree of berries and Jew’s ear mushroom (M). Later in the second stage, in order to enhance the lipid-lowering effect of the puree, three new formulations based on B, added with different sources of DF, i.e. citrus fiber (I), wheat dextrin (W), and oat fiber (O), were designed and evaluated for their lipid-lowering effect. Hamsters fed high-fat diet without sample were used as the high-fat control (F). Serum TC, TG, HDL-C, LDL-C levels, fecal moisture, fecal TC, and fecal TG contents were evaluated after eight weeks.
Results showed that compared with F, intakes of B and M managed to reduce serum TC levels and increase fecal TG content significantly (p < 0.05). Significant reduction in serum LDL-C levels was only seen in B, while increase in fecal moisture content only in M. In the second stage, DF enrichment showed some enhancing effects. With I enrichment, serum TC was further decreased. Significant increases in HDL-C/TC ratios were observed in I and O, and fecal moisture contents in I and W. Serum LDL-C levels were further decreased by all types of DF, causing significant LDL-C/TC decreases. Serum TG levels and fecal TC contents were not significantly lowered by all types of purees.
It was concluded that B had an overall better lipid-lowering effect than M, and the most effective enrichment ingredient for B was I, then followed by O and W. This study could provide some hints about the potential hypolipidemic effect of berry mixture and the best possible DF choices for its enrichment.
Acknowledgements i
摘要 ii
Abstract iii
Table of Contents v
List of Tables viii
List of Figures x

1. Introduction 1
1.1. Cardiovascular disease and hyperlipidemia 1
1.2. Plasma lipids and lipoproteins 2
1.2.1. LDL- and HDL-cholesterol 3
1.2.2. Triglycerides 3
1.2.3. Total cholesterol 5
1.3. Berries 5
1.3.1. Definitions of berry 5
1.3.2. Chemical composition and health effects of berries 6
1.3.3. Lipid-lowering activities of some berries 7
1.4. Dietary fiber 9
1.4.1. Definition of dietary fiber (DF) 9
1.4.2. Classification of DF 10
1.4.3. Physicochemical properties and physiological effects of DF 10
1.4.4. Lipid-lowering effects of DF 13
1.4.5. Application of DF in functional food 14
1.4.6. DF samples 15
1.5. Animal study 16
2. Purpose 18
3. Materials and methods 20
3.1. Sample composition 20
3.2. Animal’s diet 20
3.3. Sample dosage 21
3.4. Environmental conditions for animals 21
3.5. Blood sample collection 27
3.6. Fecal sample collection 27
3.7. Blood sample analyses 27
3.7.1. Serum TG analysis 27
3.7.2. Serum TC analysis 28
3.7.3. Serum HDL-C analysis 28
3.7.4. Serum LDL-C calculation 29
3.8. Fecal moisture determination 29
3.9. Fecal lipid analysis 30
3.9.1. Fecal lipid extraction 30
3.9.2. Fecal TG analysis 30
3.9.3. Fecal TC analysis 30
3.10. Statistical analysis 31
4. Results and discussion 32
Part I. Evaluation of blood lipid-lowering potential of berry and berry-mushroom purees
4.1. Effects of feeding berry and berry-mushroom purees on hamsters’ growth performance and food intake 32
4.2. Effects of feeding berry and berry-mushroom purees on hamsters’ blood lipid 35
4.2.1. Serum TG 35
4.2.2. Serum TC 36
4.2.3. Serum HDL-C 40
4.2.4. Serum LDL-C 41
4.3. Effects of feeding berry and berry-mushroom purees on hamsters’ fecal moisture content 44
4.4. Effects of feeding berry and berry-mushroom purees on hamsters’ fecal lipid content 46
4.4.1. Fecal TG 46
4.4.2. Fecal TC 46
4.5. Brief summary of part I results 48
Part II. Evaluation of blood lipid-lowering potential of dietary fiber-enriched berry purees
4.6. Effects of feeding DF-enriched berry purees on hamsters’ growth performance and food intake 49
4.7. Effects of feeding DF-enriched berry purees on hamsters’ blood lipid 49
4.7.1. Serum TG 49
4.7.2. Serum TC 50
4.7.3. Serum HDL-C 56
4.7.4. Serum LDL-C 56
4.8. Effects of feeding DF-enriched berry purees on hamsters’ fecal moisture content 63
4.9. Effects of feeding DF-enriched berry purees on hamsters’ fecal lipid content 69
4.9.1. Fecal TG 69
4.9.2. Fecal TC 69
4.10. Brief summary of part II results 69
4.11. Brief summary of part I and part II results 70
5. Conclusion 72
6. References 73
衛生福利部統計處. (2016, August 5). 104年主要死因統計結果分析, Taiwan. Retrieved March 22, 2017, from http://www. mohw.gov.tw/news/572256044
American Heart Association. (2014, April 21). Good vs. Bad Cholesterol, n.p. Retrieved April 5, 2017, from http://www.heart.org/HEARTORG/Conditions/
Cholesterol/AboutCholesterol/Good-vs-Bad-Cholesterol_UCM_305561_Article.
jsp#WORtZNJ94dU
Alexander, R.W. (1995). Hypertension and the pathogenesis of atherosclerosis. Hypertension, 25: 155-161.
Anderson, J.W. and Chen, W.J.L. (1979). Plant fiber: Carbohydrate and lipid metabolism. American Journal of Clinical Nutrition, 32: 346-363.
Anderson, J.W. and Tietyen-Clark, J.T. (1986). Dietary fiber: hyperlipidemia, hypertension and coronary artery disease. American Journal of Gastroenterology, 81: 907-919.
Anita, F.P. and Abraham, P. (1997). Clinical dietetics and nutrition. Calcutta: Delhi Oxford University Press.
AOAC. (2000). Official methods of analysis of AOAC International. (17th ed.). Gaithersburg, MD: AOAC International.
Araujo, P.R.F., Santos, V.S., Machado, A.R., Fernandes, C.G., Silva, J.A. and Rodriques, R.S. (2011). Benefits of blackberry nectar (Rubus spp.) relative to hypercholesterolemia and lipid peroxidation. Nutricion Hospitalaria, 26: 984-990.
Ashwood, E.R., Burtis, C.A. and Bruns, D.E. (2008). Tietz fundamentals of clinical chemistry. (6th ed., p. 145). St. Louis, MO: Saunders Elsevier.
Basu, A., Rhone, M. and Lyons, T.J. (2010). Berries: emerging impact on cardiovascular health. Nutrition Reviews, 68: 168-177.
Basu, T.K. and Ooraikul, B. (1995). Lipid-lowering effects of dietary fiber. Journal of Clinical Biochemistry and Nutrition, 18: 1-9.
Bentzon, J.F., Otsuka, F., Virmani, R., and Falk, E. (2014). Mechanisms of plaque formation and rupture. Circulation Research, 114: 1852-1866.
Berry. (2010). In Encyclopaedia Britannica. Retrieved April 6, 2017, from https://global.britannica.com/
Bjerrum, K.S. (1996). New applications for pectins. Food Technology, 3: 32-34.
Boekholdt, S.M., Arsenault, B.J., Mora, S., Pedersen, T.R., LaRosa, J.C., Nestel, P.J. and Kastelein, J.J. (2012). Association of LDL cholesterol, non-HDL cholesterol, and apolipoprotein B levels with risk of cardiovascular events among patients treated with statins: A meta-analysis. The Journal of the American Medical Association, 307: 1302-1309.
Bollinger, H. (2001). Functional drinks with dietary fibre. Fruit Process, 12: 252-254.
Brown, L., Rosner, B., Willett, W.W. and Sacks, F.M. (1999). Cholesterol-lowering effects of dietary fiber: a meta-analysis. American Journal of Clinical Nutrition, 69:30–42.
Buckley, C.A., Schneider, J.E. and Cundall, D. (2007). Kinematic analysis of an appetitive food-handling behavior: the functional morphology of Syrian hamster cheek pouches. Journal of Experimental Biology, 210: 3096-3106.
Carlson, S.E. and Goldfarb, S.A. (1977). A sensitive enzymatic method for the determination of free and esterified tissue cholesterol. Clinica Chimica Acta, 79: 575-582.
Chait, A. and Bornfeldt, K.E. (2009). Diabetes and atherosclerosis: is there a role for hyperglycemia?. Journal of Lipid Research, 50: 335-339.
Chan, P.T., Fong, W.P., Cheung, Y.L., Huang, Y., Ho, W.K.K. and Chen, Z.Y. (1999). Jasmine green tea epicatechins are hypolipidemic in hamsters (Mesocricetus auratus) fed a high fat diet. Journal of Nutrition, 129: 1094-1101.
Chandler, F.B. (1984). Composition and uses of blueberries. Maine Agricultural Experiment Station Bulletin, 428: 1–39.
Chen, W.J.L., Anderson, J.W. and Jennings, D. (1984). Propionate may mediate the hypocholesterolemic effects of certain soluble plant fibers in cholesterol-fed rats. Proceedings of the Society for Experimental Biology and Medicine, 175: 215-218.
Chen, Y., Kennedy, D.J., Ramakrishnan, D.P., Yang, M., Huang, W., Li, Z. and Silverstein R.L. (2015). Oxidized LDL-bound CD36 recruits an Na+/K+-ATPase-Lyn complex in macrophages that promotes atherosclerosis. Science Signaling, 8.
Cheung, P.C.K. (2013). Mini-review on edible mushrooms as source of dietary fiber: Preparation and health benefits. Food Science and Human Wellness, 2: 162-166.
Dai, F.J. and Chau, C.F. (2016). Classification and regulatory perspectives of dietary fiber. Journal of Food and Drug Analysis, 25: 37-42.
Dhingra, D., Michael, M., Rajput, H. and Patil, R.T. (2012). Dietary fibre in foods: a review. Journal of Food Science and Technology, 49: 255-266.
Dillard, A., Matthan, N.R. and Lichtenstein, A.H. (2010). Use of hamster as a model to study diet-induced atherosclerosis. Nutrition & Metabolism, 7: 89.
Erlund, I., Koli, R., Alfthan, G., Marniemi, J., Puukka, P., Mustonen, P., Mattila, P. and Jula, A. (2008). Favorable effects of berry consumption on platelet function, blood pressure, and HDL cholesterol. American Journal of Clinical Nutrition, 87: 323-331.
Federation of American Societies for Experimental Biology. (1987). Physiological effects and health consequences of dietary fiber. Washington, DC: US Department of Health and Human Services.
Folch, J., Lees, M. and Stanley, G.H.S. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 226: 497-509.
Friedewald, W.T., Levy, R.I. and Fredrickson, D.S. (1972). Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinial Chemistry, 18: 499-502.
Gajda, A.M., Pellizzon, M.A., Ricci, M.R. and Ulman, E.A. (2007). Diet-induced metabolic syndrome in rodent models. New Brunswick, NJ: Research Diets, Inc.
Gao, H., Long, Y., Jiang, X., Liu, Z., Wang, D., Zhao, Y., Li, D. and Sun, B.L. (2013). Beneficial effects of Yerba Mate tea (Ilex paraguariensis) on hyperlipidemia in high-fat-fed hamsters. Experimental Gerontology, 48: 572-578.
Garrett, R.H. and Grisham, C.M. (1995). Biochemistry second edition. Orlando, FL: Saunders College Publishing.
GBD 2015 Mortality and Causes of Death Collaborators. (2016). Global, regional, and national life expectancy, all–cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet, 388: 1459-1544.
German, J.B., Xu, R., Walzem, R., Kinsella, J.E., Knuckles, B., Nakamura, M. and Yokoyama, W.H. (1996). Effect of dietary fats and barley fiber on total cholesterol and lipoprotein cholesterol distribution in plasma of hamsters. Nutrition Research, 16: 1239-1249.
Glagov, S., Weisenberg, E., Zarins, C.K., Stankunavicius, R. and Kolettis, G.J. (1987). Compensatory enlargement of human atherosclerotic coronary arteries. The New England Journal of Medicine, 316: 1371-1375.
Graf, D., Seifert, S., Jaudszus, A., Bub, A. and Watzl, B. (2013). Anthocyanin-rich juice lowers serum cholesterol, leptin, and resistin and improves plasma fatty acid composition in Fischer rats. PLoS One, 8: e66690.
Grigelmo-Miguel, N. and Martin-Belloso, O. (1998). Characterization of dietary fiber from orange juice extraction. Food Research International, 31: 355-361.
Guerin-Deremaux, L., Ringard, F., Desailly, F., and Wils, D. (2010). Effects of a soluble dietary fibre NUTRIOSE® on colonic fermentation and excretion rates in rats. Nutrition Research and Practice, 4: 470-476.
Guérin-Deremaux, L., Pochat, M., Reifer, C., Wils, D., Cho, S., and Miller, L.E. (2013). Dose-response impact of a soluble fiber, NUTRIOSE®, on energy intake, body weight and body fat in humans. Global Epidemic Obesity, 1: 2.
Guillon, F. and Champ, M. (2000). Structural and physical properties of dietary fibres, and consequences of processing on human physiology. Food Research International, 33: 233-245.
Hayek, T., Ito, Y., Azrolan, N., Verdery, R.B., Aalto-Setala, K., Walsh, A. and Breslow, J.L. (1993). Dietary fat increases high density lipoprotein (HDL) levels both by increasing the transport rates and decreasing the fractional catabolic rates of HDL cholesterol ester and apolipoprotein (Apo) A-I. Journal of Clinical Investigation, 91: 1665-1671.
Hickey, M. and King, C. (2001). The Cambridge Illustrated Glossary of Botanical Terms. Cambridge: Cambridge University Press.
Hobden, M.R., Martin-Morales, A., Guérin-Deremaux, L., Wils, D., Costabile, A., Walton, G.E., Rowland, I., Kennedy, O.B. and Gibson, G.R. (2013). In Vitro Fermentation of NUTRIOSE® FB06, a Wheat Dextrin Soluble Fibre, in a Continuous Culture Human Colonic Model System. PLoS One, 8: e77128.
Huang, W.C., Lin, C.L., Hsu, Y.J., Chiu, Y.S., Chen, Y.M., Wu, M.F., Huang, C.C. and Wang, M.F. (2016). Inulin and fibersol-2 combined have hypolipidemic effects on high cholesterol diet-induced hyperlipidemia in hamsters. Molecules, 21: 313.
Jang, E.M., Choi, M.S., Jung, U.J., Kim, M.J., Kim, H.J., Jeon, S.M., Shin, S.K., Seong, C.N. and Lee, M.K. (2008). Beneficial effects of curcumin on hyperlipidemia and insulin resistance in high-fat-fed hamsters. Metabolism, 57: 1576-1583.
Jones, J.M. (2014). CODEX-aligned fietary fiber definitions help to bridge the ‘fiber gap’. Nutrition Journal, 13: 34.
Jonnalagadda, S.S., Thye, F.W. and Robertson, J.L. (1993). Plasma total and lipoprotein cholesterol, liver cholesterol and fecal cholesterol excretion in hamsters fed fiber diets. Journal of Nutrition, 123: 1377-1382.
Kalgaonkar, S., Gross, H.B., Yokoyama, W. and Keen, C.L. (2010). Effects of a flavonol-rich diet on select cardiovascular parameters in a golden Syrian hamster model. Journal of Medicinal Food, 13: 108-115.
Kasbi ,C.F., Nazih, H., Krempf, M., Nguyen, P. and Ouguerram K. (2013). Omega 3 fatty acids promote macrophage reverse cholesterol transport in hamster fed high fat diet. PLoS One, 8: e61109.
Kay, R.M. and Truswell, A.S. (1977). Effect of citrus pectin on blood lipids and fecal steroid excretion in man. American Journal of Clinical Nutrition, 30: 171-175.
Kelly, S.A., Summerbell, C.D., Brynes, A., Whittaker, V. and Frost, G. (2007). Whole grain cereals for coronary heart disease. Cochrane Database of Systemic Reviews, 2: CD005051.
Kiger, R.W. and Porter, D.M. (2001). “Find term ‘berry’”. Catergorical Glossary for the Flora of North America Project. Retrieved April 6, 2017.
Kim, H., Bartley, G.E., Rimando, A.M., and Yokoyama, W. (2010). Heptaic gene expression related to lower plasma cholesterol in hamsters fed high-fat diets supplemented with blueberry peels and peel extract. Journal of Agricultural Food Chemistry, 58: 3984-3991.
Koseki, M., Seki, H., Kazama, M., Kitabatake, N. and Tochikura, T. (1991). Effects of pectin and lard on the production of short-chain fatty acids in cecum, on the growth of colonic bacteria, and on the liver cholesterol level in rats. Agricultural and Biological Chemistry, 55: 1441-1448.
Kritchevsky, D., Bonfield, C. and Anderson, J.W. (1990). Dietary fiber: chemistry, physiology, and health effects. New York: Plenum Press.
Lee, L.C., Wei, L., Huang, W.C., Hsu, Y.J., Chen, Y.M. and Huang, C.C. (2015). Hypolipidemic effect of tomato juice in hamsters in high cholesterol diet-induced hyperlipidemia. Nutrients, 7: 10525-10537.
Li, S., Guerin-Deremaux, L., Pochat, M., Wils, D., Reifer, C., and Miller, L.E. (2010). NUTRIOSE dietary fiber supplementation improves insulin resistance and determinants of metabolic syndrome in overweight men: a double-blind, randomized, placebo-controlled study. Applied Physiology, Nutrition, and Metabolism, 35: 773-782.
Liang, Y., Chen, J., Zuo, Y., Ma, K.Y., Jiang, Y., Huang, Y. and Chen, Z.Y. (2012). Blueberry anthocyanins at doses of 0.5 and 1% lowered plasma cholesterol by increasing fecal excretion of acidic and neutral sterols in hamsters fed a cholesterol-enriched diet. European Journal of Nutrition, 52: 869-875.
Lin, Y.L., Chou, C.H., Yang, D.J., Chen, J.W., Tzang, B.S. and Chen, Y.C. (2012). Hypolipidemic and antioxidative effects of noni (Morinda citrifolia L.) juice on high-fat /cholesterol-dietary hamsters. Plant Foods for Human Nutrition, 67: 294-302.
Mensink, R.P., Zock, P.L., Kester, A.D.M. and Katan, M.B. (2003). Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. The American Journal of Clinical Nutrition, 77: 1146-1155.
Messner, B. and Bernhard, D. (2014). Smoking and cardiovascular disease: mechanisms of endothelial dysfunction and early atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 34: 509-515.
Miao, H., Zhao, Y.H., Vaziri, N.D., Tang, D.D., Chen, H., Chen, H., Khazaeli, M., Tarbiat-Boldaji, M., Hatami, L. and Zhao, Y.Y. (2016). Lipidomics biomarkers of diet-induced hyperlipidemia and its treatment with Poria cocos. Agricultural and Food Chemistry, 64: 969-979.
Millan, J., Pinto, X., Munoz, A., Zuniga, M., Rubies-Prat, J., Pallardo, L.F., Masana, L., Manqas, A., Hernandez-Mijarez, A., Gonzales-Santos, P., Ascaso, J.F. and Pedro-Botet, J. (2009). Lipoprotein ratios: Physiological significance and clinical usefulness in cardiovascular prevention. Vascular Health Risk Management, 5: 757-765.
Miller, M., Stone, N.J., Ballantyne, C., Bittner, V., Criqui, M.H., Ginsberg, H.N., Goldberg, A.C., Howard, W.J., Jacobson, M.S., Kris-Etherton, P.M., Lennie, T.A., Levi, M., Mazzone, T. and Pennathur, S. (2011). Triglycerides and Cardiovascular Disease, A Scientific Statement from the American Heart Association. Circulation, 123: 2292-2333.
Mitchell, H.L. (2001). Fibre-enriched beverages and Litesse Registered. Soft Drinks International, 25-27.
Mitchell, R.S., Kumar, V., Abbas, A.K. and Fausto, N. (2007). Robbins Basic Pathology: With Student Consult Online Access (8th ed.). Philadelphia, PA: Saunders.
Mudgil, D. and Barak, S. (2013). Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: A review. International Journal of Biological Macromolecules, 61:1-6.
National Heart, Lung, and Blood Institute. (1988). Report of the National Cholesterol Education Program Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Archives of Internal Medicine, 148: 36-69.
National Heart, Lung, and Blood Institute. (2016, June 22). What is atherosclerosis?. Retrieved March 23, 2017, from https://www.nhlbi.nih.gov/health/health-topics/topics/atherosclerosis
National Heart, Lung, and Blood Institute. (2001). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) (NIH Publication No. 01-3670). Washington DC: U.S. Government Printing Office.
Nelson, A.L. (2001). High-fiber ingredients: Eagan press handbook series. St Paul, MN: Eagan Press.
Nile, S.H. and Park, S.W. (2014). Edible berries: bioactive components and their effect on human health. Nutrition, 30: 134-144.
Nistor, A., Bulla, A., Filip, D.A. and Radu, A. (1987). The hyperlipidemic hamster as a model of experimental atherosclerosis. Atherosclerosis, 68: 159-173.
Othman, R.A., Moghadasian, M.H. and Jones, P.J. (2011). Cholesterol-lowering effects of oat beta-glucan. Nutrition Reviews, 69: 299–309.
Otto, J., Ordovas, J.M., Smith, D., van Dongen, D., Nicolosib, R.J. and Schaefer, E.J. (1995). Lovastatin inhibits diet induced atherosclerosis in F1 B Golden Syrian hamsters. Atherosclerosis, 114: 19-28.
Pocock, G., Richards, C.D. and Richards, D. (2013). Human Physiology. Oxford: OUP.
Reeves, P.G., Nielsen, F.H. and Fahey, G.C.Jr. (1993). AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. Journal of Nutrition, 123: 1939-51.
Ripsin, C.M., Keenan, J.M., Jacobs Jr, D.R., Elmer, P.J., Welch, R.R., Van Horn, L., Liu, K., Turnbull, W.H., Thye, F.W., Kestin, M., Hegsted, M., Davidson, D.M., Davidson, M.H., Dugan, L.D., Demark-Wahnefried, W. and Beling, S. (1992). Oat products and lipid lowering: a meta-analysis. The Journal of the American Medical Association, 267: 3317–25.
Rodríguez, R.A.J., Fernández-Bolaños, J., Guillén, R. and Heredia, A. (2006). Dietary fibre from vegetable products as a source of functional ingredients. Trends in Food Sciences and Technology, 17: 3-15.
Roediger, W.E.W. (1995). The place of short-chain fatty acids in colonocyte metabolism in health and ulerative colitis: the impaired colonocyte barrier. In: Cummings, J.H., Rombeau, J.L., Sakata, T., eds. Physiological and clinical aspects of short-chain fatty acids. Cambridge: Cambridge University Press.
Ruel, G., Pomerleau, S., Couture, P., Lemieux, S., Lamarche, B. and Couillard, C. (2006). Favourable impact of low-calorie cranberry juice consumption on plasma HDL-cholesterol concentrations in men. British Journal of Nutrition, 96: 357–364.
Sakata, T. (1995). Effects of short-chain fatty acids on the proliferation of gut epithelial cells in vivo. In: Cummings, J.H., Rombeau, J.L., Sakata, T., eds. Physiological and clinical aspects of short-chain fatty acids. Cambridge: Cambridge University Press.
Seeram, N.P. (2008). Berry fruits: compositional elements, biochemical activities, and the impact of their intake on human health, performance, and disease. Journal of Agricultural and Food Chemistry, 56: 627-629.
Skrovankova, S., Sumczynski, D., Mlcek, J., Jurikova, T. and Sochor, J. (2015). Bioactive compounds and antioxidant activity in different types of berries. International Journal of Molecular Sciences, 16: 24673-24706.
Souza, V.R.D., Pereira, P.A.P., Silva, T.L.T.D., Lima, L.C.D.O., Pio, R. and Queiroz, F. (2014). Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits. Food Chemistry, 156: 362-368.
Stephen, A.M. and Cummings, J.H. (1979). Water-holding by dietary fibre in vitro and its relationship to faecal output in man. Gut, 20: 722.
Suh, J.H., Romain, C., Gonzalez-Barrio, R., Cristol, J.P., Teissedre, P.L., Crozier, A. and Rouanet, J.M. (2011). Raspberry juice consumption, oxidative stress and reduction of atherosclerosis risk factors in hypercholesterolemic golden Syrian hamsters. Food and Function, 2: 400-5.
Talayero, B.G. (2011). The role of triglycerides in atherosclerosis. Current Cardiology Reports, 13: 544-552.
The Emerging Risk Factors Collaboration. (2009). Major lipids, apolipoproteins, and risk of vascular disease. The Journal of the American Medical Association, 302: 1993-2000.
Toth, P.P. (2005). Cardiology patient page. The “good cholesterol”: high-density lipoprotein. Circulation, 111: 89-91.
Tungland, B.C. and Meyer, D. (2002). Nondigestible oligo and polysaccharides (dietary fiber): their physiology and role in human health and food. Comprehensive Reviews in Food Science and Food Safety, 1: 73-92.
Vinson, J.A. and Dabbagh, Y.A. (1998). Effect of green and black tea supplementation on lipid oxidation and fibrinogen in the hamster: mechanisms for the epidemiological benefits of tea drinking. FEBS Letters, 433: 44-46.
Wang, T.L., Pan, T.M. and Kung, Z.L. (2009). Study on hypolipidemic effect of complex liquor containing red mold rice. Taiwan Journal of Dietetics, 1: 13-20.
Wouters, K., Shiri-Sverdlov, R., van Gorp1, P.J., van Bilsen, M. and Hofker, M.H. (2005). Understanding hyperlipidemia and atherosclerosis: lessons from genetically modified apoe and ldlr mice. Clinical Chemistry and Laboratory Medicine, 43: 470-479.
Yangilar, F. (2013). The application of dietary fibre in food industry: structural features, effects on health and definition, obtaining and analysis of dietary fibre: a review. Journal of Food and Nutrition Research, 1: 13-23.
Zhou, Q., Wu, J., Tang, J., Wang, J.J., Lu, C.H. and Wang, P.X. (2015). Beneficial effect of higher dietary fiber intake on plasma HDL-C and TC/HDL-C ratio among Chinese rural-to-urban migrant workers. International Journal of Environmental Research and Public Health, 12: 4726-4738.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊