跳到主要內容

臺灣博碩士論文加值系統

(44.210.149.205) 您好!臺灣時間:2024/04/12 21:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鍾宜芯
研究生(外文):Yi-Hsin Chung
論文名稱:以不飽和脂肪酸的添加提升微膠囊化約氏乳酸桿菌環境耐受性的探討
論文名稱(外文):Enhancement of environmental tolerance of microencapsulated Lactobacillus johnsonii by the addition of unsaturated fatty acids.
指導教授:金安兒金安兒引用關係
口試委員:賴麗旭曾政鴻
口試日期:2017-06-19
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品暨應用生物科技學系所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:134
中文關鍵詞:褐藻酸鈉約氏乳桿菌微膠囊化益生功效油酸亞麻油酸次亞麻油酸
外文關鍵詞:sodium alginateLactobacillus johnsoniimicroencapsulationhealth effectoleic acidlinoleic acidlinolenic acid
相關次數:
  • 被引用被引用:0
  • 點閱點閱:764
  • 評分評分:
  • 下載下載:68
  • 收藏至我的研究室書目清單書目收藏:0
益生菌具有相當多的保健功效,以乳酸菌最具代表性,不同的乳酸菌具備不同的益生效果,其中約氏乳酸桿菌(Lactobacillus johnsonii)具有抗幽門螺旋桿菌(Helicobacter pylori)的特性,深具發展潛力。然而益生菌必須克服腸胃道中艱刻的環境,才能在到達腸道時維持一定的存活菌數及活性,以發揮益生功效。因此,本研究利用擠壓法製備微膠囊化L. johnsonii,提供菌體保護作用,並嘗試藉由油酸、亞麻油酸、次亞麻油酸的添加來調整培養基的組成,以提升菌株對不利環境條件的抵抗力,並找出可獲得最高菌體存活率之最適操作條件,進一步探討其益生功效。結果顯示,在製備微膠囊化過程中,以添加濃度8 μg/ml不飽和脂肪酸所得包埋率較高,隨著添加濃度上升其包埋率隨之降低,而微膠囊化之擠壓法並不會造成菌體嚴重損傷,因此採用此一技術進行製備。於後續驗證試驗結果中發現,經過模擬消化液的作用下,添加油酸組之存活率高於其他組別,而在β-半乳糖苷酶活性、產酸能力、蛋白質分析中,添加油酸組具有較高的細胞完整性及活性,掃描式電子顯微鏡結果亦發現添加油酸組其菌體變形程度小;另一添加次亞麻油酸組則變形嚴重,細胞受傷害程度大,其活性表現較差。因此,綜合以上結果可得知,藉由添加8 μg/ml油酸至培養基中可使L. johnsonii在不利的環境條件中依然保持良好的活性與存活率,增加菌體在模擬消化液中的存活菌數。
Lactic acid bacteria (LAB) are typical probiotics which provide a wide variety of health benefits. While the probiotic effect(s) of LAB can vary with different types, Lactobacillus johnsonii appears to be a type with high potential in expressing the characteristics of anti-Helicobacter pylori. Nonetheless, probiotics must survive in the extreme environment of the gastrointestinal tract if they are to reach the intestines so that their benefits can be imparted. To protect the bacteria strain, extrusion technique for microencapsulation of L. johnsonii was applied. To enhance the resistance of bacteria strains against adverse conditions, formulas of the culture media were adjusted by adding different concentrations of selected fatty acid, namely oleic acid, linoleic acid, and linolenic acid. Moreover, investigation of the optimum operating conditions based on maximum survival rate of L. johnsonii was carried out, and the assessment of health effects was also made. Results showed that L. johnsonii cultivated in the media containing 8 μg/ml unsaturated fatty acid appears to have high survival rate in the process of microencapsulation, while the microencapsulation rates were decreased with increasing addition concentrations. Since the process of extrusion did not cause serious damage of cells, this technique was applied in the subsequent validation tests. Results of the tests indicated that L. johnsonii incubated in the media added with oleic acid (namely the oleic acid group) could survive most after treatment with simulated digestive juice. In addition, the oleic acid group not only showed higher cell integrity in the determination of β-galactosidase activity, acidification power test, and protein analysis, but also had little cell deformation in the scanning electron microscopy (SEM). The linolenic acid group, on the contrary, appeared to be seriously deformed and had lower cell activity. In conclusion, L. johnsonii incubated in the modified medium with 8 μg/ml oleic acid had higher activity and survival rate in the simulated gastrointestinal tract, as well as higher bacteria resistance to adverse environmental conditions.
中文摘要................ i
英文摘要................ii
目錄................iv
表目次................vii
圖目次................viii
壹、前言................1
貳、文獻回顧................3
一、益生菌................3
(一)益生菌之定義................3
(二)益生菌之歷史與發現................3
(三)益生菌之特性................4
二、乳酸菌................7
(一)乳酸菌之特性................7
(二)乳酸菌之分類及代謝途徑................8
(三)乳酸菌之益生功效................11
(四)乳酸菌在食品加工業的應用................19
(五)約氏乳酸桿菌(Lactobacillus johnsonii).............20
(六)培養基中脂肪酸的影響................22
三、微膠囊化技術................23
(一)微膠囊簡介................23
(二)微膠囊之功能................25
(三)微膠囊化製程................27
(四)微膠囊化的心材與壁材................37
(五)褐藻酸鈉(sodium alginate)................40
(六)微膠囊化乳酸菌之應用................42
参、研究目的................45
肆、材料與方法................46
一、實驗材料與儀器................46
(一)材料................ 46
(二)儀器 ................51
二、實驗方法................51
(一)實驗架構................51
(二)實驗菌製株製備................53
(三)微膠囊樣品之製備................53
(四)菌體存活率測定................54
(五)菌株受傷程度測定................55
(六)模擬消化液作用後之耐受性試驗................55
(七)模擬消化液作用後之β-半乳糖苷酶活性試驗.......56
(八)模擬消化液作用後之產酸測定...............57
(九)模擬消化液作用後之蛋白質分析................61
(十)掃描式電子顯微鏡觀察................61
(十一)統計分析................61
伍、結果與討論................65
一、不同濃度添加物之包埋率比較................65
二、菌株受傷程度................67
三、模擬腸胃道耐受性試驗................68
四、經模擬消化液連續作用之微膠囊化菌體產酸試驗.............79
五、經模擬消化液連續作用之微膠囊化菌體β-半乳糖苷酶活性測定................87
六、經模擬消化液連續作用之微膠囊化菌體蛋白質分析..........94
七、掃描式電子顯微鏡觀察................101
陸、結論................108
柒、參考資料................110
張峻、齊崴、韓志慧等 (2005)。食品微膠囊、超微粉碎加工技術。北京: 化學工業出版社。
郭家雯 (2014)。嗜酸乳酸桿菌和約氏乳酸桿菌的微膠囊化。碩士論文,國立中興大學食品暨應用生物科技學系,台中。
黃子芸 (2015)。乳酸菌微膠囊化最適化的探討。碩士論文,國立中興大學食品暨應用生物科技學系,台中。
黃惠宇 (2006)。腸道系統守護神-乳酸菌。科學月刊,37(2): 104-107.
劉振民和駱承 (2002)。乳酸菌冷凍損傷研究,食品發酵工業,(28): 18-21.
蔡崇煌、張金堅、林肇堂(2014)。蝴蝶效應:腸道微生物透過腸-腦軸影響焦慮或憂鬱情緒。台灣醫界,57(12): 584-588。
蕭榮、范郁冰、王遠亮 (2011)。富含S-層蛋白乳酸菌的鑑定及其消化酶耐受性研究。食品科學,32(19): 165-169.
Abee, T., Klaenhammer, T. R., and Letellier, L. (1994) Kinetic studies of the action of lactacin F, a bacteriocin produced by Lactobacillus johnsonii that forms poration complexes in the cytoplasmic membrane. Applied and Environmental Microbiology, 60: 1006-1013.
Adams, L. B., Soileau, N. A., Battista, J. R., and Krahenbuhl, J. L. (2000) Inhibition of metabolismand growth of Mycobacterium leprae by gamma irradiation. International Journal of Leprosy and Other, 68: 1-10.
Ahmed, P., Dasgupta, D., Pandit, S., and Dewan, N. (2016) A promising approach to support appropriate colon target drug delivery system: a review. World Journal of Pharmacy and Pharmaceutical Sciences, 5(6): 556-568.
Aiba, Y., Nakano, Y., Koga, Y., Takahashi, K., and Komatsu, Y. (2015) A highly acid-resistant novel strain of Lactobacillus johnsonii No. 1088 has antibacterial activity, including that against Helicobacter pylori, and inhibits gastrin-mediated acid production in mice. Microbiology Open, 4(3): 465-474.
Alcock, J. P. (2006) Food in the Ancient World. Greenwood Publishing Group, p 83, Westport, Connecticut, USA.
Amine, K. M., Champagne, C. P., Salmieri, S., Britten, M., St-Gelais, D., Fustier, P., and Lacroix, M. (2014) Effect of palmitoylated alginate microencapsulation on viability of Bifidobacterium longum during freeze-drying. LWT-Food Science and Technology, 56(1): 111-117.
Anal, A. K. and Singh, H. (2007) Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends in Food Science & Technology, 18: 240-251.
Angmo, K., Kumari, A., Savitri, and Bhalla, T. C. (2016) Probiotic characterization of lactic acid bacteria isolated from fermented foods and beverage of Ladakh. LWT - Food Science and Technology, 66: 428-435.
Aoudia, N., Rieu, A., Briandet, R., Deschamps, J., Chluba, J., Jego, G., Garrido, C., and Guzzo, J. (2016) Biofilms of Lactobacillus plantarum and Lactobacillus fermentum: effect on stress responses, antagonistic effects on pathogen growth and immunomodulatory properties. Food Microbiology, 53: 51-59.
Argyri, A. A., Zoumpopoulou, G., Karatzas, K. A. G., Tsakalidou, E., Nychas, G. J. E., Panagou, E. Z., and Tassou, C. C. (2013) Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiology, 33(2): 282-291.
Aureli, P., Capurso, L., Castellazzi, A. M., Clerici, M., Giovannini, M., Morelli, L., Poli, A., Pregliasco, F., Salvini, F., and Zuccotti, G. V. (2011) Probiotics and health: an evidence-based review. Pharmacological Research, 63: 366-376.
Azcarate-Peril, M. A., Altermann, E., and Goh, Y. J. (2008) Analysis of the genome sequence of Lactobacillus gasseri ATCC 33323 reveals the molecular basis of an autochthonousintestinal organism. Applied and Environmental Microbiology, 74: 4610-4625.
Bajpai, S. K. and Sharma, S. (2004) Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca2+ and Ba2+ ions. Reactive & Functional Polymers, 59: 129-140.
Bakry, A. M., Abbas, S., Ali, B., Majeed, H., Abouelwafa, M. Y., Mousa, A., and Liang, L. (2016) Microencapsulation of oils: a comprehensive review of benefits, techniques, and applications. Comprehensive Reviews in Food Science and Food Safety, 15(1): 143-182.
Barden, N. (2004) Implication of the hypothalamic-pituitary-adrenal-axis in the physiopathology of depression. Journal of Psychiatry & Neuroscience, 29: 185-193.
Barrett, E., Ross, R. P., O'Toole, P. W., Fitzgerald, G. F., and Stanton, C. (2012) γ-aminobutyric acid production by culturable bacteria from the human intestine. Journal of Applied Microbiology, 113: 411-417.
Béal, C., Fonseca, F., and Corrieu, G. (2001) Resistance to freezing and frozen storage of Streptococcus thermophiles is related to membrane fatty acid composition. Journal of Dairy Research, 84: 2347-2356.
Bernardeau, M., Vernoux, J. P., Henri-Dubernet, S., and Guéguen, M. (2008) Safety assessment of dairy microorganisms: The Lactobacillus genus. International Journal of Food Microbiology, 126(3): 278-285.
Boekhorst, J., Siezen, R. J., Zwahlen, M. C., Vilanova, D., Pridmore, R. D., Mercenier, A., Kleerebezem, M., de Vos, W. M., Brüssow, H., and Desiere, F. (2004) The complete genomes of Lactobacillus plantarum and Lactobacillus johnsonii reveal extensive differences in chromosome organization and gene content. Microbiology, 150: 3601-3611.
Brachkova, M. I., Duarte, M. A., and Pinto, J. F. (2010) Preservation of viability and antibacterial activity of Lactobacillus spp. in calcium alginate beads. European Journal of Pharmaceutical Sciences, 41(5): 589-596.
Bravo, J. A., Forsythe, P., Chew, M. V., Escaravage, E., Savignac, H. M., Dinan, T. G., Bienenstock, J., and Cryan, J. F. (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proceedings of the National Academy of Sciences, 108(38): 16050-16055.
Brinques, G. B. and Ayub, M. A. Z. (2011) Effect of microencapsulation on survival of Lactobacillus plantarum in simulated gastrointestinal conditions, refrigeration, and yogurt. Journal of Food Engineering, 103: 123-128.
Brunzell, J. D., Davidson, M., Furberg, C. D., Goldberg, R. B., Howard, B. V., Stein, J. H., and Witztum, J. L. (2008) Lipoprotein management in patients with cardiometabolic risk: consensus conference report from the American Diabetes Association and the American College of Cardiology Foundation. JACC: Journal of the American College of Cardiology, 51: 1512-1524.
Buffie, C. G. and Pamer, E. G. (2013) Microbiota-mediated colonization resistance against intestinal pathogens. Nature Reviews Immunology, 13: 790-801.
Bull, M., Plummer, S., Marchesi, J., and Mahenthiralingam, E. (2013) The life history of Lactobacillus acidophilus as a probiotic: a tale of revisionary taxonomy, misidentification and commercial success. Federation of European Microbiological Societies, 349: 77-87.
Burgain, J., Corgeneau, M., Scher, J., and Gaiani, C. (2015) Encapsulation of probiotics in milk protein microcapsules. In Microencapsulation and Microspheres for Food Applications, Sagis, L. M. C. (Eds), Wageningen, the Netherlands, pp. 391-403.
Burgain, J., Gaiani, C., Linder, M., and Scher, J. (2011) Encapsulation of probiotic living cells: from laboratory scale to industrial applications. Journal of Food Engineering, 104(4): 467-483.
Campos, E., Branquinho, J., Carreira, A. S., Carvalho, A., Coimbra, P., Ferreira, P., and Gil, M. H. (2013) Designing polymeric microparticles for biomedical and industrial applications. European Polymer Journal, 49(8): 2005-2021.
Cano-Chauca, M. N., Stringheta, P. C., Barbosa, S. J., Fonseca, K. S., and Silva, F. (2011) Influence of microstructure on the hygroscopic behaviour of mango powdered obtained by spray drying. African Journal of Food Science, 5: 148-155.
Castro-Cislaghi, F. P. D., Silva, C. D. R. E., Fritzen-Freire, C. B., Lorenz, J. G., and Sant’Anna, E. S. (2012) Bifidobacterium Bb-12 microencapsulated by spray drying with whey: Survival undersimulated gastrointestinal conditions, tolerance to NaCl, and viability during storage. Journal of Food Engineering, 113: 186-193.
Chae, J. P., Valeriano, V. D., Kim, G. B., and. Kang, D. K. (2012) Molecular cloning, characterization and comparison ofbile salt hydrolases from Lactobacillus johnsonii PF01. Journal of Applied Microbiology, 114: 121-133.
Chang, Y. Y. and Cronan, J. E. (1999) Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli. Molecular Microbiology, 33: 249-259.
Chávarri, M., Maranon, I., and Villaran, M. C. (2012) Encapsulation technology to protect probiotic bacteria. In: probiotics, pp. 501-540. E. C. Rigobelo, ed. Croatia: Intech.
Chew, S. C., Tan, C. P., Long, K., and Nyam, K. L. (2015) In-vitro evaluation of kenaf seed oilin chitosan coated-high methoxyl pectin-alginate microcapsules. Industrial Crops and Products, 76: 230-236.
Coghetto, C. C., Brinques, G. B., Siqueira, N. M., Pletsch, J., Soares, R. M. D., and Ayu, M. A. Z. (2016) Electrospraying microencapsulation of Lactobacillus plantarum enhances cell viability under refrigeration storage and simulated gastric and intestinal fluids. Journal of Functional Foods, 24: 316-326.
Cook, M. T., Tzortzis, G., Charalampopoulos, D., and Khutoryanskiy, V. V. (2012) Production and evaluation of dry alginate-chitosan microcapsules as an enteric delivery vehicle for probiotic bacteria. Biomaromolecules, 12: 2834-2840.
Corcoran, B. M., Ross, R. P., Fitzgerald, G. F., and Stanton, C. (2004) Comparative survival of probiotic Lactobacilli spray-dried in the presence of prebiotic substances. Journal of Applied Microbiology, 96(5): 1024-1039.
Corcoran, B. M., Stanton, C., Fitzgerald, G. F., and Ross, R. P. (2007) Growth of probiotic Lactobacilli in the presence of oleic acid enhances subsequent survival in gastric juice. Microbiology, 153: 291-299.
Costa, S. S., Machado, B. A. S., Martin, A. R., Bagnara, F., Ragadalli, S. A., and Alves, A. R. C. (2015) Drying by spray drying in the food industry: micro-encapsulation, process parameters and main carriers used. African Journal of Food Science, 9: 462-470.
Cruz, I., Bashan, Y., Hernàndez-Carmona, G., and de-Bashan, L. E. (2013) Biological deterioration of alginate beads containing immobilized microalgae and bacteria during tertiary wastewater treatment. Applied Microbiology and Biotechnology, 97(22): 9847-9858.
Cryan, J. F. and Kaupmann, K. (2005) Don't worry 'B' happy! : a role for GABA receptors in anxiety and depression. Trends in Pharmacological Sciences, 26: 36-43.
Cryan, J. F. and O’Mahony, S. M. (2011) The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterology and Motility, 23(3): 187-192.
De Angelis, M. and Gobbetti, M. (2004) Environmental stress responses in Lactobacillus: a review. Proteomics, 4: 106-122.
de Araújo Etchepare, M., Raddatz, G. C., de Moraes Flores, E. M., Zepka, L. Q., Jacob-Lopes, E., Barin, J. S., Grosso, C. R. F., and de Menezes, C. R. (2016) Effect of resistant starch and chitosan on survival of Lactobacillus acidophilus microencapsulated with sodium alginate. LWT - Food Science and Technology, 65: 511-517.
De Castro-Cislaghi, F. P., Silva, C. D. R. E., Fritzen-Freire, C. B., Lorenz, J. G., and Sant’Anna, E. S. (2012) Bifidobacterium Bb-12 microencapsulated by spray drying with whey: survival under simulated gastrointestinal conditions, tolerance to NaCl, and viability during storage. Journal of Food Engineering, 113(2): 186-193.
de Valedez, G. F. Martos, G., Taranto, M. P., Lorca, G. L., Oliver, G., and de Ruiz holgado, A. P. (1997) Influence of bile on β-glactosidase activity and cell viability of Lactobacillus reuteri when subjected to freeze-drying. Journal of Dairy Science, 80: 1955-1958.
de Veen, B. V. B., Abee, T., Tempelaars, M., Bron, A., Kleerebezem, M., and Marco, M. L. (2011) Short- and long-term adaptation to ethanol stress and its cross-protective consequences in Lactobacillus plantarum. Applied and Environmental Microbiology, 77(15): 5247-5256.
De Vuyst, L. and Leroy, F. (2011) Cross-feeding between Bifidobacteria and butyrate-producing colon bacteria explains Bifidobacteria competitiveness, butyrate production, and gas production. International Journal of Food Microbiology, 149(1): 73-80.
Dertli, E., Mayer, M. J., and Narbad, A. (2015) Impact of the exopolysaccharide layer on biofilms, adhesion and resistance to stress in Lactobacillus johnsonii FI9785. Microbiology, 15(8).
Desjardins, M. L. and Roy, D. (1990) Growth of Bifidobacteria and their enzyme profiles. Journal of Dairy Science, 73: 299-307.
Devi, N. and Kakati, D. K. (2013) Smart porous microparticles based on gelatin/sodium alginate polyelectrolyte complex. Journal of Food Engineering, 117: 193-204.
Ding, W. K. and Shah, N. P. (2007) Acid, bile, and heat tolerance of free and microencapsulated probiotic bacteria. Journal of Food Science, 72 (9): 446-450.
do Espírito Santo, A. P., Perego, P., Converti, A., and Oliveira, M. N. (2012) Influence of milk type and addition of passion fruit peel powder on fermentation kinetics, texture profile and bacterial viability in probiotic yoghurts. LWT - Food Science and Technology, 47(2): 393-399.
Dong, H., Rowland, I., Tuohy, K. M., Thomas, L. V., and Yaqoob, P. (2010) Selective effects of Lactobacillus casei Shirota on T cell activation, natural killer cell activity and cytokine production. Clinical & Experimental Immunology, 161(2): 378-388.
Donkor, O. N. and Shah, N. P. (2008) Production of β-glucosidase and hydrolysis of isoflavone phytoestrogens by Lactobacillus acidophilus, Bifidobacterium lactis, and Lactobacillus casei in soymilk. Journal of Food Science, 73: M15-M20.
Elkins, C. A., Moser, S. A., and Savage, D. C. (2001) Genes encoding bile salt hydrolases and conjugated bile salt transporters in Lactobacillus johnsonii 100-100 and other Lactobacillus species. Microbiology, 147: 3403-3421.
Elkins, E. A., and Savage, D. C. (1998) Identification of genes encoding conjugated bile salt hydrolase and transport in Lactobacillus johnsonii 100-100. Journal of Bacteriology, 180: 4344-4349.
Endo, Y., Kamisada, S., Fujimoto, K., and Saito, T. (2006) Trans fatty acids promote the growth of some Lactobacillus strains. The Journal of General and Applied Microbiology, 52(1): 29-35.
Estevinho, B. N., Rocha, F., Santos, L., and Alves, A. (2013) Microencapsulation with chitosan by spray drying for industry applications – a review. Trends in Food Science & Technology, 31(2): 138-155.
FAO/WHO (2002) Guidelines for the Evaluation of Probiotics in Food. FAO/WHO. London, Ontario, Canada.
Faria-Oliveira, F., Diniz, R. H. S., Godoy-Santos, F., Piló, F. B., Mezadri, H., Castro, I. M., and Brandão, R. L. (2015) The role of yeast and lactic acid bacteria in the production of fermented beverages in South America. Food Production and Industry, 4: 107-135.
Farrell, J., and Rose, A. H. (1967) Temperature effects on microorganism. Annual Review of Microbiology, 21: 101-120.
Fernandez Murga, M. L., Cabrera, G. M., Font De Valdez, G., Disalvo, A., and Seldes, A. M. (2000) Influence of growth temperature on cryotolerance and lipid composition of Lactobacillus acidophilus. Journal of Applied Microbiology, 88: 342-348.
Feucht, A. and Kwak, H. S. (2013) Microencapsulation of lactic acid bacteria (LAB). Korean Journal for Food Science of Animal Resources, 33(2): 229-238
Fozo, E. M. and Quivey, R. G. (2004). Shifts in the membrane fatty acid profile of Streptococcus mutans enhance survival in acidic environments. Applied and Environmental Microbiology, 70: 929-936.
Freitas, S., Merkle, H. P., and Gander, B. (2005) Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. Journal of Controlled Release, 102(2): 313-332.
Fukao, M., Oshima, K., Morita, H., Toh, H., Suda, W., Kim, S. W., Suzuki, S., Yakabe, T., Hattori, M., Yajima, N. (2013) Genetic analysis by deep sequencing of the probiotic Lactobacillus brevis KB290 harboring nine plasmids reveals genomic stability. PLOS One, 8(3): e60521.
Gabriel, P., Dienstbier, M., Matoulková, D., Kosař, K., and Sigler, K. (2008) Optimised acidification power test of yeast vitality and its use in brewing practice. Journal of the Institute of Brewing, 114(3): 270-276.
Gallagher, S. R. (2012) One-dimensional SDS gel electrophoresis of proteins. Current Protocols in Molecular Biology, Chapter 10.
Gbassi, G. K. and Vandamme, T. (2012) Probiotic encapsulation technology: from microencapsulation to release into the gut. Pharmaceutics, 4(1): 149-163.
George, M. and Abraham, T. E. (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan-a review. Journal of Controlled Release, 114(1): 1-14.
Goldstein, J., Newbury, D. E., Echlin, P., Joy, D. C., Romig Jr, A. D., Lyman, C. E., and Lifshin, E. (2012) Scanning electron microscopy and X-ray microanalysis: a text for biologists, materials scientists, and geologists. Springer Science & Business Media, Chapter 3.
Golowczyc, M. A., Silva, J., Teixeira, P., De Antoni, C. L., and Abraham, A. G. (2011) Cellular injuries of spray-dried Lactobacillus spp. isolated from kefir and their impact on probiotic properties. International Journal of Food Microbiology, 144(3,5): 556-560.
Gonçalves, A., Estevinho, B. N., and Rocha, F. (2016) Microencapsulation of vitamin A: a review. Trends in Food Science & Technology, 51: 76-87.
Grogan, D. W. and Cronan, J. E. (1986) Characterization of Escherichia coli mutants completely defective in synthesis of cyclopropane fatty acids. Journal of Bacteriology, 166: 872-877.
Guinane, C. M., Kent, R. M., Norberg, S., Hill, C., Fitzgerald, G. F., Stanton, C., and Ross, R. P. (2011) Host specific diversity in Lactobacillus johnsonii as evidenced by a major chromosomal inversion and phageresistance mechanisms. PLOS one, 6(4): e18740.
Guo, Z. P., Qiu, C. Y., Zhang, L., Ding, Z. Y., Wang, Z. X., and Shi, G. Y. (2011) Expression of aspartic protease from Neurospora crassa in industrial ethanol-producing yeast and its application in ethanol production. Enzyme and Microbial Technology, 48(2): 148-154.
Hagen, K. E., Guan, L. L, Tannock, G. W., Korver, D.R., and Allison, G. E. (2005) Detection characterization and in vitro and in vivo expression of genes encoding S-proteins in Lactobacillus gallinarum strains isolated from chicken crops. Applied and Environmental Microbiology, 71(11): 6633-6643.
Hansen, M. L., Petersen, M. A., Risbo, J., Hümmer , M., and Clausen, A. (2015) Implications of modifying membrane fatty acid composition on membrane oxidation, integrity, and storage viability of freeze-dried probiotic, Lactobacillus acidophilus La-5. Biotechnology Progress, 31(3): 799-807.
Hassan, A. F., Abdel-Mohsenb, A. M., and Fouda, M. M. G. (2014) Comparative study of calcium alginate, activated carbon, and their composite beads on methylene blue adsorption. Carbohydrate Polymers, 102: 192-198.
Heidebach, T., Först, P., and Kulozik, U. (2012) Microencapsulation of probiotic cells for food applications. Critical Reviews in Food Science and Nutrition, 52(4): 291-311.
Herrero-Vanrell, R., Bravo-Osuna, I., Andrés-Guerrero, V., Vicario-de-la-Torre, M., and Molina-Martínez, I. T. (2014) The potential of using biodegradable microspheres in retinal diseasesand other intraocular pathologies. Progress in Retinal and Eye Research, 42: 27-43.
Herzberger, J., Niederer, K., Pohlit, H., Seiwert, J., Worm, M., Wurm, F. R., and Frey, H. (2016) Polymerization of ethylene oxide, propylene oxide, and other alkylene oxides: synthesis, novel polymer architectures, and bioconjugation. Chemical Reviews, 116(4): 2170-2243.
Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., and Pot, B. (2014) The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Journal of Gastroenterology and Hepatology, 11: 506-514.
Hiramatsu, Y., Hosono, A., Konno, T., Nakanishi, Y., Muto, M., Suyama, A., Hachimura, S., Sato, R., Takahashi, K., and Kaminogawa, S. (2011) Orally administered Bifidobacterium triggers immune responses following capture by CD11c(+) cells in Peyer’s patches and cecal patches. Cytotechnology, 63: 307-317.
Holz, C., Busjahn, A., Mehling, H., Arya, S., Boettner, M., Habibi, H., and Lang, C. (2015) Significant reduction in Helicobacter pylori load in humans with non-viable Lactobacillus reuteri DSM17648: a pilot study. Probiotics and Antimicrobial Proteins, 7(2): 91-100.
Holzapfel, W. H., Haberer, P., Geisen, R., Bjorkroth, J., and Schillinger, U. (2001) Taxonomy and important features of probiotic microorganisms in food and nutrition. American Journal of Clinical Nutrition, 73: 365-373.
Honda, H., Yajima, N., and Saito, T. (2012) Characterization of lactose utilization and β-galactosidase in Lactobacillus brevis KB290, the hetero-fermentative lactic acid bacterium. Current Microbiology, 65: 679-685.
Hsieh, P. S., Tsai, Y. C., Chen, Y. C., Teh, S. F., Ou, C. M., and King, V. A.E. (2012) Eradication of Helicobacter pylori infection by the probiotic strains Lactobacillus johnsonii MH-68 and L.salivarius ssp. salicinius AP-32. Helicobacter, 17: 466-477.
Hsu, C. A., Yu, R. C., and Chou, C. C. (2005) Production of β-galactosidase by Bifidobacteria as influenced by various culture conditions. International Journal of Food Microbiology, 104(2): 197-206.
Huang, R., Pan, M., Wan, C., Shah, N. P., Tao, X., and Wei, H. (2016) Physiological and transcriptional responses and cross protection of Lactobacillus plantarum ZDY2013 under acid stress. Journal of Dairy Science, 99(2): 1002-1010.
Huiping, Z. and Phillip, B. H. (2014) Bile acids are nutrient signaling hormones. Steroids, 86: 62-68.
Huq, T., Khan, A., Khan, R. A., Riedl, B., and Lacroix, M. (2013) Encapsulation of probiotic bacteria in biopolymeric system. Critical Reviews in Food Science and Nutrition, 53: 909-916.
Jain, D. and Chaudhary, H. (2014) Clinical significance of probiotics in human. International Journal of Nutrition, Pharmacology, Neurological Diseases, 4: 11-22.
Jamekhorshid, A., Sadrameli, S. M., and Farid, M. (2014) A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renewable and Sustainable Energy Reviews, 31: 531-542.
Jenkins, J. K. and Courtney, P. D. (2003) Lactobacillus growth and membrane composition in the presence of linoleic or conjugated linoleic acid. Canadian Journal of Microbiology, 49: 51-57.
Jiang, T., Kim, Y. K., Singh, B., Kang, S. K., Choi, U. J., and Cho, C. S. (2013) Effect of microencapsulation of Lactobacillus plantarum 25 into alginate/chitosan/alginate microcapsules on viability and cytokine induction. Journal of Nanoscience and Nanotechnology, 13: 5291-5295.
Jichao, Q., Xiaoling, H., Tuanhong, A., and Ping, G. (2006) Application of solvent evaporation method in preparation of drug microcapsule. Chemical Industry and Engineering Progress, 25(8): 885-889.
Jiménez-Martín, E., Gharsallaoui, A., Pérez-Palacios, T., Carrascal, J. R., and Rojas, T. A. (2015) Suitability of using monolayered and multilayered emulsions for microencapsulation of ω-3 fatty acids by spray drying: effect of storage at different temperatures. Food and Bioprocess Technology, 8(1): 100-111.
Johnsson, T., Nikkila, P., Toivonen, L., Rosenqvist, H., and Laakso., S. (1995) Cellular fatty acid profiles of Lactobacillus and Lactococcus strains in relation to the oleic acid content of the cultivation medium. Applied and Environmental Microbiology, 61: 4497-4499.
Jone, M. L., Martoni, C. J., and Prakash, S. (2012) Cholestrol lowering and inhibition of sterol absorption by Lactobacillus reuteri NCIMB 30242: a randomized controlled trial. European Journal of Clinical Nutrition, 66: 1234-1241.
Jyothi Sri, S., Seethadevi, A., Suria Prabha, K., Muyhuprasanna, P., and Pavitra, P. (2012) Microencapsulation: a review. International Journal of Pharma and Bio Sciences, 3(1): 509-531.
Kankaanpää, P., Yang, B., Kallio, H., Isolauri, E., and Salminen, S. (2004) Effects of polyunsaturated fatty acids in growth medium on lipid composition and on physicochemical surface properties of Lactobacilli. Applied and Environmental Microbiology, 70: 129-136.
Kebary, K. M. K., Hussein, S. A., and Badawi, R. M. (1998) Improving viability of Bifidobacteria and their effect on frozen ice milk. Egyptian Journal of Dairy Science, 23: 319-337.
Khalil, M. A., El-Sheekh, M. M., El-Adawi, H. I., El-Deeb, N. M., and Hussein, M. Z. (2015) Efficacy of microencapsulated lactic acid bacteria in Helicobater pylori eradication therapy. National Institutes of Health, 20(10): 950-957.
Kingwatee, N., Apichartsrangkoon, A., Chaikham, P., Pankasemsuk, T., and Changrue, V. (2014) Survivability and metabolic activity of Lactobacillus casei 01 incorporating lychee juice plus inulin under simulated gastrointestinal environment. International Food Research Journal, 21(1): 83-89.
Kumar, A. and Kumar, D. (2015) Characterization of Lactobacillus isolated from dairy samples for probiotic properties. Anaerobe, 33: 117-123.
LeBlanc, J. G., Milani, C., de Giori, G. S., Sesma, F., van Sinderen, D., and Ventura, M. (2013) Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Current Opinion in Biotechnology, 24(2): 160-168.
Lee, K. Y. and Mooney, D. J. (2012) Alginate: properties and biomedical applications. Progress in Polymer Science, 37(1): 106-126.
Leong, J. Y., Lam, W. H., Ho, K. W., Voo, W. P., Lee, M. F. X., Lim, H. P., Lim, S. L., Tey, B. T., Poncelet, D., and Chan, E. S. (2016) Advances in fabricating spherical alginate hydrogels with controlled particle designs by ionotropic gelation as encapsulation systems. Particuology, 24: 44-60.
Leroy, F. and Vuyst, L. D. (2004) Lactic acid bacteriaas functional startercultures for the food fermentation industry. Trends in Food Science & Technology, 15: 67-78.
Le-Tien, C., Millette, M., Mateescu, M. A., and Lacroix, M. (2004) Modified alginate and chitosan for lactic acid bacteria immobilization. Biotechnology and Applied Biochemistry, 39: 347-354.
Li, B. (2008) Management mode of Japan Yakult enlightening to Chinese Lactobacillus beverage development. Dairy Science and Technology, 3: 136-138
Lin, W. H., Hwang, C. F., Chen, L. W., and Tsen, H.Y. (2006) Viable counts, characteristic evaluation for commercial lactic acid bacteria products. Food Microbiology, 23: 74-81.
Liong, M. T. and Shah, N. P. (2005) Acid and bile tolerance and cholesterol removal ability of Lactobacilli strains. Journal of Dairy Science, 88: 55-66.
Liu, S. N., Han, Y., and Zhou, Z. J. (2011) Lactic acid bacteria in traditional fermented Chinese foods. Food Research International, 44(3): 643-651.
Liu, Y., Tang, H., Lin, Z., and Xu, P. (2015) Mechanisms of acid tolerance in bacteria and prospects in biotechnology and bioremediation. Biotechnology Advances, 33(7): 1484-1492.
López de Lacey, A. M., Pérez-Santín, E., López-Caballero, M. E., and Montero, P. (2014) Survival and metabolic activity of probiotic bacteria in green tea. LWT - Food Science and Technology, 55(1): 314-322.
Lu, Q. H., Zhang, Y. C., and Zhang, L. W. (2014) Advances in S-layer protein properties of Lactobacillus and its probiotic functions. Institute of Microbiology, 41(1): 122-129.
Lv, L. X., Yan, R., Shi, H. Y., Shi, D., Fang, D. Q., Jiang, H. Y., and Wu, W. R. (2017) Integrated transcriptomic and proteomic analysis of the bile stress response in probiotic Lactobacillus salivarius LI01. Journal of Proteomics, 150: 216-229.
Machado, M. C., Lopez, C. S., Heras, H., and Rivas, E. A. (2004) Osmotic response in Lactobacillus casei ATCC 393: biochemical and biophysical characteristics of membrane. Archives of Biochemistry and Biophysics, 422: 61-70.
Madene, A., Jacquot, M., Scher, J., and Desobry, S. (2006) Flavour encapsulation and controlled release-a review. International Journal of Food Science and Technology, 41: 1-21.
Makino, S., Ikegami, S., Kume, A., Horiuch, H., Sasaki, H., and Orii, N. (2011) Reducing the risk of infection in the elderly by dietary intake of yoghurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. British Journal of Nutrition, 104: 998-1006.
Makino, S., Sato, A., Goto, A., Nakamura, M., Ogawa, M., Chiba, Y., Hemmi, J., Kano, H., Takeda, K., Okumura, K., and Asami, Y. (2016) Enhanced natural killer cell activation by exopolysaccharides derived from yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. Journal of Dairy Science, 99(2): 915-923.
Manchester, K. L. (2007) Louis Pasteur, fermentation, and a rival. South African Journal of Science, 103: 377-380.
Mandal, S., Puniya, A. K., and Singh, K. (2006) Effect of alginate concentrations on survival of microencapsulated Lactobacilluscasei NCDC-298. International Dairy Journal, 16: 1190-1195.
Martín, M. J., Villoslada, F. L., Ruiz, M. A., and Morales, M. E. (2015) Microencapsulation of bacteria: a review of different technologies and their impact on the probiotic effects. Innovative Food Science & Emerging Technologies, 28: 15-25.
Martinez, F. A. C., Balciunas, E. M., Salgado, J. M., Domínguez, J. M. D., Converti, A., and de Souza Oliveira, R. P. (2013) Lactic acid properties, applications and production: a review. Trends in Food Science & Technology, 30(1): 70-83.
Matias, N. S., Padilha, M., Bedani, R., and Saad, S. M. I. (2016) In vitro gastrointestinal resistance of Lactobacillus acidophilus La-5 and Bifidobacterium animalis Bb-12 in soy and/or milk-based synbiotic apple ice creams. International Journal of Food Microbiology, 234: 83-93.
Merritt, M. E. and Donaldson, J. R. (2009) Effect of bile salts on the DNA and membrane integrity of enteric bacteria. Journal of Medical Microbiology, 58: 1533-1541.
Moal, V. L. L. and Servin, A. L. (2016) Anti-infective activities of Lactobacillus strains in the human intestinal microbiota: from probiotics to gastrointestinal anti-infectious biotherapeutic agents. Clinical Microbiology Reviews, 27: 167-199.
Mokarram, R. R., Mortazavi, S. A., Najafi, M. B. H., and Shahidi, F. (2009) The influence of multi stage alginate coating on survivability of potential probiotic bacteria in simulated gastric and intestinal juice. Food Research, 42: 1040-1045.
Moraes, P. M., Perin, L .M., Júnior, A. S., and Nero, L. A. (2013) Comparison of phenotypic and molecular tests to identify lactic acid bacteria. Brazilian Journal of Microbiology, 44(1): 109-112.
Mortazavian, A. M. and Sohrabvandi, S. (2007) Probiotics and food probiotic products: based on dairy probiotic products. Energy Technologies Area, 131-169.
Moser, S. A. and Savage, D. C. (2001) Bile salt hydrolase activity and resistance to toxicity of conjugated bile salts are unrelated properties in lactobacilli. Applied and Environmental Microbiology, 67(8): 3476-3480.
Muller, J. A., Ross, R. P., Sybesma, W. F. H., Fitzgerald, G. F., and Stanton1, C. (2011) Modification of the technical properties of Lactobacillus johnsonii NCC 533 by supplementing the growth medium with unsaturated fatty acids. American Society for Microbiology, 77(19): 6889-6898.
Muthukumarasamy, P., Allan-wojtas, P., and Holley, R. A. (2006) Stability of Lactobacillus reuteri in different types of microcapsules. Food Microbiology and Safety, 71: 20-24.
Ng, E. W., Yeung, M., and Tong, P. S. (2011) Effects of yogurt starter cultures on the survival of Lactobacillus acidophilus. International Journal of Food Microbiology, 145(1): 169-175.
Noh, D. O. and Gilliland, S. E. (1993) Influence of bile on cellular integrity and β-galactosidase activity of Lactobacillus acidophilus. Journal of Dairy Science, 76: 1253-1259.
Noviendri, D., Jaswir, I., Taher, M., Mohamed, F., Salleh, H. M., Noorbatcha, I. A., Octavianti, F., Lestari, W., Hendri, R., Ahmad, H., Miyashita, K., and Abdullah, A. (2016) Fabrication of fucoxanthin-loaded microsphere by two steps double-emulsion solvent evaporation method and characterization of fucoxanthin before and after microencapsulation. Journal of Oleo Science, 65(8): 641-653.
Nualkaekul, S., Lenton, D., Cook, M. T., Khutoryanskiy, V. and Charalampopoulos, D. (2012) Chitosan coated alginate beads for the survival of microencapsulated Lactobacillus plantarum in pomegranate juice. Carbohydrate Polymers, 90: 1281-1287.
Opekarová, M. and Sigler, K. (1982) Acidification power: indicator of metabolic activity and autolytic changes in Saccharomyces cerevisiae. Folia Microbiologica, 27(6): 395-403.
Orla-Jensen, S. (1921) The main lines of the natural bacterial system. Journal of Bacteriology, 6: 263-273.
Ouvry, A., Waché, Y., Tourdot-Maréchal, R., Diviès, C., and Cachon, R. (2002) Effects of oxido reduction potential combined with acetic acid, NaCl and temperature on the growth, acidification, and membrane properties of Lactobacillus plantarum. FEMS Microbiology Letters, 257-261.
Oyetayo, V. O. and Oyetayo, F. L. (2005) Potential of probiotics as biotherapeutic agents targeting the innate immune system. African Journal of Biotechnology, 4 (2): 123-127.
Paéz,R., Lavari, L., Vinderola, G., Audero, G., Cuatrin, A., and Zaritzky, N. (2012) Effect of heat treatment and spray drying on Lactobacilli viability and resistance to simulated gastrointestinal digestion. Food Research International, 48(2): 748-754.
Pagnini, C., Saeed, R., Bamias, G., Arseneau, K. O., Pizarro, T. T., and Cominelli, F. (2010) Probiotics promote gut health through stimulation of epithelial innate immunity. Proceedings of the National Academy of Science of the United States of America, 107: 454-459.
Pan, M., Wan, C., Xie, Q., Huang, R., Tao, X., Shah, N. P., and Wei, H. (2013) Changes in gastric microbiota induced by Helicobacter pylori infection and preventive effects of Lactobacillus plantarum ZDY against such infection. Journal of Dairy Science, 99(2): 970-981.
Paques, J. P., van der Linden, E. C., van Rijn, C. J. M., and Sagis, L. M. C. (2014) Preparation methods of alginate nanoparticles. Advances in Colloid and Interface Science, 209: 163-171.
Partanen, L., Marttinen, N., and Alatossava, T. (2001) Fats and fatty acids as growth factors for Lactobacillus delbrueckii. Systematic and Applied Microbiology, 24: 500-506.
Parvez, S., Malik, K. A., Kang, S. A., and Kim H. Y. (2006) Probiotics and their fermented food products are beneficial for health. Journal of Applied Microbiology, 100(6): 1171-1185.
Patel, A., Prajapati, J. B., Holst, O., and Ljungh, A. (2014) Determining probiotic potential of exopolysaccharide producing lactic acid bacteria isolated from vegetables and traditional Indian fermented food products. Food Bioscience, 5: 27-33.
Pedroso, D. L., Thomazini, M., Barrozo Heinemann, R. J., and Favaro-Trindade, C. S. (2012) Protection of Bifidobacterium lactis and Lactobacillus acidophilus by microencapsulation using spray-chilling. International Dairy Journal, 26: 127-132.
Pingitore E.V., Hebert, E. M., Nader-Macias M. E., and Sesma, F. (2009) Characterization of salivaricin CRL 1328, a two-peptide bacteriocin produced by Lactobacillus salivarius CRL 1328 isolated from the human vagina. Research in Microbiology, 160: 401-408.
Pirarat, N., Pinpimai, K., Rodkhum, C., Chansue, N., Ooi, E. L., Katagiri, T., and Mait, M. (2015) Viability and morphological evaluation of alginate-encapsulated Lactobacillus rhamnosus GG under simulated tilapia gastrointestinal conditions and its effect on growth performance, intestinal morphology and protection against Streptococcus agalactiae. Animal Feed Science and Technology, 207: 93-103.
Pridmore, R. D., Berger, B., Desiere, F., Vilanova, D., Barretto, C., Pittet, A. C., Zwahlen, M. C., Rouvet, M., Altermann, E., Barrangou, R., Mollet, B., Mercenier, A., Klaenhammer, T., Arigoni, F., and Schell, M. A. (2004) The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proceedings of the National Academy of Sciences of the United States of America, 101(8): 2512-2517.
Priya, A. J., Vijayalakshmi, S. P., and Raichur, A. M. (2011) Enhanced survival of probiotic Lactobacillus acidophilus by encapsulation with nanostructured polyelectrolyte layers through layer-by-layer approach. Journal of Agricultural and Food Chemistry, 59(21): 11838-11845.
Qi, K., Weiting, Y., Ye, W., Xiudong, L., and Xiaojun, M. (2015) Preparation and property of sodium alginate hydrogel crosslinked by non-covalent bonds. Chemistry Online, 78(3): 236.
Rath, A., Glibowicka, M., Nadeau, V. G., Chen, G., and Deber, C. M. (2009) Detergent binding explains anomalous SDS-PAGE migration of membrane proteins. Proceedings of the National Academy of Sciences, 106(6): 1760-1765.
Rathore, S., Desai, P. M., Liew, C. V., Chan, L. W., and Heng, P. W. S. (2013) Microencapsulation of microbial cells. Journal of Food Engineering, 116(2): 369-381.
Rechinger, K. B. and Siegumfeldt, H. (2002) Rapid assessment of cell viability of Lactobacillus delbrueckii subsp. bulgaricus by measurement of intracellular pH in individual cells using f luorescence ratio imaging microscopy. International Journal of Food Microbiology, 75: 53-60.
Riis, S. B., Pedersen, H. M., Sorensen, N. K., and Jakobsen, M. (1995) Flow cytometry and acidification power test as rapid techniques for determination of the activity of starter cultures of Lactobacillus delbrueckii ssp. bulgaricus. Food Microbiology, 12: 245-250.
Rivière, A., Selak, M., Lantin, D., Leroy, F., and De Vuyst, L. (2016) Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut. Frontiers in Microbiology, 7: 1-20.
Rubio, R., Jofré, A., Martín, B., Aymerich, T., and Garriga, M. (2014) Characterization of lactic acid bacteria isolated from infant faeces as potential probiotic starter cultures for fermented sausages. Food Microbiology, 38: 303-311.
Rush, V. (2002) Probiotics and definitions: a short overview. Old Herborn University Seminar Monograph, 15: 1-4.
Saad, N., Delattre, C., Urdaci, M., Schmitter, J. M., and Bressollier, P. (2013) An overview of the last advances in probiotic and prebiotic field. LWT-Food Science and Technology, 50(1): 1-16.
Saarela, M., Lähteenmäki, L., Crittenden, R., Salminen, S., and Mattila-Sandholm, T. (2002). Gut bacteria and health foods-the European perspective. International Journal of Food Microbiology, 78: 99-117.
Saleh, H. E., Wei, Y., Larry, D., and John, P. N. R. (1992) Microbial oxidation of oleic acid. Applied and Environmental Microbiology, 58(7): 2116-2122.
Salvetti, E., Fondi, M., Fani, R., Torriani, S., and Felis, G. E. (2013) Evolution of lactic acid bacteria in the order Lactobacillales as depicted by analysis of glycolysis and pentose phosphate pathways. Systematic and Applied Microbiology, 36: 291-305.
Sandoval-Castilla, O., Lobato-Calleros, C., García-Galindo, H. S., Alvarez-Ramírez, J. and Vernon-Carter, E. J. (2010) Textural properties of alginate–pectin beads and survivability of entrapped Lb. casei in simulated gastrointestinal conditions and in yoghurt. Food Research International, 43(1): 111-117.
Sanhueza, E., Paredes-Osses, E., González, C. L., and García, A. (2015) Effect of pH in the survivalof Lactobacillus salivarius strain UCO_979C wild type and the pH acid acclimated variant. Electronic Journal of Biotechnology, 18: 343-346.
Santer, M. (2010) Joseph Lister: first use of a bacterium as a ‘model organism’ to illustrate the cause of infectious disease of humans. The Royal Society Journal of the History of Science, 64: 59-65.
Savidge, T. C. (2016) Epigenetic regulation of enteric neurotransmission by gut bacteria. Frontiers in Cellular Neuroscience, 9, 1-7.
Schabussova, I., Hufnagl, K., Wild, C., Nutten, S., Zuercher, A. W., Mercenier, A., and Wiedermann, U. (2011) Distinctive anti-allergy properties of two probiotic bacterial strains in a mouse model of allergic poly-sensitization. Vaccine, 29: 1981-1990.
Schell, D. and Beermann, C. (2014) Fluidized bed microencapsulation of Lactobacillus reuteri with sweet whey and shellac for improved acid resistance and in-vitro gastro-intestinal survival. Food Research International, 62: 308-314.
Sekine, K., Ohta, J., and Onishi M. (1995) Analysis of antitumor properites of effecter cells stimulated with a cell wall prepatation of Bifidobacterium infantis. Biological and Pharmaceutical Bulletin, 18: 148-153.
Semyonov, D., Ramon, O., Kaplun, Z., Levin-Brener, L., Gurevich, N., and Shimoni, E. (2011) Microencapsulation of Lactobacillus paracasei by spray freeze drying. Food Research International, 43(1): 193-202.
Serra, A., Macià, A., Romero, M. P., Reguant, J., Ortega, N., and Motilva, M. J. (2012) Metabolic pathways of the colonic metabolism of flavonoids (flavonols, flavones and flavanones) and phenolic acids. Food Chemistry, 130: 383-393.
Shabala, L. and Ross, T. (2008) Cyclopropane fatty acids improve Escherichia coli survival in acidified minimal media by reducing membrane permeability to H+ and enhanced ability to extrude H+. Research in Microbiology, 159: 458-461.
Shah, N. P. (2007) Functional cultures and health benefits. International Dairy Journal, 17(11): 1262-1277.
Sheu, T. Y. and Marshall, R. T. (1993) Microencapsulation of Lactobacilli in calcium alginate gels. Journal of Food Science, 54: 557-561.
Shi, L. E., Li, Z. H., Li, D. T., Xu, M., Chen, H. Y., Zhang, Z. L. and Tang, Z. X. (2013) Encapsulation of probiotic Lactobacillus bulgaricus in alginate–milk microspheres and evaluation of the survival in simulated gastrointestinal conditions. Journal of Food Engineering, 117(1): 99-104.
Shiby, V. K. and Mishra, H. N. (2012) Fermented milks and milk products as functional foods-a review. Journal Critical Reviews in Food Science and Nutrition, 53: 482-496.
Shin, Y. R., Lim, K. B., Chae, J. P., and Kang, D. K. (2011) Characterization of anti-Listerial substance produced by Lactobacillus salivarius LCH1227. Korean Journal for Food Science of Animal Resources, 31: 609-616.
Shinde, T., Sun-Waterhouse, D., and Brooks, J. (2014) Co-extrusion encapsulation of probiotic Lactobacillus acidophilus alone or together with apple skin polyphenols: an aqueousand value-added delivery system using alginate. Food and Bioprocess Technology, 7: 1581-1596.
Sigler, K. (2013) Acidification power (AP) test and similar methods for assessment and predictionof fermentation activity of industrial microorganisms. Kvasny Prum, 59(7-8): 204-208.
Sigler, K., Mikyška, A., Kosař, K., Gabriel, P., and Dienstbier, M. (2006) Factors affecting the outcome of the acidification power test as a measure of yeast quality: critical reassessment. Folia Microbiologica, 51(6): 525-534.
Silva, M. P., Tulini, F. L., Ribas, M. M., Penning, M., Fávaro-Trindade, C. S., and Poncelet, D. (2016) Microcapsules loaded with the probiotic Lactobacillus paracasei BGP-1 produced by co-extrusion technology using alginate/shellac as wall material: characterization and evaluation of drying processes. Food Research International, 89(1): 582-590.
Sim, K. Y., Chye, F. Y., and Anton, A. (2012) Probiotic potential and antimicrobial activities of micro-organism isolated from an indigenous fish sauce. Borneo Science, 31: 57-63.
Singh, M. N., Hemant, K. S. Y., Ram, M., and Shivakumar, H. G. (2010) Microencapsulation: a promising technique for controlled drug delivery. Research in Pharmaceutical Sciences, 5(2): 65-77.
Solanki, H. K., Pawar, D. D., Shah, D. A., Prajapati, V. D., Jani, G. K., Mulla, A. M., and Thakar, P. M. (2013) Development of microencapsulation delivery system for long-term preservation of probiotics as biotherapeutics agent. BioMed Research InternationalArticle ID 620719, 21 pages.
Sridar, R., Nguyen, M., and Kailasapathy, K. (2003) Studies on the effect of encapsulation on the survival of probiotic microorganisms under high acid and bile conditions. Journal of Food Science andTechnology, 40(5): 458-460.
Suzuki, S., Kimoto-Nira, H., Suganuma, H., Suzuki, C., Saito, T., and Yajima, N. (2014) Cellular fatty acid composition and exopolysaccharide contribute to bile tolerance in Lactobacillus brevis strains isolated from fermented Japanese pickles. Canadian Journal of Microbiology, 60: 183-191.
Suzuki, S., Yakabe, T., Suganuma, H., Fukao, M., Saito, T., and Yajima, N. (2013) Cell-bound exopolysaccharides of Lactobacillus brevis KB290: protective role and monosaccharide composition. Canadian Journal of Microbiology, 59(8): 549-555.
Swan, T. M. and Watson, K. (1999) Stress tolerance in a yeast lipid mutant: membrane lipids influence tolerance to heat and ethanol independently of heat shock proteins and trehalose. Canadian Journal of Microbiology, 45(6): 472-479.
Takei, T., Yoshida, M., Hatate, Y., Shiomori, K., and Kiyoyama, S. (2009) Preparation of lactic acid bacteria-enclosing alginate beads in emulsion system: effect of preparation parameters on bead characteristics. Polymer Bulletin, 63, 599-607.
Tanaka, H., Doesburg, K., Iwasaki, T., and Mierau, I. (1999) Screening of lactic acid bacteria for bile salt hydrolase activity. Journal of Dairy Science, 82, 2530-2535.
Taranto, M. P., Fernandez Murga, M. L., Lorca, G., and De Valdez, G. F. (2003) Bile salts and cholesterol induce changes in the lipid cell membrane of Lactobacillus reuteri. Journal of Applied Microbiology, 95(1): 86-91.
Taranto, M. P., Perez-Martinez, G., and de Valdez, G. F. (2006) Effect of bile acid on the cell membrane functionality of lactic acid bacteria for oral administration. Research in Microbiology, 157: 720-725.
Thushara, R. M., Gangadaran, S., Solati, Z., and Moghadasian, M. H. (2016) Cardiovascular benefits of probiotics: a review of experimental and clinical studies. Royal Society of Chemistry, 7: 632-642.
Tiwari, S. and Verma, P. (2011) Microencapsulation technique by solvent evaporation method. International Journal of Pharmacy and Life Sciences, 2(8): 998-1005.
Toomer, O. T., Ferguson, M., Pereira, M., Do, A., Bigley, E., Gaines, D., and Williams, K. (2014) Maternal and postnatal dietary probiotic supplementation enhances splenic regulatory T helper cell population and reduces ovalbumin allergen-induced hypersensitivity responses in mice. Immunobiology, 219: 367-376.
Trabelsi, I., Bejar, W., Ayadi, D., Chouayekh, H., Kammoun, R., Bejar, S., and Salah, R. B. (2013) Encapsulation in alginate and alginate coated-chitosan improved the survival of newly probiotic in oxgall and gastric juice. International Journal of Biological Macromolecules, 61: 36- 42.
Tsangalis, D., Ashton, J. F., McGill, A. E. J., and Shah, N. P. (2002) Enzymic transformation of isoflavone phytoestrogens in soymilk by β-glucosidase-producing Bifidobacteria. Journal of Food Science, 67: 3104-3113.
Tsen, J. H., Lin, Y. P., and King, A. E. (2004) Fermentation of banana media by using kappa-carrageenan immobilized Lactobacillus acidophilus. International Journal of Food Microbiology, 91(2): 215-220.
Varsha, K. K. and Nampoothiri, K. M. (2016) Appraisal of lactic acid bacteria as protective cultures. Food Control, 69: 61-64.
Vaughan, R. B. (1965) The romantic rationalist: a study of Elie Metchnikoff. Medical History, 9(3): 201-215.
Veerkamp, J. H. (1971) Fatty acid composition of Bifidobacterium and Lactobacillus strains. Journal of Bacteriology, 108(2): 861-867.
Von Wright, A. and Axelsson, L. (2011) Lactic acid bacteria: an introduction. In Lactic Acid Bacteria: Microbiological and Functional Aspects, Lahtinen, S., Ouwehand, A.C., Salminen, S., and Von Wright, A. (Eds), CRC Press, London, pp. 1-17.
Vonk, R. J., Reckman, G. A., Harmsen, H. J., and Priebe, M. G. (2012) Probiotics and lactose intolerance. Immunology and Microbiology, DOI: 10.5772/51424.
Voo, W. P., Ravindra, P., Tey, B. T., and Chan, E. S. (2011) Comparison of alginate and pectin based beads for production of poultry probiotic cells. Journal of Bioscience and Bioengineering, 111(3): 294-299.
Wang, C. Y., Lin, P. R., Ng, C. C., and Shyu, Y. T. (2010) Probiotic properties of Lactobacillus strains isolated from the feces of breast-fed infants and Taiwanese pickled cabbage. Anaerobe, 16(6): 578-585.
Wang, Y., Tashiro, Y., and Sonomoto, K. (2015) Fermentative production of lactic acid from renewable materials: recent achievements, prospects, and limits. Journal of Bioscience and Bioengineering, 119(1): 10-18.
Wang, T., Xu, Z., Lu, S., Xin, M., and Kong, J. (2016) Effects of glutathione on acid stress resistance and symbiosis between Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus. International Dairy Journal, 61: 22-28.
Watson, A. L. and Chiu, N. H. L. (2016) Fluorometric cell-based assay for β-galactosidase activity in probioticgram-positive bacterial cells-Lactobacillus helveticus. Journal of Microbiological Methods, 128: 58-60.
Webb, A. R., Kline, L., and Holick, M. F. (1988) Influence of season and latitude on the cutaneous synthesis of vitamin D3: exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin. JCEM: Home - Endocrine Society Journals and Publications, 67(2): 373-378.
Werner, S. R. L., Jones, J. R., Paterson, A. H. J., Archer, R. H., and Pearce, D. L. (2007) Air-suspension particle coating in the food industry: Part I-state of the art. Powder Technology, 171(1): 25-33.
Wu, C., Huang, J., and Zhou, R. (2014) Progress in engineering acid stress resistance of lactic acid bacteria. Applied Microbiology and Biotechnology, 98(3): 1055-1063.
Wu, Q. and Shah, N. P. (2016) High γ-aminobutyric acid production from lactic acid bacteria: emphasis on Lactobacillus brevis as a functional dairy starter. Critical Reviews in Food Science and Nutrition, [Epub ahead of print]
Wu, C., Zhang, J., Du, G., and Chen, J. (2013) Aspartate protects Lactobacillus casei against acid stress. Applied Microbiology and Biotechnology, 97(9): 4083-4093.
Young, J. W., Locke, J. C. W., and Elowitz, M. B. (2013) Rate of environmental change determines stress response specificity. Proceedings of the National Academy of Sciences of the United States of America, 110(10): 4140-4145.
Zhang, S. F., Chen, P. H., Zhang, F., Yang, Y. F., Liu, D. K., and Wu, G. (2013) Preparation and physicochemical characteristics of polylactide microspheres of emamectin benzoate by modified solventevaporation/extraction method. Journal of Agricultural and Food Chemistry, 61: 12219-12225.
Zhang, Z., Law, D., and Lian, G. (2010) Chacracterization methods of encapsulates. In Encapsulation Technologies for Active Food Ingredientsand Food Processing, Zuidam, N. J., and Shimoni, E. (Eds), Springer, New York, USA, pp. 101-125.
Zhang, Y. H., Meng, Y., Ling, P. X., and Ji, B. P. (2010) Protective mechanisms of trehalose and hyaluronic acid on lyophilized Bifidobacterium longum. Food Science, 7: 236-241.
Zhao, M., Qu, F., Cai, S., Fang, Y., Nishinari, K., Phillips, G. O., and Jiang, F. (2015) Microencapsulation of Lactobacillus acidophilus CGMCC1.2686: correlation between bacteria survivability and physical properties of microcapsules. Food Biophysics, 10(3): 292-299.
Zhang, Y., Song, L., Gao, Q., Yu, S. M., Li, L., and Gao, N. F. (2012) The two-step biotransformation of monosodium glutamate to GABA by Lactobacillus brevis growing and resting cells. Applied Microbiology and Biotechnology, 94, 1619-1627.
Zhang, J., Wu, C., Du, G., and Chen, J. (2012) Enhanced acid tolerance in Lactobacillus casei by adaptive evolution and compared stress response during acid stress. Biotechnology and Bioprocess Engineering, 17(2): 283-289
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊