跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/01/17 18:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉偉信
研究生(外文):Wen-Sin Liu
論文名稱:超音波處理乳酸菌對豆漿發酵之異黃酮轉化研究
論文名稱(外文):Ultrasonic treatment on the lactic acid bacteria for the bioconversion of isoflavones in the fermentation of soymilk.
指導教授:方繼方繼引用關係楊珺堯
口試委員:廖啟成陳錦樹危貴金
口試日期:2017-07-11
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品暨應用生物科技學系所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:111
中文關鍵詞:超音波異黃酮β-葡萄醣苷酶黃白木耳胞外多醣
外文關鍵詞:ultrasoundisoflavonesβ-glucosidaseTremellaextracellular polysaccharide
相關次數:
  • 被引用被引用:3
  • 點閱點閱:574
  • 評分評分:
  • 下載下載:75
  • 收藏至我的研究室書目清單書目收藏:0
豆漿為亞洲重要的一樣飲品,而其中含有異黃酮的其具有減輕女性更年期症狀的效果,而有文獻指出乳酸菌具有轉化異黃酮提高其生物活性的功能,因其β-葡萄醣苷酶具有催化分解β-醣苷鍵的功能可將豆漿中含醣基的異黃酮去醣基生成高生物活性的異黃酮,文獻指出超音波對於乳酸菌有刺激提升其β-葡萄醣苷酶活性的功能。

本研究用優化後的超音波處理條件處理菌體後經再由添加營養素的方式來提升β-葡萄醣苷酶活性,根據菌株篩選的結果顯示六株中Lactobacillus acidophilus BCRC 10695、Lactobacillus casei BCRC 10696、Lactobacillus bulgaricus BCRC 14080、Streptococcus thermophiles BCRC 13680、Streptococcus thermophiles BCRC 12257、Streptococcus thermophiles BCRC BAA-250以L. acidophilus BCRC 10695具有最高的酵素活性,從其生長曲線得知在12小時到36小時其菌數、酸鹼值、濁度等參數具有較高的穩定度,β-葡萄醣苷酶活性也相對其他點高。

而在超音波條件篩選的接種菌液在37℃下進行不同條件的篩選,振幅 (20% (40W) ~ 60% (80W)),處理時間 (1分鐘 ~ 3分鐘) 以及菌株培養時間 (12小時 ~ 36小時) 等條件篩選,篩選結果以振幅20% (40W)、2分鐘處理時間、菌株培養24小時的條件處理,其菌數、酸鹼值、濁度等參數具有較高的穩定度,β-葡萄醣苷酶活性的提升效果較好。

在培養基營養素添加的實驗中以添加抗壞血酸 (0.5% ~ 0.01%),生物素 (1000 ~ 1 ppm)以及Tremella flava ATCC 36815黃白木耳胞外多醣 (1.0% ~ 0.01%)。添加結果以結果顯示添加1%及0.5% T. flava ATCC 36815黃白木耳胞外多醣具有提升超音波處理後L. acidophilus BCRC 10695 β-葡萄醣苷酶酵素活性的功能,經過36小時發酵時間所表現出的酵素活性約為控制組的1.78倍和1.81倍,其菌數、酸鹼值、濁度等參數具有較高的穩定度。

最後以37℃、振幅20% (40W)、2分鐘超音波處理培養24小時的接種菌液,後接入添加0.5% T. flava ATCC 36815黃白木耳胞外多醣的豆漿中,其結果顯示添加黃白木耳多醣的超音波處理豆漿中異黃酮在daidzin及daidzein的轉化能力則較控制組為佳。
Soymilk is an important Asian beverage, with high quality protein, isoflavones to reduce the menopausal symptoms, some studies have shown that lactic acid bacteria can convert of glucosides isoflavones into aglycone isoflavones to promote its biological activity, β-glucosidase can catalyze the decomposition of β-glucoside linkers, generating highly bioactive isoflavones, the literature pointed out that ultrasonic treatment on lactic acid bacteria could stimulate its β-glucosidase activity.

In this study, the β-glucosidase activity was increased by the addition of nutrients after ultrasound treatment with the optimized ultrasonic treatment conditions. According to the results of the experiment bacteria screening, six strains of bacteria , L. acidophilus BCRC 10695, L. casei BCRC 10696, L. bulgaricus BCRC 14080, S. thermophiles BCRC 13680, S. thermophiles BCRC 12257, S. thermophiles BCRC BAA-250 where L. acidophilus BCRC 10695 has the highest β-glucosidase activity and is known from its growth curve that incubate 12 hours to 36 hours, it’s bacterial count, pH, turbidity these parameters were most stable and β-glucosidase activity is relatively high relative to other incubate time.

In the ultrasonic conditions screening, the bacteria was treated at 37℃ under different conditions of screening. Amplitude (20% (40W) ~ 60% (80W)), treatment time (1 minute ~ 3 minutes) and bacteria incubate time (12 hours ~ 36 hours) conditions screening. The results showed that the best ultrasonic treatment condition were Amplitude 20% (40W), 2 minutes and the bacteria was incubated 24 hours. The parameters such as the bacteria count, pH and turbidity were most stability, and β-glucosidase activity was promoted.

In the media nutrient addition experiments to add ascorbic acid (0.5% ~ 0.01%)、biotin (1000 ppm ~ 1 ppm) and T. flava ATCC 36815 extracellular polysaccharide (1.0% ~ 0.01%)。The results showed that the addition of 1% and 0.5% T. flava ATCC 36815 extracellular polysaccharide had the effect of promote the β-glucosidase activity of L. acidophilus BCRC 10695 after ultrasonic treatment, after 36 hours of fermentation time The activity of the enzyme was about 1.78 times and 1.81 times of the control. The parameters such as the bacterial count, pH and turbidity were more stable .

The cells were incubated for 24 hours at 37 ° C and ultrasound treatment 20% (40W) for 2 minutes and then incubated to soymilk contains 0.5% T. flava ATCC 36815 extracellular polysaccharide. The results showed that the conversion ability of isoflavones in daidzin and daidezin was better than the control group.
中文摘要……………………………………………………………………………..i
Abstract…………………………………………………………………………….ii
壹、前言……………………………………………………………………………..1
貳、文獻回顧…………………………………………………………………………2
一、益生菌(probiotics) ………………………………………………………………2
(一) 益生菌定義…………………………………………………………...2
(二) 益生菌的益生機制及條件…………………………………………...2
(三) 乳酸菌介紹…………………………………………………………...2
(四) 乳酸菌的生理機能…………………………………………………...3
二、黃豆(soybeam) …………………………………………………………………..8
三、豆漿 (Soymilk) ………………………………………………………………….8
四、異黃酮 (isoflavone) ………………………………………………………………8
(一) 異黃酮結構…………………………………………………………...8
(二) 異黃酮生理活性…………………………………………………….11
(三) 乳酸菌β-葡萄醣苷酶 (β-glucosidase) 的分泌…………………….12
五、超音波…………………………………………………………..........................14
(一) 超音波定義………………………………………………………….14
(二) 超音波作用原理…………………………………………………….15
(三) 超音波的應用……………………………………………………….17
(四) 乳酸菌的超音波處理效應…………………………………………18
參、材料與方法…………………………………………………………………….25
一、實驗架構……………………………………………………………………….25
二、實驗材料及試劑配制………………………………………………………….26
(一) 實驗原料…………………………………………………………….26
(二) 實驗菌株…………………………………………………………….26
(三) 實驗藥品及培養基………………………………………………….26
(四) 實驗設備…………………………………………………………….27
(五) 培養基及試劑配制………………………………………………….28
三、實驗方法………………………………………………………………………..29
(一) 菌種活化…………………………………………………………….29
(二) 接種菌液製備………………………………………………………30
(三) 生長曲線…………………………………………………………….30
(四) 菌液濁度測量………………………………………………………30
(五) 酸鹼值測量…………………………………………………………30
(六) 胞外β-葡萄糖苷酶活性測量………………………………………30
(七) 黃白木耳胞外多醣萃取……………………………………………31
(八) 探針式超音波處理條件篩選………………………………………31
(九) L. acidophilus BCRC 10695培養時間篩選…………………………31
(十) 培養基添加不同營養素……………………………………………32
(十一) 菌體顯微結構分析……………………………………………….32
(十二) 豆漿製備………………………………………………………….32
(十三) 異黃酮成分分析………………………………………………….32
(十四) 統計分析………………………………………………………….33
肆、結果與討論……………………………………………………………………..39
一、實驗菌株β-glucosidase活性篩選………………………………………..39
二、L. acidophilus BCRC 10695生長曲線…………………………………………45
三、超音波處理L. acidophilus BCRC 10695-振幅篩選……………………………50
四、超音波處理 L. acidophilus BCRC 10695-超音波作用時間篩選……………56
五、超音波處理L. acidophilus BCRC 10695-菌株培養時間篩選…………………62
六、菌體電子顯微鏡照攝顯微結構分析…………………………………………..68
七、培養基添加不同營養素之探討………………………………………………..70
(一) 抗壞血酸添加……………………………………………………….70
(二) 黃白木耳 (T. flava ATCC 36815) 胞外多醣………………………76
(三) 生物素……………………………………………………………….82
八、L. acidophilus BCRC10695豆漿發酵…………………………………………89
伍、結論……………………………………………………………………………103
陸、未來展望………………………………………………………………………104
柒、參考文獻………………………………………………………………………105
戴蔭芳、劉成軍、張超良、曹慶榮、李保真。1995。藥用蔬菜。渡假出版社。台灣。
水野卓、川合正允,賴慶亮。1997。菇類的化學生化學。國立編譯館。台灣。
佐藤敏一、蘇品書譯。1984。『特殊加工』。復漢出版社。台南。
傅偉光、陳秀瑩、仇志強、陳景川,1997。台灣地區食品營養成分資料庫。行政院衛生署委辦,食品工業發展研究所編印。新竹市、台灣。
顏國欽、劉展冏、韓建國、劉冠汝、李嘉展、陳建元、虞積凱、孫芳明、蘇敏昇、馮惠萍、謝秋蘭、饒家麟、梁弘人、林聖敦、江伯源、李政達、盧更煌、周志輝。2013。食品化學(二版)。華格納出版社。台中市、台灣。
吳柔鋒。2008。黃白木耳發酵豆奶生產胞外多醣之條件探討。國立中興大學食品暨應用生物科技學系碩士論文。台中、台灣。
林玉慧。2012。大豆起司最適發酵條件之探討。國立臺灣海洋大學食品科學系碩士論文。基隆、台灣。
高智慧。2014。Lactobacillus fermentum FSB 303胞外多醣之界面活性及生理活性探討。中興大學食品暨應用生物科技學系碩士論文。台中、台灣。
許志平。2007。以PCR-DGGE技術分析自來水生物過濾系統中之微生物相。國立中山大學生物科學系研究所碩士論文。高雄、台灣。
陳智強。2004。培養條件對乳酸菌胞外多醣生產及抗氧化性之影響。國立台灣大學食品科技研究所碩士論文。台北、台灣。
程姵雯。2014。蛋白酶水解與乳酸菌發酵對黃豆機能性的影響。靜宜大學食品營養學系碩士論文。台中、台灣。
黃郁芬。2009。黃白木耳多醣與發酵豆奶萃取物製備及其生理活性評估。國立中興大學食品暨應用生物科技學系碩士論文。台中、台灣。
黃崇真。2004。腸道微生物與益生菌。食品工業。36(3), p.4-15。
趙珮岑。2014。黃白木耳液體發酵的生理活性探討。南台科技大學生物科技系碩士論文。台南、台灣。
劉雨如。2003。益生菌與其發酵乳抗氧化能力和免疫功能之探討。中興大學畜產學系碩士論文。台中、台灣。
賴俊清。2010。超音波應用於活性碳吸附硝基甲苯之降解。國立雲林科技大學化學工程與材料工程研究所碩士論文。雲林、台灣。
賴建宇。2005。高強度超音波與氣泡空蝕場應用於奈米粉體製備與養分萃取。國立成功大學機械工程學系碩博士班碩士論文。台南、台灣。
錢香伶。2004。乳酸菌與雙叉桿菌發酵豆奶中異黃酮素含量之變化。臺灣大學食品科技研究所碩士論文。台北、台灣。
Fuller, R. (1992). Probiotics: The scientific basis. Champan & Hall, London. p. 1-8.
Gerald F, Combs Jr. (2012). The Vitamins (Fourth Edition)-Capter 9. p.233-259.
Gerald F, Combs Jr. (2012). The Vitamins (Fourth Edition)-Chapter 14. p.325-338.
Reeta R. Singhania AK, Patel ,Saini , A. Pandey. (2017). Current Developments in Biotechnology and Bioengineering.p.103-125.
Abdelhedi O, Mora L, Jemil I, Jridi M, Toldrá F, Nasri M, Nasri R. (2017). Effect of ultrasound pretreatment and Millard reaction on structure and antioxidant properties of ultrafiltrated smooth-hound viscera proteins-sucrose conjugates. Food Chemistry,230, p.507-515.
Adeel M, Song X, Wang Y, Francis D, Yang Y. (2017). Environmental impact of estrogens on human, animal and plant life: A critical review. Environment International, 99, p.107-119.
Ahn H, Park YK. (2017). Soy isoflavone supplementation improves longitudinal bone growth and bone quality in growing female rats. Nutrition, 37, p.68-73.
Ammor S, Tauveron G, Dufour E, Chevallier I. (2006). Antibacterial activity of lactic acid bacteria against spoilage and pathogenic bacteria isolated from the same meat small-scale facility:1-Screening and characterization of the antibacterial compounds. Food Control, 17(6), p.454-461.
Ashokkumar M, Sunartio D, Kentish SE, Mawson R, Simons L, Vilkhu K, Versteeg C. (2008). Modification of food ingredients by ultrasound to improve functionally. Innovative Food Science and Emerging Technologies, 9, p.155-160.
Ashokkumar M. (2015). Application of ultrasound in food and bioprocessing. Ultrasonics Sonochemistry, 25, p.17-23.
Abu-Ghazaleh BM . (2012). Effects of ascorbic acid, citric acid, lactic acid, NaCl, potassium sorbate and Thymus vugaris extract on Staphylococcus aureus and Escherichia coli. journal of Microbioligy,7, p.7-12.
Bingham SA, Liggins J, Bluck LJC., & Coward WA. (1998). Extraction and quantification of daidzein and genistein in Food. Analytical biochemistry, 264, p.1-7.
Brouns F. (2002). Soya isoflavones: a new and promising ingredient for the health foods sector. Food Research International, 35, p.187-193.
Broquist HP and Snell EE. (1951). Biotin and bacterial growth: I. Relation to aspartate, oleate, and carbon dioxide. journal of biochemistry, 188, p.431-444.
Carvalho VD, Silveira VÁ, do Prado RF, Carvalho YR. (2011). Effect of estrogen therapy, soy isoflavones, and the combination therapy on the submandibular gland of ovariectomized rats. Pathology – Research and Practice, 207, p.300-305.
Champagne CP, Tompkins TA, Buckley ND, Green-Johnson JM. (2010). Effect of fermentation by pure and mixed cultures of Streptococcus thermophilus and Lactobacillus helveticus on isoflavone and B-vitamin content of a fermented soy beverage. Food Microbiology, 27, p.968-972.
Chang MY, Tasi GJ, and Houng JY. (2006). Optimization of the medium composition for the submerged culture of Ganoderma lucidum by Taguchi array design and steepest ascent method. Enzyme and microbial technology, 38(3), p.407-414.
Chen NY, Hsu T H, Lin FY, Lai HH, Wu JY. (2006). Effects on cytokine-stimulating activities of EPS from Tremella mesenterica with various carbon sources. Food Chemistry, 99(1), p.92-97.
Chen TI, Sheih IC, Jeng HYJ, Fang TJ. (2014). Anti-inflammation and anti-infection applicability of Tremella flava Chen fermented soymilk (TFS) in a BALB/c mice model. IPCBEE, 77, p.6-10.
Chien HL, Huang HY, Chou CC. (2006). Transformation of isoflavone phytoestrogens, during the fermentation of soymilk with lactic acid bacteria and bifidobacteria. Food Microbiol, 23, p.772-778.
Crouse JR, Terry JG, Morgan TM. (1998). Soy protein containing isoflavones reduces plasma concentration of lipids and lipoproteins. Circulation, 97, p.816-817.
De Vrese M, Schrezenmeir J. (2008). Probiotics,Prebiotics,and Synbiotics. Advances in Biochemical Engineering / Biotechnology, 111, p.1-66.
Delgado-Povedano MD, Priego-Capote F, Luque de Castro MD. (2017). Selective ultrasound-enhanced enzymatic hydrolysis of oleuropein to its aglycon in olive (Olea europaea L.) leaf extracts. Food Chemistry, 220, p.282-288.
Donkor ON, Shah NP. (2008). Production of β-Glucosidase and Hydrolysis of Isoflavone Phytoestrogens by Lactobacillus acidophilus, Bifidobacterium lactis, and Lactobacillus casei in Soymilk. Food Microbiology and Safety, 73(1), p.15-20.
Ewe JA, Wan Abdullah WN, Bhat R, Karim AA, Liong MT. (2012). Enhanced growth of lactobacilli and bioconversion of isoflavones in biotin-supplemented soymilk upon ultrasound-treatment. Ultrasonics Sonochemistry , 19, p.160-173.
Ewe JA, Wan-Abdullah WN, Alias AK, Liong MT. (2012). Effects of ultrasound on growth, bioconversion of isoflavones and probiotic properties of parent and subsequent passages of Lactobacillus fermentum BT 8633 in biotin-supplemented soymilk. Ultrasonics Sonochemistry , 19, p.890-900.
Ewe JA, Wan-Abdullah WN, Liong MT. (2010). Viability and growth characteristics of Lactobacillus in soymilk supplemented with B-vitamins, International Journal. Food Science & Nutrition, 61, p.87-107.
Fernandes GW. (1987). Gall-forming insects: their economic importance and control. Revista Brasileira de Entomologia, 31(3), p.379-398.
Fooks LJ, Fuller R, Gibson GR. (1999). Prebiotics, probiotics and human gut microbiology. International Dairy Journal, 9, p.53-61.
Hamang C, Samslouti, VEL, Ulmev AJ, Flad HD, Rietschel, ET. (1998). Components of gut bacteria as immunomodulators. International Journal Food Microbiol, 41, p.141-154.
Harvenaar R, Brink BT, Huis In’t Veld JHJ. (1992). Selection of strains for probiotics use in Probiotics, the sciencific basic. Ed. R. Filler. Chapman and Hall, London, New York, p.209-222.
Hertog M, Hollman P & Katan M. (1992). Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands. Journal of Agricultural and Food Chemistry, 40(12), p.2379-2383.
Hofvendahl K, Hahn-Hagerdal B. (2000). Factors affecting the fermentative lactic acid production formrenewable resources. Enzyme Microb. Technol, 26, p.87-107.
Holzapfel WH, Haberer P, Snel J, Schillinger U, Huis in't Veld JH. (1998). Overview of gut flora and probiotics. International Journal of Food Microbiology, 41, p.85-101
Johnson TR, Case CL. (1995). Laboratory experiments in microbiology, 4nd edition. The Benjamin/Cummings Publishing Co. Inc.
Kiho T, Morimoto H, Sakushima M, Usui S, Ukai S. (1995). Polysaccharides in fungi. XXXV. Anti diabetic activity of an acidic polysaccharide from the fruiting bodies of Tremella aurantia. Biological & Pharmaceutical Bulletin, 18(12), p.1627-1629.
Knight DC, Eden JA. (1996). A review of the clinical effects of phytoestrogens. Obstetrics & Gynecology, 87(5 Part 2), p.897-904.
Lee AH, Su D, Pasalich M, Tang L, Binns CW, Qiu L. (2014). Soy and isoflavone intake associated with reduced risk of ovarian cancer in southern Chinese women. ScienceDirect, 24, p.302-307.
Li L, Lv Y, Xu L, Zheng Q. (2015). Quantitative efficacy of soy isoflavones on menopausal hot flashes. The British Pharmacological Society, 79(4), p.593-604.
Linassier C, Pierre M, Le Pecq JB, Pierre J. (1990). Mechanisms of action in NIH-3T3 cells of genistein, an inhibitor of EGF receptor tyrosine kinase activity. Biochem Pharmacol, 39(1), p.187-93.
Lye HS, Rusul G, Liong MT. (2010). Mechanisms of cholesterol removal by lactobacilli under conditions that mimic the human gastrointestinal tract. International Dairy Journal, 20, p.169-175.
Markras L, De Vuyst L. (2006). The in vitro inhibition of gram-negative pathogenic bacteria by bifidobacteria is caused by the production of organic acids. International Dairy Journal, 16 (9), p.1049-1057.
Marteau P, Flourie B, Pochart P, Chastang C, Desjeux JF, Rambaud JC. (1990). Effect of microbial lactase (E.C 3.2.1.23) activity in yougurt on the intestinal absorption of lactose:an in vivo study lactase-deficient humans. British Journal of Nutrition, 204, p.94-98.
Martinez RCR, Wachsman M, Torres NI, LeBlanc JG, Todorova SD, Gombossy de Melo Francoa BD. (2013). Biochemical, antimicrobial and molecular characterization of a noncytotoxic bacteriocin produced by Lactobacillus plantarum ST71KS. Food Microbiology, 34(2), p.376-381.
Mason TJ. (2003). Sonochemistry and sonoprocessing: the link, the trends and (probably) the future Ultrason. Sonochem, 10, p.175-179.
McDicken WN, Anderson T. (2011). CHAPTER 1 – Basic physics of medical ultrasound. Clinical Ultrasound, 3, p.3-15.
Miano AC, Ibarz A , Augusto PE. (2016). Mechanisms for improving mass transfer in food with ultrasound technology: Describing the phenomena in two model cases. Ultrasonics Sonochemistry, 29, p.413-419.
Misuoka T. (1990). Bifidobacteria and their role in human health. Journal of Industrial Microbiol, 6, p.263-268.
Nguyen TMP, Lee YK, Zhou W. (2012). Effect of high intensity ultrasound on carbohydrate metabolism of bifidobacteria in milk fermentation. Food Chemistry, 4, p.866-874.
Ojha KS, Mason TJ, O'Donnell CP, Kerry JP, Tiwari BK. (2017). Ultrasound technology for food fermentation applications. Ultrasonics Sonochemistry, 34, p.410-417.
Paniwnyk L. (2017). Applications of ultrasound in processing of liquid foods: A review. Ultrason Sonochem, 38, p.794-806.
Pham TT, Shah NP. (2008). Skim milk powder supplementation affects lactose utilization, microbial survival and biotransformation of isoflavone glycosides to isoflavone aglycones in soymilk by Lactobacillus. Food Microbiology, 25, p.653-661.
Power ML, Heaney RP, Kalkwarf HJ, Pitkin RM, Repke JT, Tsang RC, Schulkin J. (1999). The role of calcium in health and disease. American Journal of Obstetrics and Gynecology, 181(6), p.1560-1569.
Pyo YH, Lee TC, Lee YC. (2005). Enrichment of bioactive isoflavones in soymilk fermented with β-glucosidase producing lactic acid bacteria. Food Research International, 38, p.551-559.
Saarela M, Lähteenmäki L, Crittenden R, Salminen S, Mattila-Sandholm T. (2002). Gut bacteria and health foods-the European perspective. International Journal of Food Microbiology, 78, p.99-117.
Sabia C, Anacarso I, Bergonzini A, Gargiulo R, Sarti M, Condòa C, Messia P, de Niederhauserna S, Iseppia R, Bondia M. (2014). Detection and partial characterization of a bacteriocin-like substance produced by Lactobacillus fermentum CS57 isolated from human vaginal secretions. Anaerobe, 26, p.41-45.
Santos D, Silva UF, Duarte FA, Bizzi CA, Flores EMM, Mello PA. (2017). Ultrasound-assisted Acid Hydrolysis of Cellulose to Chemical Building Blocks:Application to Furfural Synthesis. Ultrasonics Sonochemistry, Available online 25 April 2017.
Soria AC, Villamiel M. (2010). Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends in Food Science & Technology, 21(7), p.323-331
Šošić-Jurjević B, Lütjohann D, Jarić I, Miler M, Vojnović Milutinović D, Filipović B, Ajdžanović V, Renko K, Wirth EK, Janković S, Kӧhrle J, Milošević V. (2017). Effects of age and soybean isoflavones on hepatic cholesterol metabolism and thyroid hormone availability in acyclic female rats. Experimental Gerontology, 92, p.74-81.
Taku K, Melby MK, Nishi N, Omori T, Kurzer MS. (2011). Soy isoflavones for osteoporosis: An evidence-based approach. Maturitas , 70, p.333–338.
Tang AL, Shah NP, WilcoxG, Walker KZ, Stojanowska L. (2007). Fermentation of calcium-fortified soymilk with Lactobacillus: effects on calcium solubility, isoflavone conversion, and production of organic acids. Journal of Food Science, 72, p.431-436.
Thompson LH, Doraiswamy LK. (2000). The rate enhancing effect of ultrasound by inducing supersaturation in a solid–liquid system. Chemical Engineering Science, 16, p.3085-3090.
Ukai S, Hirose K, Kiho T, Hara C, Irikura T. (1972). Antitumor activity on sarcoma 180 of the polysaccharides from Tremella fuciformis Berk. Chemical & Pharmaceutical Bulletin, 20(10), 2293.
Vincent A, Fitzpatrick LA. (2000). Soy isoflavones: are they useful in menopause? . Mayo Clinic Proceedings , 75, p.1174-1184.
Villamiel M, de Jong P. (2000). Inactivation of Pseudomonas fluorescens and Streptococcus thermophilus in Trypticase Soy Broth and total bacteria in milk by continuous-flow ultrasonic treatment and conventional heating. Journal of Food Engineering, 45, p.171-179.
Wei QK, Chen TR, Chen JT. (2007). Using of Lactobacillus and Bifidobacterium to, product the isoflavone aglycones in fermented soymilk. International Journal of Food Microbiology, 117, p.121-124.
Wei QK, Jone WW, And Fang TJ. (2004). Study on isoflavones isomers contents in Taiwan’s soybean and GM soybean. Journal of Food and Drug Analysis, 12 (4), p.324 -331.
Yeo SK, Liong MT. (2010). Angiotensin I-converting enzyme inhibitory activity and bioconversion of isoflavones by probiotics in soymilk supplemented with prebiotics. International Journal of Food Sciences and Nutrition , 61(2), p.161-181.
Yeo SK, Liong MT. (2011). Effect of ultrasound on the growth of probiotics and bioconversion of isoflavones in prebiotic-supplemented soymilk. Agricultural and Food Chemistry , 59, p.885-897
Yeo SK, Liong MT. (2013). Effect of ultrasound on bioconversion of isoflavones and probiotic properties of parent organisms and subsequent passages of Lactobacillus. LWT - Food Science and Technology , 51, p.289-295.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top