跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2025/01/17 03:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:倪愛念
研究生(外文):Nadia Velana
論文名稱:以Aureobasidium pullulans NCH-218液態培養製備ß-葡萄糖苷酶及其增香特性於冷泡綠茶之應用
論文名稱(外文):Production of ß-glucosidase from Aureobasidium pullulans NCH-218 and its application for aroma enhancing capabilities in cold-brewed green tea
指導教授:陳錦樹陳錦樹引用關係
指導教授(外文):Chin-Shuh Chen
口試委員:蘇南維張淑微
口試委員(外文):Nan-Wei SuShu-Wei Chang
口試日期:2017-07-24
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品暨應用生物科技學系所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:109
中文關鍵詞:麥麩Aureobasidium pullulans NCH-218β-glucosidase冷泡茶綠茶香氣成分甲基水楊酸芳樟醇
外文關鍵詞:wheat branAureobasidiium pullulans NCH-218β-glucosidasearoma enhancementgreen teacold brewedmethyl salicylatelinalool
相關次數:
  • 被引用被引用:1
  • 點閱點閱:585
  • 評分評分:
  • 下載下載:46
  • 收藏至我的研究室書目清單書目收藏:0
茶飲中含有大約六百種揮發性香味化合物,主要為類胡蘿蔔素、脂類、糖苷(glycosides)以及梅納反應(Maillard reaction)產物。其中,糖苷可被茶葉中的酵素如β-D-glycosidase水解,而釋放出揮發性香味化合物。但glycosidase常在茶葉製作過程中,因高溫加工程序而失活,導致許多香氣化合物仍以結合態保留在茶葉內。近年來,利用額外添加β-glycosidase以增進果汁或葡萄酒香氣之技術引起廣泛注意。本研究目的為探討以Aureobasidium pullulans NCH-218液態培養生產之β-glucosidase應用於冷泡綠茶增香之可行性。
首先使用內含5%麥麩、2.5%乳糖、1%酵母萃取物之培養基,未調整起始pH值下 (pH 6.25-6.27),接種1% A. pullulans NCH-218活化菌液,於30°C、150 rpm下培養4天生產β-glucosidase。粗酵素液經離心與過濾後,再經超過濾濃縮,得到之酵素活性為136.8 U/mL。次以不同種類飲料做初步試驗,以挑選出最適合應用β-glucosidase的飲料。結果顯示經酵素處理過的飲料,與未經處理者相比都有較高的葡萄糖含量,尤其是綠茶組,其增加率可達到14%,此外,綠茶在香氣上也具有最佳的喜好程度,因此後續實驗選擇以冷泡綠茶為進行β-glucosidase應用的飲料。
根據GC-MS質譜圖顯示冷泡綠茶以β-glucosidase酵素處理後所釋放出來的芳香化合物中以水樣酸甲基酯(methyl salicylate)增加量最高,其次是芳樟醇(linalool)。使用10% (v/v)之 β-glucosidase 350 U/ mL,於20% (w/v) 之冷泡綠茶在50°C反應3小時,可獲得最高的水樣酸甲基酯(16.23 ppm)以及芳樟醇(1.14 ppm)。另外,在抗氧化活性與成分試驗中,結果顯示酵素處理對冷泡綠茶之抗氧化活性並無造成任何不利影響,而處理前後之兒茶素及咖啡因含量變化並不明顯。總而言之,經過β-glucosidase酵素處理的冷泡綠茶,可以達到增進香氣的目的,但不影響原本的抗氧化能力與兒茶素及咖啡因等成分。
There are more than 600 volatile tea aroma compounds available, which are generated from four main precursors such as carotenoids, lipids, glycosides, and maillard reaction. Glycoside precursors can be hydrolyzed by endogenous enzyme such as β-D-glycosidase to release the free aroma compounds. However, tea plant glycosidases are often destroyed by thermal deactivation during tea manufacturing process, thus there are many bound aroma compounds left in tea product. Additional β-glucosidase has been widely used in aroma enhancement due to its roles in releasing the aroma compounds. Hence, this study focus on the aroma enhancing capabilities by β-glucosidase from Aureobasidium pullulan NCH-218 in green tea. The study starts with production of the enzyme under optimal condition based on the previous study: 5% wheat bran (w/v), 2.5% lactose (w/v), initial pH at 6.25-6.27, after that 1% (v/v) A. pullulans NCH-218 was inoculated and cultured at 30°C and 150 rpm for 4 days. Moreover, the produced crude enzyme was centrifuged and filtered then proceed further by using ultrafiltration which could obtain 136.8 U/ml of enzyme activity. At first, preliminary study was conducted to decide which beverage is the most suitable for the enzyme application. The result demonstrated that enzymatic treatment was resulted in higher amount of glucose content in all of the beverages, especially in green tea with the highest increasing rate for about 14% and also highest preference score (aroma profile) for the sensory evaluation test compare to other beverages. Furthermore, GC-MS chromatogram of enzyme-treated green tea indicated the highest increase of methyl salicylate (glycoside-based) and another increase was also detected in the amount of linalool. The highest amount methyl salicylate and linalool was obtained after mixing 10% of 350 U/ mL of β-glucosidase to 20% (w/v) cold-brewed green tea and was reacted for 3 hours at 50°C. The enzymatic treatment was resulted in the highest concentration of 16.23 ppm methyl salicylate and 1.14 ppm linalool, respectively. Some antioxidant activity assays as well as catechin and caffeine content determination was also conducted in order to examine the enzymatic treatment effect towards the composition and antioxidant properties of the green tea. Overall, there wasn’t any remarkable changes in the antioxidant properties and the composition of catechin and caffeine after the enzymatic treatment with β-glucosidase. Therefore, this enzymatic treatment by β-glucosidase from A. pullulans NCH-218 was proved to not only offer a promising aroma enhancement effect but also did not give any negative impact on the antioxidant properties as well as the composition of the green tea.
Acknowledgements i
摘要 iii
Abstract v
Table of Contents vii
List of Figures xii
List of Tables xiv
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
2.1 Introduction to Aureobasidium pullulans 3
2.1.1 Potential application of Aureobasidium pullulans 3
2.1.1.1 Pullulan 3
2.1.1.2 Single cell protein 5
2.1.1.3 Extracellular enzyme 6
2.2 Introduction to cellulase 6
2.2.1 General description of β-glucosidases 10
2.2.1.1 Distribution and function of β-glucosidase 10
2.2.1.2 Classification of β-glucosidases 10
2.2.1.3 β-glucosidases mode of action 11
2.2.1.4 Industrial application of β-glucosidases 14
2.3 Wheat bran as fermentation substrate 15
2.4 Introduction to tea beverages 16
2.4.1 Classification of tea 16
2.4.2 Cold-brewed tea 19
2.4.3 Health benefit of tea 19
2.4.4 Formation of tea aroma 22
2.4.4.1 Glycosidically-bound volatile compounds in tea 22
Chapter 3 Materials and Methods 26
3.1 Materials 26
3.1.1 Raw materials 26
3.1.2 Microorganism 26
3.1.2.1 Aureobasidium pullulans NCH-218 26
3.1.2.2 Culture media 26
3.2 List of chemicals 27
3.3 Instruments 28
3.4 Experimental design 29
3.5 Experimental methods 30
3.5.1 Stock culture and inoculum preparation 30
3.5.1.1 Stock culture 30
3.5.1.2 Inoculum preparation 30
3.5.2 Proximate analysis of wheat bran 30
3.5.2.1 Moisture content 30
3.5.2.2 Crude fat 31
3.5.2.3 Crude protein 31
3.5.2.4 Crude ash 33
3.5.2.5 Crude fiber 33
3.5.3 β-glucosidase production 34
3.5.4 Determination of β-glucosidase activity and substrate specificity 35
3.5.4.1 Substrate specificity 36
3.5.5 Preparation of the beverages 38
3.5.5.1 Tea infusion 38
3.5.5.2 Wheat bran extract 38
3.5.5.3 Concentrated and fresh fruit juices 38
3.5.6 Application of β-glucosidase in various beverages 38
3.5.6.1 First trial 38
3.5.6.2 Second trial 39
3.5.7 Analysis of aroma enhancement 39
3.5.7.1 Determination of reducing sugar content 39
3.5.7.2 Determination of glucose content by HPLC 40
3.5.7.3 Sensory evaluation 40
3.5.7.4 Solid-phase microextraction (SPME) 41
3.5.7.5 Gas Chromatography-Mass Spectrometry (GC-MS) 43
3.5.7.6 Gas Chromatography-Flame Ionization Detector (GC-FID) 43
3.5.8 The optimum condition for β-glucosidase application 45
3.5.8.1 Reaction time 45
3.5.8.2 β-glucosidase addition 45
3.5.8.3 Reaction temperature 45
3.5.8.4 Green tea concentration 46
3.5.9 Antioxidant activity assays 46
3.5.9.1 Total phenolic content 46
3.5.9.2 Total flavonoid content 46
3.5.9.3 DPPH free radical scavenging ability 47
3.5.9.4 Reducing power assay 48
3.5.9.5 Metal chelating activity 48
3.5.9.6 Superoxide radical scavenging activity 49
3.5.10 Determination of catechin and caffeine contents 50
Chapter 4 Results and Discussion 52
4.1 Proximate analysis of wheat bran 52
4.2 β-glucosidase production by A. pullulans NCH-218 52
4.2.1 The colony morphology and microscopic appearance of A. pullulans NCH-218 52
4.2.2 The growth curve of A. pullulans NCH-218 58
4.2.3 β-glucosidase substrate specificity 59
4.2.4 Partial purification of β-glucosidase 63
4.3 Determination of the selected sample 63
4.3.1 Preliminary sensory evaluation 63
4.3.2 Glucose content determination 69
4.4 Aroma enhancement effect on tea beverage 74
4.5 Optimum treatment condition 77
4.5.1 Reaction time 77
4.5.2 β-glucosidase addition 79
4.5.3 Reaction temperature 81
4.5.4 Green tea concentration 83
4.6 Antioxidant activity assays 85
4.7 Determination of individual catechins and caffeine 88
Chapter 5 Conclusions 92
5.1 Proximate analysis of wheat bran 92
5.2 Partial purification of β-glucosidase 92
5.3 Determination of the selected sample 92
5.4 Aroma enhancement effect on tea beverage 92
5.5 Optimum treatment condition 93
5.6 Antioxidant activity assays 93
5.7 Determination of individuals catechin and caffeine 93
Chapter 6 Future prospects 94
Chapter 7 References 96
周晉文。2011。β-葡萄糖苷酶處理商用龍井茶對香氣品質與抗氧化活性之影響。國立中興大學食品暨應用生物科技學系。碩士學位論文。
侯毓欣。2016。利用麥麩液態培養Aureobasidium pullulans NCH-218生產β-葡萄糖苷酶條件探討及其特性分析。國立中興大學食品暨應用生物科技學系。碩士學位論文。
黃詩淳。2012。半纖維素酶生產菌株之篩選、培養條件與Aureobasidium pullulans NCH-218聚木糖酶酵素特性探討。國立中興大學食品暨應用生物科技學系。碩士學位論文。
A.O.A.C. (1995). Official methods of analysis of the Association of Official Analytic Chemists, 16th edition, Horowitz, W. ed. Washington, District of Columbia, United States of America.
Baffi, M. A., Tobal, T., Lago, J. H. G., Leite, R. S. R., Boscolo, M., Gomes, E., Da-Silva, R. (2011). A Novel β-glucosidase from Sporidiobolus pararoseus: Characterization and Application in Winemaking. Journal of food science. 76, 997-1002.
Balkan, B., Ertan, F. (2010). The production of a new fungal alpha-amylase degraded the raw starch by means of solid-state fermentation. Preparative Biochemistry and Biotechnology. 40, 213–228.
Bankova, E., Bakalova, N., Petrova, S., Kolev, D. (2006). Enzymatic synthesis of oligosaccharides and alkylglycosides in waterorganic media via transglycosylation of lactose. Biotechnology & Biotechnological Equipment. 20, 114–119.
Cabrera, C., Artacho, R., Gimenez, R. (2006). Beneficial effects of green tea-a review. Journal of the American College of Nutrition. 25, 79-99.
Cairns, J. R. K. and Esen, A. (2010). β-glucosidase. Cellular and Molecular Life Sciences. 67, 3389–3405
Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V., Henrissat, B. (2009). The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Research. 37, 233–238.
Cao, G., Sofic, E., Prior, R. (1996). Antioxidant capacity of tea and common vegetables. Journal of Agricultural and Food Chemistry. 44, 3426–3431.
Celik, A., Dincer, A., Aydemir, T. (2016). Characterization of β-glucosidase immobilized on chitosan-multiwalled carbon nanotubes (MWCNTS) and their application on tea extracts for aroma enhancement. International Journal of Biological Macromolecules. 89, 406-414.
Chi, Z. M., Liu, J., Zhang, W. (2001). Trehalose accumulation from starch by Saccharomycopsis fibuligera sdu. Enzyme and Microbial Technology. 28, 240–245.
Chi, Z. M., Yan, K. R., Gao, L. M., Li, J., Wang, X. H., Wang, L. (2008). Diversity of marine yeasts with high protein content and evaluation of their nutritive compositions. Journal of the Marine Biological Association UK. 88, 1–6.
Chi, Z.,Wang, F., Chi, Z., Yue, L., Liu, G., Zhang, T. (2009). Bioproducts from Aureobasidium pullulans, a biotechnologically important yeast. Applied Microbiology and Biotechnology. 82, 793–804.
Choudhury, A. R., Bhattacharyya, M. S., Prasad, G. S. (2012). Application of response surface methodology to understand the interaction of media components during pullulan production by Aureobasidium pullulans RBF-4A3. Biocatalysts and Agricultural Biotechnology. 1, 232-237.
Corona, A., Saez, D., Agosin, E. (2005). Effect of water activity on gibberellic acidproduction by Gibberella fujikuroi under solid-state fermentation conditions. Process Biochemistry. 40, 2655–2658.
Costa, L. M., Gouveia, S. T., Nobrega, J. A. (2002). Comparison of heating extraction procedures for Al, Ca, Mg and Mn in tea samples. Annals of Science. 18, 313–318.
Crout, D. H. and Vic, G. (1998). Glycosidases and glycosyl transferases in glycoside and oligosaccharide synthesis. Current Opinions in Chemical Biology. 2, 98-111.
Das, A., Paul, T., Halder, K.S., Jana, A., Maity, C., Mohapatra, P.K.D., Pati, B.R., Mondal, K.C. (2013). Production of cellulolytic enzymes by Aspergillus fumigatus ABK9 in wheat bran-rice straw mixed substrate and use of cocktail enzymes for deinking of waste office paper pulp. Bioresource Technology. 128, 290–296.
Daroit, Daniel, J., Simonetti, A., Hertz, P. F., Brandelli, A. (2008). Purification and characterization of an extracellular β-glucosidase from Monascus purpureus. Journal of Microbilogy and Biotechnology. 18, 933-941.
de Hoog, G. S. (1993). Evolution of black yeasts: possible adaption to the human host. Antonie van Leeuwenhoek. 63,105–109.
Doi, R. H. and Kosugi, A. (2004). Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nature Reviews Microbiology. 2, 541–551.
Duan, X. H., Chi, Z. M., Wang, L., Wang, X. H. (2008) Influence of different sugars on pullulan production and activities of α-phosphoglucose mutase, UDPG-pyrophosphorylase and glucosyltransferase involved in pullulan synthesis in Aureobasidium pullulans Y68. Carbohydrate Polymers. 73, 587–593.
Ducret, A., Trani, M., Lortie, R. (2006). Comparison between various commercial sources of almond β-glucosidase for the production of alkyl glucosides. Journal of Molecular Catalysis. 38, 91–94.
El-Shishtawy, R. M., Mohamed, S. A., Asiri, A. M., Gomaa, A. B., Ibrahim, I. H., Al-Talhi, H. A. (2014). Solid fermentation of wheat bran for hydrolytic enzymes production and saccharification content by a local isolate Bacillus megatherium. BMC Biotechnology. 24, 14–29.
Fan, G., Xu, Y., Zhang, X., Lei, S., Yang, S., Pan, S. (2011). Characteristics of immobilised β-glucosidase and its effect on bound volatile compounds in orange juice. International Journal of Food Science and Technology. 46, 2312–2320.
Floegel, A., Kim, D. O., Chung, S. J., Song, W. O., Fernandez, M. L., Bruno, R. S., Chun, O. K. (2010). Development and valication of an algorithm to establish a total antioxidant capacity database of the US diet. International Journal of Food Science and Nutrition, 61, 600-623.
Fujiki, H., Saganuma, M., Okabe, S., Sueoka, N., Komori, A., Sueoka, E., Kozu, T., Tada, Y., Suga, K., Imai, K., Nakachi, K. (1998). Cancer inhibition by green tea. Mutation Research. 402, 307–310.
Gao, L. M., Chi, Z. M., Sheng, J., Ni, X. M., Wang, L. (2007). Single-cell protein production from Jerusalem artichoke extract by a recently isolated marine yeast Cryptococcus aureus G7a and its nutritive analysis. Applied Microbiology and Biotechnology. 77, 825–832.
Gomathi, D., Muthulakshmi, C., Kumar, G., Ravikumar, G., Kalaiselvi, M., Uma, C. (2012). Submerged fermentation of wheat bran by Aspergillus flavus for production and characterization of carboxy methyl cellulase. Asian Pacific Journal of Tropical Biomedicine. 2, 67-73.
Gueguen, Y., Chemardin, P., Janbon, G., Arnaud, A., Galzy, P. (1998). Investigation of the β-glucosidases potentialities of yeast strains and application to bound aromatic terpenols liberation. Study of Organic Chemistry. 53, 149–157.
Gunata, Z., Vallier, M., Sapis, J., Baumes, R., Bayonove, C. (1994). Enzymatic synthesis of monoterpenyl β-D-glucosides by various β-glucosidases. Enzyme and Microbial Technology. 16, 1055–1058.
Gunde-Cimerman, N., Zalar, P., de Hoog, S., Plemenitas, A. (2000). Hypersaline waters in salterns-natural ecological niches for halophilic black yeasts. FEMS Microbiology Ecology. 32, 235–240.
Guo, W., Hosoi, R., Sakata, K., Watanabe, N., Yagi, A., Ina, K., Luo, S. (1994). (S)-linalyl, 2-phenylethyl, and benzyl disaccharide glycosides isolated as aroma precursors from oolong tea leaves. Bioscience, Biotechnology, and Biochemistry. 58, 1532-1534.
Gupta, R., Gigras, P., Mohapatra, H., Goswami, V. K., Chauhan, B. (2003). Microbial α-amylases: a biotechnological perspective. Process Biochemistry. 38, 1599–1616.
Harbowy, M. E., Balentine, D. A., Davies, A. P., Cai, Y. (2010). Tea chemistry. Critical Reviews in Plant Sciences. 16, 415-480.
Harhangi, H. R., Steenbakkers, P. J. M., Akhmanova, A., Jetten, M. S. M., Van der Drift, C., Op den Camp, H. J. M. (2002). A highly expressed family 1 β-glucosidase with transglycosylation capacity from the anaerobic fungus Piromyces sp. E2. Biochimica et Biophysica Acta. 1574, 293–303.
Hasan, F., Shah, A.A., Hameed, A. (2006).Industrial applications of microbial lipases. Enzyme and Microbial Technology. 39, 235–251.
Henrissat, B. and Bairoch, A. (1996). Updating the sequence-based classification of glycosyl hydrolases. Biochemical Journal. 316, 695-696.
Henrissat, B. and Davies, G. (1997). Structural and sequence-based classification of glycoside hydrolases. Current Opinion in Structural Biology. 7, 637–644.
Ho, C. T., Zheng, X., Li, S. (2015). Tea aroma formation. Food Science and Human Wellness. 4, 9-27.
Jones, P. and Vogt, T. (2001). Glycosyltransferases in secondary plant metabolism: tranquilizers and stimulant controllers. Planta. 213, 164–174.
Kanto Kagaku. Separation of caffeine and catechins. Mightysil applilication data: Foods and Environment, 27. Kanto Chemical Co. Inc. Japan.
Keerti, Gupta, A., Kumar, V., Dubey, A., Verma, A. K. (2014). Kinetic characterization and effect of immobilized thermostable β-glucosidase in alginate gel Beads on sugarcane juice. ISRN biochemistry, Article ID 178498.
Klaunig, J. E., Xu, Y., Han, C. (1999). The effect of tea consumption on oxidative stress in smokers and nonsmokers. Proceedings of the Society for Experimental Biology and Medicine. 220, 249–254.
Knudsen, C. (2014). The evolution of plant chemical defence- new roles for hydroxynitrile glucosides in Lotus japonicus. Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen.
Kobayashi, A., Kubota, K., Joki, Y., Wada, E., Wakabayashi, M. (1994). (Z)-3-hexenyl α-D-glucopyranoside in fresh tea leaves as a precursor of green odor. Bioscience, Biotechnology, and Biochemistry. 58, 592-593.
Kotaka, A., Bando, H., Kaya, M., Kato-Murai, M., Kuroda, K., Sahara, H., Hata, Y., Kondo, A., Ueda, M. (2008). Direct ethanol production from barley β-glucan by sake yeast Aspergillus oryzae β-glucosidase and endoglucanase. Journal of Bioscience and Bioengineering. 105, 622–627.
Krisch, J., Tako, M., Papp, T., Vagvolgyi, C. (2010). Characteristics and potential use of β -glucosidases from Zygomycetes. In: Mendez-Vilas A (ed) Current Research, Technology and Education. Topics in Applied Microbiology and Microbial Biotechnology. 891–896.
Kuhad, R. C., Gupta, R., Singh, A. (2011). Microbial cellulases and their industrial applications. Enzyme Research. 1-10.
Leathers, T. D. (1986). Colour variants of Aureobasidium pullulans overproduce xylanase with extremely high specific activity. Applied Environmental Microbiology. 52, 1026–1030.
Lecas, M., Gunata, Z. Y., Sapic, J. C., Bayonove, C. L. (1991). Purification and partial characterization of β-glucosidase from grape. Phytochemistry. 30, 451–454.
Lee, S. M., Jin, L. H., Kim, J. H., Han, S. O., Na, H. B., Hyeon, T., Koo, Y. M., Kim, J., Lee, J. H. (2010). β-glucosidase coating on polymer nanofibers for improved cellulosic ethanol production. Bioprocess and Biosystems Engineering. 33, 141–147.
Leite, R. S. R., Alves-Prado, A. F., Cabral, H., Pagnoccab, F. C., Gomesa, E., Da-Silva, R. (2008). Production and characteristics comparison of crude β-glucosidases produced by microorganisms Thermoascus aurantiacus e Aureobasidium pullulans in agricultural wastes. Enzyme Microbiological Technology. 43, 391–395.
Leite, R. S., Bocchini, D. A., Martins Eda, S., Silva, D., Gomes, E., Da Silva, R. (2007). Production of cellulytic and hemicellulytic enzymes from Aureobasidium pullulans on solid state fermentation. Applied Biochemistry and Biotecnology. 137-140, 281-288.
Li, H. F., Chi, Z. M., Wang, X. H., Ma, C. L. (2007). Amylase production by the marine yeast Aureobasidium pullulans N13d. Journal of Ocean University of China. 6, 61–66.
Li, X. L., Zhang, Z. Q., Dean, J. F. D., Eriksson, K. E. L., Ljungdahl, L. G. (1993). Purification and characterization of a new xylanase (APX-II) from the fungus Aureobasidium pullulans Y-2311-1. Applied and Environmental Technology. 59, 3212–3218.
Lin, T. C., Chen, C. (2004). Enhanced mannanase production by submerged culture of Aspergillus niger NCH-189 using defatted copra based media. Process Biochemistry. 39, 1103–1109.
Liu, Z. L., Weber, S. A., Cotta, M. A., Li, S. Z. (2012). A new β-glucosidase producing yeast for lower-cost cellulosic ethanol production from xylose-extracted corncob residues by simultaneous saccharification and fermentation. Bioresource Technology. 104, 410–416.
Ma, C. L., Ni, X. M., Chi, Z. M., Ma, L.Y., Gao, L. M. (2007). Purification and characterization of an alkaline protease from the marine yeast Aureobasidium pullulans for bioactive peptide production. Marine Biotechnology. 9, 343-351.
McKay, D. L. and Blumberg J. B. (2002). The role of tea in human health: an update, Journal of the American College of Nutrition. 21, 1–13.
Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry. 31, 426-428.
Moon, J. K., Watanabe, N., Sakata, K., Yagi, A., Ina, K., Luo, S. (1994). trans- and cis-Linalool 3,6-oxide 6-O-α-D-xylopyranosyl-α-D-glucopyranosides isolated as aroma precursors from leaves for oolong tea. Bioscience, Biotechnology, and Biochemistry. 58,1742-1744.
Mounir, R., Durieux, A., Bodo, C., Allard, C., Simon, J. P., Achbani, E. H., El-Jaafari, S., Douira, A., Jijakli, M. H. (2007). Production, formulation and antagonistic activity of the biocontrol like-yeast Aureobasidium pullulans against Penicillium expansum. Biotechnology Letters. 29, 553–559.
Nagahama, T. (2006). Yeast biodiversity in freshwater, marine and deep-sea environments. The Yeast handbook biodiversity and ecophysiology of yeasts. Springer, Berlin, 241–262.
Ni, X. M., Chi, Z.M., Liu, Z. Q., Yue, L. X. (2008a). Screening of protease producing marine yeasts for production of the bioactive peptides. Acta Oceanologica Sinica. 27, 1–10.
Ni, X. M., Chi, Z. M., Ma, C.L., Madzak, C. (2008b). Cloning, characterization, and expression of the gene encoding alkaline protease in the marine yeast Aureobasidium pullulans 10. Marine Biotechnology. 10, 319–327.
Nishikitani, M., Kikue, K., Kobayashi, A., Sugawara, F. (1996). Geranyl 6-O-R-L-arabinopyranosyl-α-D-glucopyranoside isolated as an aroma precursor from leaves of a green tea cultivar. Bioscience, Biotechnology, and Biochemistry. 60, 929-931.
Ohno, Y., Aoki, K., Obata, K., Morrison, A. (1985). Case-control study of urinary bladder cancer in metropolitan Nagoya. In NCI Monograph 69. Bethesda: National Cancer Institute, 229–234.
Opassiri, R., Hua, Y., Wara-Aswapati, O., Akiyama, T., Svasti, J., Esen, A., Cairns, J. R. K. (2004). Beta-glucosidase, exo-beta-glucanase and pyridoxine transglucosylase activities of rice BGlu1. Biochemistry. 379,125–131.
Parr, A. and Bolwell, G. P. (2000). Phenols in the plant and in man: The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. Journal of the Science of Food and Agriculture. 80, 985–1012.
Ravindra, A. P. (2000). Value-added food: single cell protein. Biotechnology Advances. 18, 459–479.
Rietveld, A., Wiseman, S. (2003). Antioxidant effects of tea: Evidence from human clinical trials. Journal of Nutrition. 133, 3275–3284.
Riou, C., Salmon, J. M., Vallier, M. J., Guぴnata, Z., Barre, P. (1998). Purification, characterization, and substrate specificity of a novel highly glucose-tolerant β-glucosidase from Aspergillus oryzae. Applied and Environmental Microbiology. 64, 3607–3614.
Robak, J., Gryglewski, I. R. 1988. Flavonoids are scavengers of superoxide anions. Biochemical Pharmacology. 37, 837-841.
Roitner, M., Schalkhammer, T., Pittner, F. (1984). Characterization of naringinase from Aspergillus niger. Chemical Monthly. 115, 1255–1267.
Ronen, M., Guterman, H., Shabtai, Y. (2002). Monitoring and control of pullulan production using vision sensor. Journal of Biochemical and Biophysical Methods. 51, 243-249.
Saha, B. C., Silman, R. W., Bothast, R. J. (1993). Amylolytic enzymes produced by a color variant strain of Aureobasidium pullulans. Current Microbiology. 26, 267-273.
Sestelo, A. B. F., Poza, M., Villa, T. G. (2004). β-glucosidase activity in a Lactobacillus plantarum wine strain. World Journal of Microbiology and Biotechnology. 20, 633–637.
Shen, H. and Byers, L. D. (2007). Thioglycoside hydrolysis catalyzed by β-glucosidase. Biochemical and Biophysical Research Communications. 362, 717–720.
Singh, A., Kuhad, R. C., Ward, O. P. (2007). Industrial application of microbial cellulases. Lignocellulose Biotechnology: Future Prospects, I. K. International Publishing House, New Delhi, India, 345–358.
Singh, G., Verma, A. K., Kumar, V. (2016). Catalytic properties, functional attributes and industrial applications of β-glucosidases. Biotechnology. 6(1). 1-14.
Singh, R. S., Saini, G. K., Kennedy, J. F. (2008). Pullulan: microbial sources, production and applications. Carbohydrate. Polymer. 73, 515-531.
Singleton, V. L. and Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144-158.
Spagna, G., Barbagallo, R. N., Palmeri, R., Restuccia, C., Giudici, P. (2002). Properties of endogenous β-glucosidase of a Saccharomyces cerevisiae strain isolated from Sicilian musts and wines. Enzyme and Microbial Technology. 31, 1030–1035.
Su, E., Xia, T., Gao, L., Dai, Q., Zhang, Z. (2010). Immobilization of β-glucosidase and its aroma-increasing effect on tea beverage. Food and Bioproducts Processing. 88, 83–89.
Su, E., Xia, T., Gao, L., Dai, Q., Zhang, Z. (2010). Immobilization of β-glucosidase and its aroma-increasing effect on tea beverage. Food and Bioproducts Processing. 88, 83-89.
Sugumaran, K. R., Gowthami, E., Swathi, B., Elakkiya, S., Srivastava, S. N., Ravikumar, R., Gowdhaman, D., Ponnusami, V. (2013). Production of pullulan by Aureobasidium pullulans from Asian palm kernel: A novel substrate. Carbohydrate Polymers. 92, 697-703.
Sukumaran, R. K., Singhania, R. R., Pandey, A. (2005). Microbial cellulases—production, applications and challenges. Journal of Scientific and Industrial Research. 64, 832–844.
Swanson, C. (1998). Vegetables, Fruits, and Cancer Risk: The Role of Phytochemicals. In W. R. Bidlack, S. T. Omaye, M. S. Meskin, and D. Jahmer (Eds.), Phytochemicals: A New Paradigm. Lancaster, PA: Technomic Publishing. 1-12.
Urzi, C., De Leo, F., Lo Passo, C., Criseo, G. (1999). Intra-specific diversity of Aureobasidium pullulans strains isolated from rocks and other habitats assessed by physiological methods and by random amplified polymorphic DNA (RAPD). Journal of Microbiological Methods. 36, 95–105.
USFDA. (2002). Agency Response Letter: GRAS Notice No. GRN 000099 [Pullulan]. US Food and Drug Administration (US FDA), Center for Food Safety and Applied Nutrition (CFSAN), Office of Food Additive Safety; College Park, Maryland.
Venditti, E., Bacchetti, T., Tiano, L., Carloni, P., Greci, L., Damiani, E. (2010). Hot vs. cold water steeping of different teas: Do they affect antioxidant activity. Food Chemistry. 119, 1597-1604.
Wang, D., Kurasawa, E., Yamaguchi, Y., Kubota, K. and Kobayashi, A. (2001). Analysis of glycosidically bound aroma precursors in tea leaves. 2. Changes in glycoside contents and glycosidase activities in tea leaves during black tea manufacturing process. Journal of Agricultural and Food Chemistry. 49, 1900–1903.
Wang, K., Liu, F., Liu, Z., Huang, J., Yu, Z., Li, Y., Chen, J., Gong, Y., Yang, X. (2010). Comparison of catechins and volatile compounds among different types of tea using high performance liquid chromatograph and gas chromatograph mass spectrometer. International Journal of Food Science and Technology. 46, 1406–1412.
Wang, L., Lee, J., Chung, J., Baik, J., So, S., Park, S. (2008). Discrimination of teas with different degrees of fermentation by SPME-GC analysis of the characteristic volatile flavor compounds. Food Chemistry. 109, 196-206.
Wang, W. L., Chi, Z. M., Chi, Z., Li, J., Wang, X. H. (2008). Siderophore production by the marine-derived Aureobasidium pullulans and its antimicrobial activity. Bioresource Technology. 100, 2639-2641.
Wen, Z., Liao, W., Chen, S. (2005). Production of cellulase by Trichoderma reesei from dairy manure. Bioresource Technology. 96, 491–499.
Ximenes, E., Kim, Y., Mosier, N., Dien, B., Ladisch, M. (2010). Inhibition of cellulases by phenols. Enzyme and Microbial Technology. 46, 170-176.
Wiseman, S. A., Balentine, D. A., Frei, B. (1997). Antioxidants in tea. Critical Reviews in Food Science and Nutrition. 37, 705–718.
Yamaguchi, T., Takamura, H., Matba, T., Terap, J. (1998). HPLC method for evaluation of the free radical-scavenging activity of foods by using 1,1-Diphenyl-2-picrylhydrazyl. Bioscience, Biotechnology, and Biochemistry. 62, 1201-1204.
Yang, D. Hwang, L. S., Lin, J. (2007). Effects of different steeping methods and storage on caffeine, catechins, and gallic acid in bag tea infusions. Journal of Chromatography. 1156, 312-320.
Yang, Z., Baldermann, S., Watanabe, N. (2013). Recent studies of the volatile compounds in tea. Food Research International. 53, 585–599.
Yen, G. C. and Chen, H. Y. (1995). Antioxidant activity of various tea extracts in relation to their antimutagenicity. Journal of Agriculture and Food Chemistry. 43, 27-32.
Yoshikawa, J., Amachi, S., Shinoyama, H., Fujii, T. (2007). Purification and some properties of β-fructofuranosidase I formed by Aureobasidium pullulans DSM 2404. Journal of Bioscience and Bioengineering. 103, 491–493.
Yu, H. L., Xu, J. H., Lu, W. Y., Lin, G. Q. (2007). Identification, purification and characterization of β-glucosidase from apple seed as a novel catalyst for synthesis of O-glucosides. Enzyme and Microbial Technology. 40, 354–361.
Yuann, J. P., Wu, J., Chang, H., Liang, J. (2015). Effects of temperature and water steeping duration on antioxidant activity and caffeine content of tea. Transaction on Biotechnology. 7, 22-32.
Yun, J. W., Kim, D. H., Song, S. K. (1997). Enhanced production of fructosyltransferase and glucosyltransferase by substrate-feeding cultures of Aureobasidium pullulans. Journal of Fermentation and Bioengineering. 84, 261–263.
Zhang, L., Chi, Z. M. (2007). Screening and identification of a cellulase producing marine yeast and medium and fermentation condition optimization for cellulase production. Journal of Ocean University of China. 37, 101–108.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top