跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/14 04:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許進豐
研究生(外文):Jin-Feng Hsu
論文名稱:以超音波結合酵素輔助萃取柚子種籽黏質及其理化性質之探討
論文名稱(外文):Studies on the physicochemical properties of mucilage from the seed of Citrus grandis Osbeck with ultrasound and enzymatic assisted extraction
指導教授:賴麗旭賴麗旭引用關係
口試委員:王俊權金安兒
口試日期:2017-07-25
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品暨應用生物科技學系所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:130
中文關鍵詞:黏質超音波酵素分子量固有黏度
外文關鍵詞:mucilageultrasonicenzymemolecular weightintrinsic viscosity
相關次數:
  • 被引用被引用:3
  • 點閱點閱:531
  • 評分評分:
  • 下載下載:65
  • 收藏至我的研究室書目清單書目收藏:1
柚子(Citrus grandis Osbeck)為柚屬芸香科(Rutaceae),是台灣重要的經濟作物而其種子為加工廢棄物,在相關研究發現其含有豐富的黏質多醣,目前工業上萃取果膠多醣方法皆以高溫(70~100℃)、高酸( pH 1.5~3.0)及長時間方式萃取,這種萃取方法易產生大量汙染廢水及較高的經濟成本,然近年來追求高經濟性、低汙染、安全性的綠色萃取方式,其中超音波及酵素處理被認為是相當具有潛力的綠色萃取技術。因此在本實驗中先以反應曲面法探討超音波萃取因子(超音波溫度、振幅及時間)對萃取柚子種籽黏質多醣產率的影響,發現多醣產率隨超音波溫度及振幅上升而增加而後下降,並其多醣產率隨超音波作用時間上升而增加再逐漸趨緩,並進一步求得最大化多醣產率的最佳萃取條件為萃取溫度53℃、超音波振幅84%、超音波作用時間40分鐘,經驗證實驗得最佳超音波萃取多醣產率為4.86 ± 0.22%與模型預測產率4.86%沒有顯著性差異。以電子顯微鏡可以觀察到柚子種籽外殼受超音波處理後有明顯的破壞效果。之後分析水浴萃取、最佳化超音波萃取、酵素萃取及超音波輔助酵素萃取所得黏質多醣之理化特性。
在多醣產率方面,添加酵素的組別其多醣產率(5.21~8.61%)皆有顯著提升,且柚子種籽經超音波處理皆增加酵素萃取多醣的產率,但在單糖組成則發現酵素萃取的組別其醣醛酸含量均下降而中性糖含量則提高,顯示多醣純度下降;在酯化度方面實驗所得多醣皆屬於高酯化度多醣(DE值> 50%)。
在分子量與固有黏度方面經超音波處理的組別其多醣受超音波作用而降解,使分子量與固有黏度皆顯著下降;而酵素萃取多醣過程中可能會分解產生富含支鏈結構之多醣,使得固有黏度下降卻有較高的分子量;溫和條件的水浴萃取多醣有較高的分子量及固有黏度,分析其動態黏彈性發現其在濃度1%即開始凝膠。
Citrus grandis Osbeck is Rutaceae, an important cash crop for Taiwan and whose seeds are processed waste. In the related research found that it is rich in mucilage. The extraction method used in the industry is based on the application of acids (pH 1.5–3.0) & high temperature (70–100 °C) and this extraction method is prone to pollution and high economic costs. In recent years, the pursuit of high economy, low pollution, safety of environment-friendly (green) extraction technologies, including ultrasonic and enzyme treatment is considered to have the potential of environment-friendly (green) extraction technologies. Therefore, in this experiment, the effect of ultrasonic extraction factor (ultrasonic temperature, amplitude and time) on the yield of Citrus grandis Osbeck seed was discussed by response surface methodology. It was found that the yield of polysaccharide increased and then decreased with the increase of ultrasonic temperature and amplitude. And the yield of polysaccharide increases with the ultrasonic extraction time and then gradually slow down. The optimum conditions for maximum polysaccharide yield were as follows: extraction temperature 53℃, ultrasonic amplitude 84%, ultrasonic extraction time 40 min. Under the actual optimum extraction parameters, the polysaccharide yield was 4.86 (± 0.22%), which was closely agreed to the predicted yield 4.86%. Electron microscopy can be observed by the outer hull of Citrus grandis Osbeck seed by ultrasonic treatment has obvious damage effect. The physicochemical properties of the polysaccharides were analyzed by water bath extraction, optimized ultrasonic extraction, enzyme extraction and ultrasonic assisted enzyme extraction.
In the yield of polysaccharides, the yield of polysaccharides (5.21 ~ 8.61%) was significantly improved by enzyme extraction, and the yield of polysaccharides increased by ultrasonic assisted enzyme extraction. However, in the monosaccharide composition by enzyme extraction, the content of uronic acid was decreased and the content of neutral sugar was increased, indicating that the purity of polysaccharide decreased. FT-IR spectrum of the polysaccharide extracted from the seed of Citrus grandis Osbeck implied that the polysaccharides are all high degree of esterification polysaccharide (DE> 50%).
In the molecular weight and intrinsic viscosity, the polysaccharides under ultrasonic treatment were degraded by ultrasonic, so that the molecular weight and intrinsic viscosity were significantly decreased. And in the process of enzyme extraction may produce rich in branched-chain polysaccharides, making the intrinsic viscosity decreased but have a higher molecular weight. The mild condition of the water bath extraction polysaccharide has a higher molecular weight and intrinsic viscosity, and its dynamic viscoelasticity is found to start gel at a concentration of 1%.
摘要…………………………………………………………………………………i
Abstract……………………………………………………………………………iii
目錄…………………………………………………………………………………v
表目錄……………………………………………………………………………ix
圖目錄………………………………………………………………………………x
壹、前言……………………………………………………………………………1
貳、文獻回顧………………………………………………………………………2
一、柚子………………………………………………………………………2
二、黏質………………………………………………………………………3
(一)黏質物…………………………………………………………………3
(二)果膠……………………………………………………………………5
三、超音波萃取……………………………………………………………10
四、木質纖維素(lignocellulose) ……………………………………………17
五、酵素……………………………………………………………………19
(一)木聚醣酶 (Xylanase) ………………………………………………20
(二)半纖維素酶 (Hemicellulase) ………………………………………20
(三) β-葡聚醣酶 (β-Glucanase) …………………………………………21
六、實驗設計………………………………………………………………23
(一)反應曲面法…………………………………………………………24
(二) Box-Behnken design(BBD) ………………………………………28
参、實驗目的…………………………………………………………………33
肆、研究架構……………………………………………………………………34
一、實驗架構………………………………………………………………34
二、超音波輔助萃取柚子種籽黏質多醣流程………………………………35
三、超音波及酵素輔助萃取流程…………………………………………36
伍、材料與方法及樣品製備……………………………………………………37
一、實驗材料………………………………………………………………37
(一)柚子種籽…………………………………………………………37
二、酵素………………………………………………………………………37
三、樣品前處理與黏質多醣製………………………………………………38
(一)樣品前處理…………………………………………………………38
(二)水浴萃取與柚子種籽黏質物製備…………………………………38
(三)超音波萃取與柚子種籽黏質物製備……………………………39
(四)酵素萃取與柚籽種子黏質物製備…………………………………42
(五)超音波搭配酵素萃取與柚子種籽黏質物製備……………………43
四、黏質多醣化學性質分析………………………………………………44
(一)水分含量……………………………………………………………44
(二)蛋白質含量…………………………………………………………44
(三)醣醛酸含量測定……………………………………………………45
(四)單糖組成分析………………………………………………………46
(五)酯化度分析…………………………………………………………48
五、黏質多醣物理性質分析…………………………………………………49
(一)場發射掃描式電子顯微鏡結構觀察………………………………49
(二)動態黏彈性 (Dynamic viscoelasticity) ……………………………50
(三)分子量分佈…………………………………………………………50
六、統計分析與繪圖………………………………………………………53
陸、結果與討論……………………………………………………………54
一、超音波輔助萃取之單因子試驗………………………………………54
二、超音波輔助萃取之反應曲面法試驗…………………………………59
三、超音波輔助萃取柚子種籽黏質多醣最適化條件之探討……………70
(一)最佳條件之選擇……………………………………………………70
(二)驗證試驗……………………………………………………………71
四、柚子種籽黏質多醣之結構觀察………………………………………73
五、柚子種籽黏質多醣之動態黏彈性分析…………………………………76
六、超音波結合酵素輔助萃取對柚子種籽黏質多醣理化性質之影響……78
(一)產率及化學組成……………………………………………………78
(二)單糖組成……………………………………………………………83
(三)甲基酯化度…………………………………………………………94
(四)柚子種籽黏質多醣之分子量分析…………………………………100
(五)固有黏度……………………………………………………………106
柒、結論…………………………………………………………………………111
Reference…………………………………………………………………………113
103年農業統計年報(103): 農業統計年報。行政院農委會。第78頁。
方柏翔:不同界面活性劑對糖質克弗爾多醣/小麥澱粉可食膜物理性質的影響。碩士論文。國立中興大學食品暨應用生物科技學系所。台中市,台灣。(2015)。
毛正倫(2008):實用統計技術。華騰文化發行。台北市,台灣。
王淯湞:糖液克弗爾粒水萃多醣之理化特性。碩士論文。國立中興大學食品暨應用生物科技學系所。台中市,台灣。(2015)。
江幸芳:脫色仙草葉膠溶液及其與小麥澱粉混合系統黏彈性質之研究。碩士論文。靜宜大學食品營養學系。台中市,台灣。(2001)。
何國慶及丁立孝(2007):食品酵素學。五南圖書出版公司。台北,台灣。
沈明來(2010):試驗設計學第四版。九州圖書文化有限公司。台灣。
林貞儀:柚籽黏質物:萃取、純化與結構特性。碩士論文。國立高雄大學生命科學系。高雄市,台灣。(2013)。
林詩涵:以反應曲面法探討糖質克弗爾多醣/小麥澱粉混合膜之物理及機械特性。碩士論文。國立中興大學食品暨應用生物科技學系所。台中市,台灣。(2014)。
林慧香:山藥黏質物的分離與其多醣及蛋白質含量之探討。碩士論文。國立中興大學食品科學系。台中市,台灣。(2003)。
洪哲穎及陳國誠(1992):反應曲面實驗設計法在微生物酵素生產之應用。化工期刊。39, 3-18。
高宇(2009):生物化學(下)。鼎茂圖書出版股份有限公司。台北,台灣。
梁惠媛:水萃及鹼萃山蘇葉黏質之理化特性。碩士論文。國立中興大學食品暨應用生物科技學系所。台中市,台灣。(2010)。
陳永增、鄧惠源、魏百盛及董彥臣(2007):超音波在液體中空泡行為的監測與分析。先進工程學刊。2(3), 157-161。
陳順宇(2002):實驗設計。華泰書局。台灣。
陳溪潭(1997):本省麻豆文旦產業之沿革與展望。台灣農業。33(4), 39-52.
曾汶雯:酸萃取條件對南洋山蘇葉黏質物化特性的影響。碩士論文。國立中興大學食品暨應用生物科技學系所。台中市,台灣。(2011)。
曾秋婷: Lactobacillus reuteri微膠囊化方法的探討及最適化。碩士論文。國立中興大學食品暨應用生物科技學系所。台中市,台灣。(2012)。
黃有才、左峻德及王裕文(2007):綠色油田在農業永續發展扮演的角色研討會專刊103-113。行政院農業委員會農業試驗所。台中市,台灣。
葉怡成(2009):高等實驗計畫法。五南圖書出版有限公司。台灣。
董思理:探討不同品種山藥黏質的理化性質。碩士論文。靜宜大學食品營養研究所。台中市,台灣。(2004)。
蔡佩蓉:柚籽黏質物的純化與應用之研究。碩士論文。國立高雄大學生物科技研究所。高雄市,台灣。(2011)。
蔡銘澤:檸檬酸萃取文旦柚種子外殼多醣理化性質之探討。碩士論文。國立中興大學食品暨應用生物科技學系所。台中市。台灣。(2015)。
顏國欽、劉展冏、韓建國、劉冠汝、李嘉展、陳建元、孫芳明、蘇敏昇、馮惠萍及謝秋蘭(2007):食品化學。華格那出版有限公司。台中,台灣。
闞建全(2007): 食品化學。新文京開發出版股份有限公司。台北市,台灣。

Albu, S., Joyce, E., Paniwnyk, L., Lorimer, J. P., & Mason, T. J. (2004). Potential for the use of ultrasound in the extraction of antioxidants from Rosmarinus officinalis for the food and pharmaceutical industry. Ultrason Sonochem, 11(3-4), 261-265.
Anderson, E., & Lowe, H. J. (1947). The composition of flaxseed mucilage. Journal of Biological Chemistry, 168(1), 289-297.
AOAC. (2000). Officail Methods of Analysis of AOAC International (Vol. 17thed). Gaithersburg, MD, USA: AOAC International.
Bagherian, H., Zokaee Ashtiani, F., Fouladitajar, A., & Mohtashamy, M. (2011). Chemical Engineering and Processing: Process Intensification, 50(11-12), 1237-1243.
Bailey, K. (1935). Cress seed mucilage. Biochemical Journal, 29(11), 2477.
Becker, B., Kuhn, U., & Hardewig-Budny, B. (2006). Double-blind, randomized evaluation of clinical efficacy and tolerability of an apple pectin-chamomile extract in children with unspecific diarrhea. Arzneimittelforschung, 56(06), 387-393.
Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5), 965-977.
Bitter, T., & Muir, H. M. (1962). A modified uronic acid carbazole reaction. Analytical biochemistry, 4(4), 330-334.
Blanshard, J. M., & Mitchell, J. (2013). Polysaccharides in food: Elsevier.
Box, G. E., & Behnken, D. W. (1960). Some new three level designs for the study of quantitative variables. Technometrics, 2(4), 455-475.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-254.
Carpita, N. C., & Gibeaut, D. M. (1993). Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. The Plant Journal, 3(1), 1-30.
Chatjigakis, A., Pappas, C., Proxenia, N., Kalantzi, O., Rodis, P., & Polissiou, M. (1998). FT-IR spectroscopic determination of the degree of esterification of cell wall pectins from stored peaches and correlation to textural changes. Carbohydrate polymers, 37(4), 395-408.
Chemat, F., Zill e, H., & Khan, M. K. (2011). Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason Sonochem, 18(4), 813-835.
Chen, H., Zhou, X., & Zhang, J. (2014a). Optimization of enzyme assisted extraction of polysaccharides from Astragalus membranaceus. Carbohydrate polymers, 111, 567-575.
Chen, S., Chen, H., Tian, J., Wang, J., Wang, Y., & Xing, L. (2014b). Enzymolysis-ultrasonic assisted extraction, chemical characteristics and bioactivities of polysaccharides from corn silk. Carbohydrate polymers, 101, 332-341.
Chou, T. D., & Kokini, J. L. (1987). Rheological properties and conformation of tomato paste pectins, citrus and apple pectins. Journal of Food Science, 52(6), 1658-1664.
Cui, W., Eskin, N., & Biliaderis, C. (1993). Chemical and physical properties of yellow mustard (Sinapis alba L.) mucilage. Food chemistry, 46(2), 169-176.
Dettmar, P. W., Strugala, V., & Richardson, J. C. (2011). The key role alginates play in health. Food Hydrocolloids, 25(2), 263-266.
Erskine, A., & Jones, J. (1957). The structure of linseed mucilage. Part I. Canadian Journal of Chemistry, 35(10), 1174-1182.
Filgueiras, A., Capelo, J., Lavilla, I., & Bendicho, C. (2000). Comparison of ultrasound-assisted extraction and microwave-assisted digestion for determination of magnesium, manganese and zinc in plant samples by flame atomic absorption spectrometry. Talanta, 53(2), 433-441.
Fisher, R. A. (1925). Statistical methods for research workers: Genesis Publishing Pvt Ltd.
Fissore, E. N., Ponce, N. M., Wider, E. A., Stortz, C. A., Gerschenson, L. N., & Rojas, A. M. (2009). Commercial cell wall hydrolytic enzymes for producing pectin-enriched products from butternut (Cucurbita moschata, Duchesne ex Poiret). Journal of Food Engineering, 93(3), 293-301.
Fiszman, S., & Varela, P. (2013). The role of gums in satiety/satiation. A review. Food Hydrocolloids, 32(1), 147-154.
Freitas de Oliveira, C., Giordani, D., Lutckemier, R., Gurak, P. D., Cladera-Olivera, F., & Ferreira Marczak, L. D. (2016). Extraction of pectin from passion fruit peel assisted by ultrasound. LWT - Food Science and Technology, 71, 110-115.
Fuchs, N. K., & Fuchs, K. N. (2004). Modified citrus pectin (MCP): a super nutraceutical: Basic Health Publications, Inc.
Furtado, G. P., Ribeiro, L. F., Santos, C. R., Tonoli, C. C., de Souza, A. R., Oliveira, R. R., Murakami, M. T., & Ward, R. J. (2011). Biochemical and structural characterization of a β-1,3–1,4-glucanase from Bacillus subtilis 168. Process Biochemistry, 46(5), 1202-1206.
Garna, H., Mabon, N., Robert, C., Cornet, C., Nott, K., Legros, H., Wathelet, B., & Paquot, M. (2007). Effect of extraction conditions on the yield and purity of apple pomace pectin precipitated but not washed by alcohol. Journal of Food Science, 72(1), C001-C009.
Gidley, M. J. (2013). Hydrocolloids in the digestive tract and related health implications. Current Opinion in Colloid & Interface Science, 18(4), 371-378.
Giovanni, M. (1983). Response surface methodology and product optimization. Food technology.
Gomes, T., Barradas, C., Dias, T., Verdial, J., Morais, J. S., Ramalhosa, E., & Estevinho, L. M. (2013). Optimization of mead production using response surface methodology. Food and chemical toxicology, 59, 680-686.
Guggenbichler, J., De Bettignies-Dutz, A., Meissner, P., Schellmoser, S., & Jurenitsch, J. (1997). Acidic oligosaccharides from natural sources block adherence of Escherichia coli on uroepithelial cells. Pharmaceutical and Pharmacological Letters, 7(1), 35-38.
Habibi, Y., Heyraud, A., Mahrouz, M., & Vignon, M. (2004). Structural features of pectic polysaccharides from the skin of Opuntia ficus-indica prickly pear fruits. Carbohydrate Research, 339(6), 1119-1127.
Han, N., Wang, L., Song, Z., Lin, J., Ye, C., Liu, Z., & Yin, J. (2016). Optimization and antioxidant activity of polysaccharides from Plantago depressa. International journal of biological macromolecules, 93(Pt A), 644-654.
Himmelblau, D. M. (1970). Process analysis by statistical methods.
Hirose, K., Endo, K., & Hasegawa, K. (2004). A convenient synthesis of lepidimoide from okra mucilage and its growth-promoting activity in hypocotyls. Carbohydrate Research, 339(1), 9-19.
Jackson, C. L., Dreaden, T. M., Theobald, L. K., Tran, N. M., Beal, T. L., Eid, M., Gao, M. Y., Shirley, R. B., Stoffel, M. T., & Kumar, M. V. (2007). Pectin induces apoptosis in human prostate cancer cells: correlation of apoptotic function with pectin structure. Glycobiology, 17(8), 805-819.
Ji, J.-b., Lu, X.-h., Cai, M.-q., & Xu, Z.-c. (2006). Improvement of leaching process of Geniposide with ultrasound. Ultrasonics sonochemistry, 13(5), 455-462.
Jiang, C., Li, X., Jiao, Y., Jiang, D., Zhang, L., Fan, B., & Zhang, Q. (2014). Optimization for ultrasound-assisted extraction of polysaccharides with antioxidant activity in vitro from the aerial root of Ficus microcarpa. Carbohydrate polymers, 110, 10-17.
Kastner, U., Glasl, S., Follrich, B., Guggenbichler, J., & Jurenitsch, J. (2002). Acid oligosaccharides as the active principle of aqueous carrot extracts for prevention and therapy of gastrointestinal infections. Wiener medizinische Wochenschrift (1946), 152(15-16), 379-381.
Kay, R., Judd, P., & Truswell, A. (1978). The effect of pectin on serum cholesterol. The American journal of clinical nutrition, 31(4), 562-563.
Keppler, F., Hamilton, J. T., Braß, M., & Röckmann, T. (2006). Methane emissions from terrestrial plants under aerobic conditions. Nature, 439(7073), 187-191.
Khuri, A. I., & Mukhopadhyay, S. (2010). Response surface methodology. Wiley Interdisciplinary Reviews: Computational Statistics, 2(2), 128-149.
Koocheki, A., Mortazavi, S. A., Shahidi, F., Razavi, S. M. A., & Taherian, A. R. (2009). Rheological properties of mucilage extracted from Alyssum homolocarpum seed as a new source of thickening agent. Journal of Food Engineering, 91(3), 490-496.
Koubala, B., Mbome, L., Kansci, G., Mbiapo, F. T., Crepeau, M.-J., Thibault, J.-F., & Ralet, M.-C. (2008). Physicochemical properties of pectins from ambarella peels (Spondias cytherea) obtained using different extraction conditions. Food chemistry, 106(3), 1202-1207.
Kurita, O., Fujiwara, T., & Yamazaki, E. (2008). Characterization of the pectin extracted from citrus peel in the presence of citric acid. Carbohydrate polymers, 74(3), 725-730.
Leighton, T. (1995). Bubble population phenomena in acoustic cavitation. Ultrasonics sonochemistry, 2(2), S123-S136.
Li, H., Pordesimo, L., & Weiss, J. (2004). High intensity ultrasound-assisted extraction of oil from soybeans. Food Research International, 37(7), 731-738.
Li, J.-M., & Nie, S.-P. (2016). The functional and nutritional aspects of hydrocolloids in foods. Food Hydrocolloids, 53, 46-61.
Li, J., Li, B., Geng, P., Song, A.-X., & Wu, J.-Y. (2017). Ultrasonic degradation kinetics and rheological profiles of a food polysaccharide (konjac glucomannan) in water. Food Hydrocolloids, 70, 14-19.
Lim, B. O., Yamada, K., Nonaka, M., Kuramoto, Y., Hung, P., & Sugano, M. (1997). Dietary fibers modulate indices of intestinal immune function in rats. The Journal of nutrition, 127(5), 663-667.
Lim, J., Yoo, J., Ko, S., & Lee, S. (2012). Extraction and characterization of pectin from Yuza (Citrus junos) pomace: A comparison of conventional-chemical and combined physical–enzymatic extractions. Food Hydrocolloids, 29(1), 160-165.
Lindström, C., Holst, O., Hellstrand, P., Öste, R., & Andersson, K. E. (2012). Evaluation of commercial microbial hydrocolloids concerning their effects on plasma lipids and caecal formation of SCFA in mice. Food Hydrocolloids, 28(2), 367-372.
Liu, Y., Gong, G., Zhang, J., Jia, S., Li, F., Wang, Y., & Wu, S. (2014). Response surface optimization of ultrasound-assisted enzymatic extraction polysaccharides from Lycium barbarum. Carbohydrate polymers, 110, 278-284.
Liu, Y., Qiang, M., Sun, Z., & Du, Y. (2015). Optimization of ultrasonic extraction of polysaccharides from Hovenia dulcis peduncles and their antioxidant potential. International journal of biological macromolecules, 80, 350-357.
Luque-Garcı́a, J. L., & Luque de Castro, M. D. (2003). Ultrasound: a powerful tool for leaching. TrAC Trends in Analytical Chemistry, 22(1), 41-47.
M.P, F. (1992). Practical infrared spectroscopy of pectic substances. Food Hydrocolloids, 6(1), 115-142.
Mañas, E., & Saura-Calixto, F. (1993). Ethanolic precipitation: a source of error in dietary fibre determination. Food chemistry, 47(4), 351-355.
Manrique, G. D., & Lajolo, F. M. (2002). FT-IR spectroscopy as a tool for measuring degree of methyl esterification in pectins isolated from ripening papaya fruit. Postharvest Biology and Technology, 25(1), 99-107.
Maran, J. P., & Priya, B. (2015). Ultrasound-assisted extraction of pectin from sisal waste. Carbohydrate polymers, 115, 732-738.
Mason, T. J. (1990). Chemistry with Ultrasound. New York.
Maxwell, E. G., Belshaw, N. J., Waldron, K. W., & Morris, V. J. (2012). Pectin – An emerging new bioactive food polysaccharide. Trends in Food Science & Technology, 24(2), 64-73.
Minjares-Fuentes, R., Femenia, A., Garau, M. C., Meza-Velazquez, J. A., Simal, S., & Rossello, C. (2014). Ultrasound-assisted extraction of pectins from grape pomace using citric acid: a response surface methodology approach. Carbohydrate polymers, 106, 179-189.
Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource technology, 96(6), 673-686.
Moulton, K., & Wang, L. (1982). A Pilot‐Plant Study of Continuous Ultrasonic Extraction of Soybean Protein. Journal of Food Science, 47(4), 1127-1129.
Mudgil, D., & Barak, S. (2013). Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: A review. International journal of biological macromolecules, 61, 1-6.
Myers, R., & Montgomery, D. (2001). Response surface methodology,(2002). Willey, New York.
Nadar, S. S., Pawar, R. G., & Rathod, V. K. (2017). Recent advances in enzyme extraction strategies: A comprehensive review. International journal of biological macromolecules, 101, 931-957.
Noreen, A., Nazli, Z. I., Akram, J., Rasul, I., Mansha, A., Yaqoob, N., Iqbal, R., Tabasum, S., Zuber, M., & Zia, K. M. (2017). Pectins functionalized biomaterials; a new viable approach for biomedical applications: A review. International journal of biological macromolecules, 101, 254-272.
Panouillé, M., Thibault, J.-F., & Bonnin, E. (2006). Cellulase and protease preparations can extract pectins from various plant byproducts. Journal of agricultural and food chemistry, 54(23), 8926-8935.
Park, S.-M., Lee, H.-H., Chang, H.-C., & Kim, I.-C. (2001). Extraction and physicochemical properties of the pectin in citron peel. JOURNAL-KOREAN SOCIETY OF FOOD SCIENCE AND NUTRITION, 30(4), 569-573.
Prakash Maran, J., Sivakumar, V., Thirugnanasambandham, K., & Sridhar, R. (2013). Optimization of microwave assisted extraction of pectin from orange peel. Carbohydr Polym, 97(2), 703-709.
Price, G. J. (1996). Applications of high intensity ultrasound in polymer chemistry. Chemistry and Industry.
Pryor, S. W., Karki, B., & Nahar, N. (2012). Effect of hemicellulase addition during enzymatic hydrolysis of switchgrass pretreated by soaking in aqueous ammonia. Bioresource technology, 123, 620-626.
Quan, C., Sun, Y., & Qu, J. (2009). Ultrasonic extraction of ferulic acid from Angelica sinensis. The Canadian Journal of Chemical Engineering, 87(4), 562-567.
Rascón-Chu, A., Martínez-López, A. L., Carvajal-Millán, E., de León-Renova, N. E. P., Márquez-Escalante, J. A., & Romo-Chacón, A. (2009). Pectin from low quality ‘Golden Delicious’ apples: Composition and gelling capability. Food chemistry, 116(1), 101-103.
Ridley, B. L., O'Neill, M. A., & Mohnen, D. (2001). Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry, 57(6), 929-967.
Riera, E., Golas, Y., Blanco, A., Gallego, J. A., Blasco, M., & Mulet, A. (2004). Mass transfer enhancement in supercritical fluids extraction by means of power ultrasound. Ultrasonics sonochemistry, 11(3-4), 241-244.
Romdhane, M., & Gourdon, C. (2002). Investigation in solid–liquid extraction: influence of ultrasound. Chemical Engineering Journal, 87(1), 11-19.
Rostagno, M. A., Palma, M., & Barroso, C. G. (2003). Ultrasound-assisted extraction of soy isoflavones. Journal of Chromatography A, 1012(2), 119-128.
Schmelter, T., Wientjes, R., Vreeker, R., & Klaffke, W. (2002). Enzymatic modifications of pectins and the impact on their rheological properties. Carbohydrate polymers, 47(2), 99-108.
Seshadri, R., Weiss, J., Hulbert, G. J., & Mount, J. (2003). Ultrasonic processing influences rheological and optical properties of high-methoxyl pectin dispersions. Food Hydrocolloids, 17(2), 191-197.
Shallom, D., & Shoham, Y. (2003). Microbial hemicellulases. Current Opinion in Microbiology, 6(3), 219-228.
Shkodina, O. G., Zeltser, O. A., Selivanov, N. Y., & Ignatov, V. V. (1998). Enzymic extraction of pectin preparations from pumpkin. Food Hydrocolloids, 12(3), 313-316.
Silverstein, R., Bassler, G., & Morill, T. (1991). Spectrochemical Identification of Organic Compounds. In: Wiley, New York.
Singthong, J., Cui, S. W., Ningsanond, S., & Goff, H. D. (2004). Structural characterization, degree of esterification and some gelling properties of Krueo Ma Noy (Cissampelos pareira) pectin. Carbohydrate polymers, 58(4), 391-400.
Soria, A. C., & Villamiel, M. (2010). Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends in Food Science & Technology, 21(7), 323-331.
Sun, R., & Tomkinson, J. (2002). Comparative study of lignins isolated by alkali and ultrasound-assisted alkali extractions from wheat straw. Ultrasonics sonochemistry, 9(2), 85-93.
Tiwari, B. K. (2015). Ultrasound: A clean, green extraction technology. TrAC Trends in Analytical Chemistry, 71, 100-109.
Trumbo, P., Schlicker, S., Yates, A. A., & Poos, M. (2002). Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. Journal of the American Dietetic Association, 102(11), 1621-1630.
Uday, U. S., Choudhury, P., Bandyopadhyay, T. K., & Bhunia, B. (2016). Classification, mode of action and production strategy of xylanase and its application for biofuel production from water hyacinth. International journal of biological macromolecules, 82, 1041-1054.
Vilkhu, K., Mawson, R., Simons, L., & Bates, D. (2008). Applications and opportunities for ultrasound assisted extraction in the food industry — A review. Innovative Food Science & Emerging Technologies, 9(2), 161-169.
Vinatoru, M. (2001). An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrasonics sonochemistry, 8(3), 303-313.
Vodenicarova, M., Drimalova, G., Hromadkova, Z., Malovikova, A., & Ebringerova, A. (2006). Xyloglucan degradation using different radiation sources: a comparative study. Ultrasonics sonochemistry, 13(2), 157-164.
Voragen, A., Pilnik, W., Thibault, J.-F., Axelos, M., & Renard, C. M. (1995). 10 Pectins.
Wai, W. W., Alkarkhi, A. F., & Easa, A. M. (2010). Effect of extraction conditions on yield and degree of esterification of durian rind pectin: An experimental design. Food and bioproducts processing, 88(2), 209-214.
Wang, L., & Weller, C. L. (2006). Recent advances in extraction of nutraceuticals from plants. Trends in Food Science & Technology, 17(6), 300-312.
Wang, S., Dong, X., & Tong, J. (2013). Optimization of enzyme-assisted extraction of polysaccharides from alfalfa and its antioxidant activity. International journal of biological macromolecules, 62, 387-396.
Wang, W., Ma, X., Jiang, P., Hu, L., Zhi, Z., Chen, J., Ding, T., Ye, X., & Liu, D. (2016). Characterization of pectin from grapefruit peel: a comparison of ultrasound-assisted and conventional heating extractions. Food Hydrocolloids, 61, 730-739.
Wang, X. S., Wu, Y. F., Dai, S. L., Chen, R., & Shao, Y. (2012). Ultrasound-assisted extraction of geniposide from Gardenia jasminoides. Ultrasonics sonochemistry, 19(6), 1155-1159.
Warr, J., Michaud, P., Picton, L., Muller, G., Courtois, B., Ralainirina, R., & Courtois, J. (2003). Large-scale purification of water-soluble polysaccharides from flaxseed mucilage, and isolation of a new anionic polymer. Chromatographia, 58(5-6), 331-335.
Western, T. L., Skinner, D. J., & Haughn, G. W. (2000). Differentiation of mucilage secretory cells of the Arabidopsis seed coat. Plant Physiology, 122(2), 345-356.
Wikiera, A., Mika, M., Starzynska-Janiszewska, A., & Stodolak, B. (2015). Application of Celluclast 1.5L in apple pectin extraction. Carbohydrate polymers, 134, 251-257.
Wikiera, A., Mika, M., Starzynska-Janiszewska, A., & Stodolak, B. (2016). Endo-xylanase and endo-cellulase-assisted extraction of pectin from apple pomace. Carbohydrate polymers, 142, 199-205.
Willats, W. G. T., Knox, J. P., & Mikkelsen, J. D. (2006). Pectin: new insights into an old polymer are starting to gel. Trends in Food Science & Technology, 17(3), 97-104.
Wu, H., Zhu, J., Diao, W., & Wang, C. (2014). Ultrasound-assisted enzymatic extraction and antioxidant activity of polysaccharides from pumpkin (Cucurbita moschata). Carbohydrate polymers, 113, 314-324.
Wu, J., Lin, L., & Chau, F.-t. (2001). Ultrasound-assisted extraction of ginseng saponins from ginseng roots and cultured ginseng cells. Ultrasonics sonochemistry, 8(4), 347-352.
Wu, Y. (2002). Testing design and data processing. In: Suzhou, China: Suzhou University Press.
Xia, T., Shi, S., & Wan, X. (2006). Impact of ultrasonic-assisted extraction on the chemical and sensory quality of tea infusion. Journal of Food Engineering, 74(4), 557-560.
Xie, P.-j., Huang, L.-x., Zhang, C.-h., You, F., & Zhang, Y.-l. (2015). Reduced pressure extraction of oleuropein from olive leaves (Olea europaea L.) with ultrasound assistance. Food and bioproducts processing, 93, 29-38.
Xu, Y., Zhang, L., Yang, Y., Song, X., & Yu, Z. (2015). Optimization of ultrasound-assisted compound enzymatic extraction and characterization of polysaccharides from blackcurrant. Carbohydrate polymers, 117, 895-902.
Yang, B., Yu, G., Zhao, X., Ren, W., Jiao, G., Fang, L., Wang, Y., Du, G., Tiller, C., & Girouard, G. (2011). Structural characterisation and bioactivities of hybrid carrageenan-like sulphated galactan from red alga Furcellaria lumbricalis. Food chemistry, 124(1), 50-57.
Yang, Z., & Zhai, W. (2010). Optimization of microwave-assisted extraction of anthocyanins from purple corn (Zea mays L.) cob and identification with HPLC–MS. Innovative Food Science & Emerging Technologies, 11(3), 470-476.
You, Q., Yin, X., & Zhao, Y. (2013). Enzyme assisted extraction of polysaccharides from the fruit of Cornus officinalis. Carbohydrate polymers, 98(1), 607-610.
Zhang, L., Guo, S., Wang, M., & He, L. (2015). PEG-based ultrasound-assisted enzymatic extraction of polysaccharides from Ginkgo biloba leaves. International journal of biological macromolecules, 80, 644-650.
Zhang, L., & Wang, M. (2017). Optimization of deep eutectic solvent-based ultrasound-assisted extraction of polysaccharides from Dioscorea opposita Thunb. International journal of biological macromolecules, 95, 675-681.
Zhang, L., Ye, X., Ding, T., Sun, X., Xu, Y., & Liu, D. (2013). Ultrasound effects on the degradation kinetics, structure and rheological properties of apple pectin. Ultrasonics sonochemistry, 20(1), 222-231.
Zykwinska, A., Boiffard, M.-H. l. n., Kontkanen, H., Buchert, J., Thibault, J.-F. o., & Bonnin, E. (2008). Extraction of green labeled pectins and pectic oligosaccharides from plant byproducts. Journal of agricultural and food chemistry, 56(19), 8926-8935.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top