跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:dbb8:8235:aad7:a019) 您好!臺灣時間:2024/12/08 05:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李冠增
研究生(外文):Kuan-Tseng Lee
論文名稱:山胡椒果實精油之香氣成分及其粉末改善類阿茲海默症小鼠記憶及學習能力之成效
論文名稱(外文):Evaluation the Volatile Compounds of Litsea Cubeba Fruit Essential Oils and Ameliorating Effect of its Powder on Memory and Learning Ability in Aβ-Induced Alzheimer's Mice
指導教授:蔣慎思
指導教授(外文):Shen-Shih Chiang
口試委員:潘子明王升陽梁志弘
口試委員(外文):Tzu-Ming PanSheng-Yang WangChih-Hung Liang
口試日期:2017-07-24
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品暨應用生物科技學系所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:113
中文關鍵詞:阿茲海默症類澱粉蛋白山胡椒氣相層析質譜儀主成分分析水迷宮T字迷宮
外文關鍵詞:Alzheimer’s diseaseAmyloid β proteinLitsea cubeba PersoonGC/MSPrincipal components analysisWater mazeT maze
相關次數:
  • 被引用被引用:1
  • 點閱點閱:646
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
山胡椒 (Litsea cubeba Persoon)為台灣原住民傳統的調味料,有研究指出其果實精油及甲醇萃取物具有抗氧化、鎮靜止痛及改善焦慮與憂鬱等中樞神經系統失調的功能。老年失智症 (Senile dementia)為隨年齡增長及體內過度氧化損傷造成之神經退化性疾病,其中阿茲海默症 (Alzheimer’s disease, AD)為盛行率最高的一種,經由類澱粉蛋白 (Amyloid β protein, Aβ)斑塊沉積與tau蛋白過度磷酸化 (Phosphorylated tau protein, p-tau)造成神經纖維糾結於海馬迴組織中,導致記憶學習能力喪失及認知功能障礙。故本研究分析山胡椒果實精油之香氣組成,並以其粉末餵食類阿茲海默症小鼠,評估其記憶及學習能力改善之成效。結果顯示山胡椒因生長環境海拔越高、緯度越低及果實顏色越青,其精油含量越少。再以氣相層析質譜儀 (Gas chromatography–mass spectrometry, GC/MS)鑑定山胡椒果實精油主要由萜類化合物所組成,南投地區精油之檸檬烯、橙花醛及香葉醛等總量高於高雄地區且其精油之檸檬及柑橘香氣較為濃厚,並將各地區精油組成進行主成分分析 (Principal components analysis, PCA),結果顯示山胡椒之生長緯度及海拔相似,其精油組成相近且位於第一及第二主成分間之主成分分數散點圖上同一區域。動物試驗結果顯示,經由類澱粉蛋白誘導手術及餵食山胡椒果實粉末及褪黑激素不會造成小鼠體重有急遽變化;於肝腎功能指數及切片判讀也未發現有發炎、空泡化及細胞壞死等病徵;另外,餵食山胡椒果實粉末相較於Aβ組雖然無法降低蛋白質羰基氧化物 (Protein carbonyl)濃度,但能顯著降低腦中丙二醛 (Malondialdehyde)及磷酸化τ-蛋白 (Phosphorylated τ-protein)等相關病徵氧化物含量及Aβ斑塊沉積量,藉以改善小鼠之記憶學習能力。綜合上述結果,山胡椒果實粉末可防止因類澱粉蛋白誘導所導致的氧化壓力上升以改善記憶及學習能力之障礙。
Litsea cubeba Persoon is a traditional seasoning used by Taiwanese aborigines. There are some studies indicating that Litsea cubeba fruits essential oil and its methanol extract have functions in antioxidation, sedation, analgesic and improvement of the central nervous system disorders such as anxiety and depression. Senile dementia is a neurodegenerative disease caused by aging and excessive oxidative damage in body and Alzheimer's disease (AD) has highest prevalence rate which caused by Amyloid β protein (Aβ plaques accumulation and hyperphosphorylated tau protein (p-tau) to form neurofibrillary tangles (NFTS) deposit in hippocampus that induces memory loss and cognitive impairment. Thus, the major aim of the study is to evaluate the volatile compounds of Litsea Cubeba fruit essential oils then ameliorate effect of Litsea Cubeba fruit powder (LCP) on memory and learning ability improvement in Aβ-induced alzheimer's mice. The results show that litsea cubeba fruits growing in high altitude, low latitude and fruit with greener color have lower essential oil content compared to others condition. Besides, the GC / MS analyses give the result that the essential oils are mainly composed of terpenoids. The total contents of limonene, neral and geranial in essential oil from Nantou areas are richer than Kaohsiung areas that cause the lemon and citrus smell are much stronger in Natou area’s essential oils. Using principal components analysis (PCA) to distinguish the composition of Litsea cubeba fruit essential oils from different areas, and the composition of essential oils growing in same area is similar to the one locating in the same region on score scatter plot of the first and the second principal components. The results of Aβ induced Alzheimer’s mice model show that Aβ-induced surgery model and mice fed with LCP and melatonin would not cause the mouse weight change sharply, the serum biochemical and histopathological alterations of liver and kidney were not found inflammation, vacuolization, and necrosis-related lesions. Moreover, compared with Aβ group, although fed LCP cannot decrease the concentration of protein carbonyl, it could significantly decrease the amount of malondialdehyde, phosphorylated τ-protein and deposition of Aβ plaques in brain then effectively improve the memory and learning ability impairment,
In summary, Litsea cubeba Persoon fruit has potential to be functional food to prevent the increase of oxidative stress induced by Aβthen ameliorates memory and learning ability.
摘要 i
Abstract iii
目錄 v
表次 viii
圖次 ix
縮寫表 xi
第一章 前言 1
第二章 文獻回顧 2
一、老化與失智 (Aging & dementia) 2
二、阿茲海默症 (Alzheimer’s disease) 4
(一) 阿茲海默症之發現與症狀 4
(二) 阿茲海默症之成因 5
(三) 阿茲海默症之診斷 12
(四) 阿茲海默症之治療藥物 18
三、山胡椒 (Litsea cubeba Persoon) 22
(一) 山胡椒介紹 22
(二) 山胡椒果實精油之成分分析 22
(三) 山胡椒之生理活性 26
四、褪黑激素 (Melatonin) 30
五、研究動機與架構 32
第三章 材料與方法 35
一、實驗儀器及藥品 35
(一) 實驗儀器 35
(二) 藥品 36
(三) 酵素免疫分析套組 37
(四) 動物實驗材料 37
二、實驗方法 38
(一) 山胡椒果實之一般成分分析 38
(二) 山胡椒果實精油之分析 39
(三) 改善小鼠記憶及學習能力之試驗模式建立 41
(四) 皮爾森相關係數 (Pearson correlation coefficient) 53
(五) 統計分析 54
第四章 結果與討論 55
一、台灣不同地區山胡椒果實之一般成分分析 55
二、台灣不同地區山胡椒果實於不同生長環境之精油含量比較 55
三、台灣不同地區山胡椒果實精油之GC/MS分析 55
四、台灣不同地區山胡椒果實精油之色澤及香氣特性差異 61
五、台灣不同地區山胡椒果實精油之主成分分析 61
六、山胡椒果實粉末改善Aβ1-40誘導小鼠認知障礙之成效 67
(一) 台灣南投清流部落山胡椒果實之一般成分分析及精油組成 67
(二) 類澱粉蛋白誘導手術與餵食山胡椒果實粉末對於小鼠體重及攝食量之影響 67
(三) 餵食山胡椒果實粉末對以類澱粉蛋白誘導類阿茲海默症小鼠血清生化參數之影響 67
(四) 餵食山胡椒果實粉末對以類澱粉蛋白誘導類阿茲海默症小鼠臟器組織體重相對重量之影響 73
(五) 餵食山胡椒果實粉末對以類澱粉蛋白誘導類阿茲海默症小鼠肝及腎臟組織之影響 73
(六) 餵食山胡椒果實粉末對以類澱粉蛋白誘導類阿茲海默症小鼠腦組織之影響 75
(七) 餵食山胡椒果實粉末對以類澱粉蛋白誘導類阿茲海默症小鼠記憶及學習能力之影響 75
(八) 餵食山胡椒果實粉末對以類澱粉蛋白誘導類阿茲海默症小鼠腦中丙二醛濃度之影響 87
(九) 餵食山胡椒果實粉末對以類澱粉蛋白誘導類阿茲海默症小鼠腦中蛋白質羰基氧化物濃度之影響 90
(十) 餵食山胡椒果實粉末對以類澱粉蛋白誘導類阿茲海默症小鼠腦中磷酸化-蛋白含量之影響 93
(十一) 餵食山胡椒果實粉末對以類澱粉蛋白誘導類阿茲海默症小鼠腦中Aβ斑塊沉積量影響 93
(十二) 餵食不同劑量之山胡椒果實粉末與小鼠行為能力試驗及腦中氧化壓力及阿茲海默症相關病徵之皮爾森相關係數 97
第五章 結論 101
第六章 參考文獻 103
范義彬、呂勝由及彭砰京。2005。一種深具發展潛力的植物—山胡椒【makauy】。台灣林業31: 61–62。
梁鍾鼎、李泔泓、何勝裕、林相汝、吳雅雯、吳長諺、林宗德、余俊強及 梁善居。2008。血液生化及血液學參考值。國家實驗動物中心。台北。 台灣。
黃柏璋。2016。杏鮑菇子實體對以Aβ誘導阿茲海默症C57BL/6J小鼠改善記憶學習能力之研究。東海大學食品科學系。台中。台灣。
Ahmed, M., Davis, J., Aucoin, D., Sato, T., Ahuja, S., Aimoto, S., Elliott, J. I., Norstrand, W. E. V., & Smith, S. O. (2010). Structural conversion of neurotoxic amyloid-[beta]1-42 oligomers to fibrils. Nature Structural & Molecular Biology, 17(5), 561-567.
Ahmed, R. R., Holler, C. J., Webb, R. L., Li, F., Beckett, T. L., & Murphy, M. P. (2010). BACE1 and BACE2 enzymatic activities in Alzheimer’s disease. Journal of Neurochemistry, 112(4), 1045-1053.
Alzheimer, A. (1907). Uber eine eigenartige Erkrankung der Hirnrinde.
Allgemeine Zeitschrife Psychiatrie, 64, 146-148.
Alzheimer's Disease International. (2009). World Alzheimer Report : The Global Prevalence of Dementia.
Alzheimer's Disease International. (2015). World Alzheimer Report : The Global Impact of Dementia.
AOAC. (1990) Official methods of analysis. 14.091, 14.103, 14.093, 14.111 and
14.108, 15th Ed. Association of official analytical chemist, Washington,
D.C. USA.
Babusikova, E., Evinova, A., Hatok, J., Dobrota, D., & Jurecekova, J. (2013). Oxidative changes and possible effects of polymorphism of antioxidant enzymes in neurodegenerative disease. Neurodegenerative Diseases, Dr. Uday Kishore (Ed.), ISBN, 978-953.
Bennett, B. D., Babu-Khan, S., Loeloff, R., Louis, J. C., Curran, E., Citron, M., & Vassar, R. (2000). Expression analysis of BACE2 in brain and peripheral tissues. Journal of Biological Chemistry, 275(27), 20647-20651.
Bighelli, A., Muselli, A., Casanova, J., Tam, N. T., Van Anh, V., & Bessière, J. M. (2005). Chemical variability of Litsea cubeba leaf oil from Vietnam.
Journal of Essential Oil Research, 17(1), 86-88.
Bowen, D. M., Smith, C. B., White, P., and Davison, A. N. (1976) Neurotran smitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain. 99: 459-496.
Brandeis, R., Brandys, Y., & Yehuda, S. (1989). The use of the Morris water maze in the study of memory and learning. International Journal of Neuroscience, 48(1-2), 29-69.
Butterfield, D. A., & Stadtman, E. R. (1997). Protein oxidation processes in aging brain. Advances in Cell Aging and Gerontology, 2, 161-191.
Butterfield, D. A., Drake, J., Pocernich, C., & Castegna, A. (2001). Evidence of oxidative damage in Alzheimer's disease brain: central role for amyloid β-peptide. Trends in Molecular Medicine, 7(12), 548-554.
Butterfield, D. A., & Lauderback, C. M. (2002). Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: potential causes and consequences involving amyloid β-peptide-associated free radical oxidative stress 1, 2. Free Radical Biology and Medicine, 32(11), 1050-1060.
Chang, Y. T., & Chu, F. H. (2011). Molecular cloning and characterization of monoterpene synthases from Litsea cubeba (Lour.) Persoon. Tree Genetics & Genomes, 7(4), 835-844.
Chaouki, W., Leger, D. Y., Liagre, B., Beneytout, J. L., & Hmamouchi, M. (2009). Citral inhibits cell proliferation and induces apoptosis and cell cycle arrest in MCF‐7 cells. Fundamental & Clinical Pharmacology, 23(5), 549-556.
Chasseigneaux, S., & Allinquant, B. (2012). Functions of Aβ, sAPPα and sAPPβ: similarities and differences. Journal of Neurochemistry, 120(s1), 99-108.
Chen, C. J., Tseng, Y. H., Chu, F. H., Wen, T. Y., Cheng, W. W., Chen, Y. T., Tsao, N. W., & Wang, S. Y. (2012). Neuropharmacological activities of fruit essential oil from Litsea cubeba Persoon. Journal of Wood Science, 6(58), 538-543.
Citron, M., Oltersdorf, T., Haass, C., McConlogue, L., Hung, A. Y., Seubert, P., Viqo-Pelfrey C., Lieberburg I., & Selkoe, D. J. (1992). Mutation of the beta-amyloid precursor protein in familial Alzheimer's disease increases beta-protein production. Nature, 360(6405), 672.
Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Small, G. W., Rose, A. D., Haines, L., & Pericak-Vance, M. A. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science, 261(5123), 921-923.
Dawbarn, D., and Allen, S. J. (2008) Molecular and cellular neurobiology series: neurobiology of Alzheimer's disease. 3rd ed. New York. Oxford University Press.
Deacon, R. M., and Rawlins, J. N. (2006) T-maze alternation in the rodent. Nature Protocols. 1(1): 7-12.
Devanand, D. P., Mikhno, A., Pelton, G. H., Cuasay, K., Pradhaban, G., Dileep Kumar, J. S., Upton, N., Lai, R., Gunn, R.N., Libri, V., Van-Heertum, R., John Mann, J., Parsey, R. V., & Liu, X. (2010). Pittsburgh compound B (11C-PIB) and fluorodeoxyglucose (18 F-FDG) PET in patients with Alzheimer disease, mild cognitive impairment, and healthy controls.
Journal of Geriatric Psychiatry and Neurology, 23(3), 185-198.
Deng, Y. Q., Xu, G. G., Duan, P., Zhang, Q., and Wang, J. Z. (2005) Effects of melatonin on wortmannin-induced tau hyperphosphorylation. Acta Pharmacologica Sinica. 26(5): 519-526.
D’Hooge, R., & De Deyn, P. P. (2001). Applications of the Morris water maze in the study of learning and memory. Brain Research Reviews, 36(1), 60-90.
Dickerson, B. C., Goncharova, I., Sullivan, M. P., Forchetti, C., Wilson, R. S., Bennett, D. A., & Beckett, L. A. (2001). MRI-derived entorhinal and hippocampal atrophy in incipient and very mild Alzheimer’s disease. Neurobiology of Aging, 22(5), 747-754.
Duthey, B. (2013). Background paper 6.11: Alzheimer disease and other dementias. A Public Health Approach to Innovation, 1-74.
Egghe, L., & Leydesdorff, L. (2009). The relation between Pearson's correlation coefficient r and Salton's cosine measure. Journal of the Association for Information Science and Technology, 60(5), 1027-1036.
Esposito, E., & Cuzzocrea, S. (2010). Antiinflammatory activity of melatonin in central nervous system. Current Neuropharmacology, 8(3), 228-242.
Evans J.D. (1996) Straightforward Statistics for the Behavioral Sciences.Brooks/Cole Publishing; Pacific Grove, Calif.
Feng, Z., Qin, C., Chang, Y., & Zhang, J. T. (2006). Early melatonin supplementation alleviates oxidative stress in a transgenic mouse model of Alzheimer's disease. Free Radical Biology and Medicine, 40(1), 101-109.
Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189-198.
Fox, N. C., Warrington, E. K., Freeborough, P. A., Hartikainen, P., Kennedy, A. M., Stevens, J. M., & Rossor, M. N. (1996). Presymptomatic hippocampal atrophy in Alzheimer's disease. Brain, 119(6), 2001-2007.
Franklin, K. B. & Paxinos, G., (2008). The mouse brain in stereotaxic coordinates. Elsevier academic, London.
Furukawa, K., Barger, S. W., Blalock, E. M., & Mattson, M. P. (1996). Activation of Kpositive channels and suppression of neuronal activity by secreted beta-amyloid-precursor protein. Nature, 379(6560), 74.
Galano, A., Tan, D. X., & Reiter, R. J. (2011). Melatonin as a natural ally against oxidative stress: a physicochemical examination. Journal of Pineal Research, 51(1), 1-16.
Gowda, S., Desai, P., Hull, V., Math, A., Vernekar, S., & Kulkarni, S. (2009). A
review on liver function test.The Pan African Medical Journal, 3(17), 1-7
Hachinski, V. (1994). Vascular dementia: a radical redefinition. Dementia and Geriatric Cognitive Disorders, 5(3-4), 130-132.
Hardy, J., & Selkoe, D. J. (2002). The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science, 297(5580), 353-356.
Haass, C., & Selkoe, D. J. (2007). Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide. Nature reviews Molecular Cell Biology, 8(2), 101-112.
Hardeland R (2012) Melatonin in aging and disease—multiple consequences of
reduced secretion, options and limits of treatment. Aging and Disease,3 (2):194–225.
Hauptmann, S., Keil, U., Scherping, I., Bonert, A., Eckert, A., & Müller, W. E. (2006). Mitochondrial dysfunction in sporadic and genetic Alzheimer's disease. Experimental Gerontology, 41(7), 668-673.
Hirai, K., Aliev, G., Nunomura, A., Fujioka, H., Russell, R. L., Atwood, C. S., Johnson, A. B., Kress, Y., Vinters, H. V., Tabaton, M., Cash, A. D., Siedlak, S. L., Harris. P. L. R., Jones, P. K., Petersen, R. B., Perry, G., Smith, M. A., & Shimohama, S. (2001). Mitochondrial abnormalities in Alzheimer's disease. Journal of Neuroscience, 21(9), 3017-3023.
Hwang, J. K., Choi, E. M., & Lee, J. H. (2005). Antioxidant activity of Litsea cubeba. Fitoterapia, 76(7), 684-686.
Ho, C. L., Jie-Pinge, O., Liu, Y. C., Hung, C. P., Tsai, M. C., Liao, P. C., Wang, E. I., Chen, Y. L., & Su, Y. C. (2010). Compositions and in vitro anticancer activities of the leaf and fruit oils of Litsea cubeba from Taiwan. Natural Product Communications, 5(4), 617-620.
Hooper, C., Killick, R., & Lovestone, S. (2008). The GSK3 hypothesis of Alzheimer’s disease. Journal of Neurochemistry, 104(6), 1433-1439.
Hsieh, H. M., Wu, W. M., & Hu, M. L. (2009). Soy isoflavones attenuate oxidative stress and improve parameters related to aging and Alzheimer’s disease in C57BL/6J mice treated with D-galactose. Food and Chemical Toxicology, 47(3), 625-632.
Hynd, M. R., Scott, H. L., & Dodd, P. R. (2004). Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochemistry International, 45(5), 583-595.
Jhoo, J. H., Kim, H. C., Nabeshima, T., Yamada, K., Shin, E. J., Jhoo, W. K., Kim, W., Kang, K. S., Jo, S. A, & Woo, J. I. (2004). β-Amyloid (1–42)-induced learning and memory deficits in mice: involvement of oxidative burdens in the hippocampus and cerebral cortex. Behavioural Brain Research, 155(2), 185-196.
Kakio, A., Nishimoto, S. I., Yanagisawa, K., Kozutsumi, Y., & Matsuzaki, K. (2002). Interactions of amyloid β-protein with various gangliosides in raft-like membranes: importance of GM1 ganglioside-bound form as an endogenous seed for Alzheimer amyloid. Biochemistry, 41(23), 7385-7390.
Kamal, A., Stokin, G. B., Yang, Z., Xia, C. H., & Goldstein, L. S. (2000). Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I. Neuron, 28(2), 449-459.
Kandalepas, P., & Vassar, R. (2014). The normal and pathologic roles of the Alzheimer's β-secretase, BACE1. Current Alzheimer Research, 11(5), 441-449.
Keller, J. N., Mark, R. J., Bruce, A. J., Blanc, E., Rothstein, J. D., Uchida, K., Waeg, G., & Mattson, M. P. (1997). 4-Hydroxynonenal, an aldehydic product of membrane lipid peroxidation, impairs glutamate transport and mitochondrial function in synaptosomes. Neuroscience, 80(3), 685-696.
Klimova, B., & Kuca, K. (2016). Speech and language impairments in dementia. Journal of Applied Biomedicine, 14(2), 97-103.
LaFerla, F. M., Green, K. N., & Oddo, S. (2007). Intracellular amyloid-β in Alzheimer's disease. Nature Reviews Neuroscience, 8(7), 499-509.
Lee, C. L., Kuo, T. F., Wang, J. J., & Pan, T. M. (2007). Red mold rice ameliorates impairment of memory and learning ability in intracerebroventricular amyloid β‐infused rat by repressing amyloid β accumulation. Journal of Neuroscience Research, 85(14), 3171-3182.
Lee, Y. K., Choi, I. S., Ban, J. O., Lee, H. J., Lee, U. S., Han, S. B., Jung, J. K., Kim, Y. H., Kim, K. H., Oh, K. W., & Hong, J. T. (2011). 4-O-methylhonokiol attenuated β-amyloid-induced memory impairment through reduction of oxidative damages via inactivation of p38 MAP kinase. The Journal of Nnutritional Biochemistry, 22(5), 476-486.
Li, W. R., Shi, Q. S., Liang, Q., Xie, X. B., Huang, X. M., & Chen, Y. B. (2014).
Antibacterial activity and kinetics of Litsea cubeba oil on Escherichia coli. PLOS ONE, 9(11), e110983.
Lin, B., Zhang, H., Zhao, X. X., Rahman, K., Wang, Y., Ma, X. Q., Zheng, C. J., Zheng, Q. Y., Han, T., & Qin, L. P. (2013). Inhibitory effects of the root extract of Litsea cubeba (lour.) pers. on adjuvant arthritis in rats. Journal of Ethnopharmacology, 147(2), 327-334.
Liu, S. J., and Wang, J. Z. (2002) Alzheimer-like tau phosphorylation induced by wortmannin in vivo and its attenuation by melatonin. Acta Pharmacologica Sinica. 23(2): 183-187.
Liu, T. T., & Yang, T. S. (2012). Antimicrobial impact of the components of essential oil of Litsea cubeba from Taiwan and antimicrobial activity of the oil in food systems. International Journal of Food Microbiology, 156(1), 68-75.
López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The hallmarks of aging. Cell, 153(6), 1194-1217.
Lovell, M. A., Ehmann, W. D., Butler, S. M., & Markesbery, W. R. (1995).
Elevatedthiobarbituric acid-reactive substances and antioxidant enzyme activity in the brain in Alzheimer's disease. Neurology, 45(8), 1594-1601.
Luo, M., Jiang, L. K., & Zou, G. L. (2005). Acute and genetic toxicity of essential oil extracted from Litsea cubeba (Lour.) Pers. Journal of Food Protection®, 68(3), 581-588.
Lyras, L., Cairns, N. J., Jenner, A., Jenner, P., & Halliwell, B. (1997). An assessment of oxidative damage to proteins, lipids, and DNA in brain from patients with Alzheimer's disease. Journal of Neurochemistry, 68(5), 2061-2069.
Mahley, R. W., Huang, Y., & Rall, S. C. (1999). Pathogenesis of type III hyperlipoproteinemia (dysbetalipoproteinemia): questions, quandaries, and paradoxes. Journal of Lipid Research, 40(11), 1933-1949.
Mahley, R. W., Weisgraber, K. H., & Huang, Y. (2006). Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer’s disease. Proceedings of the National Academy of Sciences, 103(15), 5644-5651.
Marcinkiewicz, M., & Seidah, N. G. (2000). Coordinated expression of β‐amyloid precursor protein and the putative β‐Secretase BACE and α‐secretase ADAM10 in mouse and human brain. Journal of Neurochemistry, 75(5), 2133-2143.
Matsubara, E., Bryant‐Thomas, T., Pacheco Quinto, J., Henry, T. L., Poeggeler, B., Herbert, D., Smith, M. A., Perry, G., Abe, K., Leone, A., Grundke-lkbal, I., Wilson, G. L., Ghiso, J., Williams, C., Refolo, L. M., Pappolla, M. A., & Shoji, M. (2003). Melatonin increases survival and inhibits oxidative and amyloid pathology in a transgenic model of Alzheimer's disease. Journal of neurochemistry, 85(5), 1101-1108.
Mattson, M. P. (1997). Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiological reviews, 77(4), 1081-1132.
Mazanetz, M. P., & Fischer, P. M. (2007). Untangling tau hyperphosphorylation in drug design for neurodegenerative diseases. Nature Reviews Drug Discovery, 6(6), 464-479.
Mintun, M. A., Larossa, G. N., Sheline, Y. I., Dence, C. S., Lee, S. Y., Mach, R. H., Klunk, W. E., Mathis, C. A., DeKosky, S. T., & Morris, J. C. (2006). [11C] PIB in a nondemented population potential antecedent marker of Alzheimer disease. Neurology, 67(3), 446-452.
Morris, R. G. M. (1983). An attempt to dissociate “spatial mapping” and “working memory” theories of hippocampal function, 405-432
Morris, R. (1984). Developments of a water-maze procedure for studying spatial learning in the rat. Journal of Neuroscience Methods, 11(1), 47-60.
Müller, T., Meyer, H. E., Egensperger, R., & Marcus, K. (2008). The amyloid precursor protein intracellular domain (AICD) as modulator of gene expression, apoptosis, and cytoskeletal dynamics—relevance for Alzheimer's disease. Progress in Neurobiology, 85(4), 393-406.
Musso, C. G., Gregori, J. Á., Jauregui, J. R., & Núñez, J. F. M. (2012). Creatinine, urea,uric acid, water and electrolytes renal handling in the healthy oldest old. World Journal of Nephrology, 1(5), 123.
Olivares, D., K Deshpande, V., Shi, Y., K Lahiri, D., H Greig, N., T Rogers, J., & Huang, X. (2012). N-methyl D-aspartate (NMDA) receptor antagonists and memantine treatment for Alzheimer’s disease, vascular dementia and Parkinson’s disease. Current Alzheimer Research, 9(6), 746-758.
Parsons, C. G., Danysz, W., & Quack, G. (1999). Memantine is a clinically well
tolerated N-methyl-D-aspartate (NMDA) receptor antagonist—a review of preclinical data. Neuropharmacology, 38(6), 735-767.
Pohanka, M. (2011). Alzheimer's disease and related neurodegenerative disorders: implication and counteracting of melatonin. Journal of Applied Biomedicine, 9(4), 185-196.
Portelius, E., Mattsson, N., Andreasson, U., Blennow, K., & Zetterberg, H.
(2011). Novel AβIsoforms in Alzheimer's Disease-Their Role in Diagnosis
and Treatment. Current Pharmaceutical Design, 17(25), 2594-2602.
Pumnuan, J., Chandrapatya, A., & Insung, A. (2010). Acaricidal activities of plant essential oils from three plants on the mushroom mite, Luciaphorus perniciosus Rack (Acari:Pygmephoridae). Pakistan Journal of Zoology, 42(3), 247-252.
Priller, C., Bauer, T., Mitteregger, G., Krebs, B., Kretzschmar, H. A., & Herms, J. (2006). Synapse formation and function is modulated by the amyloid precursor protein. Journal of Neuroscience, 26(27), 7212-7221.
Querfurth, H. W. and Laferla, F. M. (2010) Alzheimer’s Disease. New England Journal of Medicine. 362: 329-344
Rader, D. J., & Hovingh, G. K. (2014). HDL and cardiovascular disease. The Lancet, 384(9943), 618-625.
Reddy, P. H., & Beal, M. F. (2008). Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer's disease. Trends in Molecular Medicine, 14(2), 45-53.
Reiter, R. J., Paredes, S. D., Manchester, L. C., & Tan, D. X. (2009). Reducing oxidative/nitrosative stress: a newly-discovered genre for melatonin. Critical Reviews in Biochemistry and Molecular Biology, 44(4), 175-200.
Ridker, P. M., Rifai, N., Rose, L., Buring, J. E., & Cook, N. R. (2002). Comparison ofC-reactive protein and low-density lipoprotein cholesterol levels in the predictionof first cardiovascular events. New England Journal of Medicine, 347(20),1557-1565.
Rosales-Corral, S., Acuna-Castroviejo, D., Tan, D. X., López-Armas, G., Cruz-Ramos, J., Munoz, R., Melnikov, V. G., Manchester, L. C., & Reiter, R. J. (2012). Accumulation of exogenous amyloid-beta peptide in hippocampal mitochondria causes their dysfunction: a protective role for melatonin. Oxidative Medicine and Cellular Longevity, 2012.
Sahathevan, R., Brodtmann, A., & Donnan, G. A. (2012). Dementia, stroke, and vascular risk factors; a review. International Journal of Stroke, 7(1), 61-73.
Sakono, M., & Zako, T. (2010). Amyloid oligomers: formation and toxicity of Aβ oligomers. The FEBS Journal, 277(6), 1348-1358.
Scarpini, E., Schelterns, P., & Feldman, H. (2003). Treatment of Alzheimer's disease; current status and new perspectives. The Lancet Neurology, 2(9), 539-547.
Small, D. H., & Cappai, R. (2006). Alois Alzheimer and Alzheimer's disease: a centennial perspective. Journal of Neurochemistry, 99(3), 708-710.
Seo, S. M., Kim, J., Lee, S. G., Shin, C. H., Shin, S. C., & Park, I. K. (2009). Fumigant antitermitic activity of plant essential oils and components from ajowan (Trachyspermum ammi), allspice (Pimenta dioica), caraway (Carum carvi), dill (Anethum graveolens), geranium (Pelargonium graveolens), and litsea (Litsea cubeba) oils against Japanese termite (Reticulitermes speratus Kolbe). Journal of Agricultural and Food Chemistry, 57(15), 6596-6602.
Seal, S., Chatterjee, P., Bhattacharya, S., Pal, D., Dasgupta, S., Kundu, R., Mukherjee, S., Bhattacharya, S., Bhuyan, M., Bhattacharya, P. R., Barua, N. C., Baruah, P. K., Rao, P. K., Bhattacharya, S., & Baishya, G. (2012). Vapor of volatile oils from Litsea cubeba seed induces apoptosis and causes cell cycle arrest in lung cancer cells. PLOS ONE, 7(10),e47014.
Sosa-Ortiz, A. L., Acosta-Castillo, I., & Prince, M. J. (2012). Epidemiology of
dementias and Alzheimer’s disease. Archives of Medical Research, 43(8),
600-608.
Sperling, R.A., Aisen, P.S., Beckett, L.A., Bennett, D.A., Craft, S., Fagan, A.M., Iwatsubo, T., Jack, C.R., Kaye, J., Montine, T.J., Park, D.C., Reiman, E.M., Rowe, C.C., Siemers, E., Stern, Y., Yaffe, K., Carrillo, M.C., Thies, B., Morrison-Bogorad, M., Wagster, M.V., Phelps, C.H., (2011). Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's Dement. 7, 280–292.
Suzuki, N., Cheung, T. T., Cai, X. D., Odaka, A., Otvos, L. Jr., Eckman, C., Golde, T. E., and Younkin, S. G.(1994) An increased percentage of long amyloid beta protein secreted by familial amyloid beta protein precursor (beta APP717) mutants. Science. 264: 1336-1340.
Sjögren, M., & Blennow, K. (2005). The link between cholesterol and Alzheimer's disease. The World Journal of Biological Psychiatry, 6(2),
85-97.
Tsukuda, K., Mogi, M., Iwanami, J., Min, L. J., Sakata, A., Jing, F., Iwai, M., &
Horiuchi, M. (2009). Cognitive deficit in Amyloid-β–injected mice was improved by pretreatment with a low dose of telmisartan partly because of peroxisome proliferator-activated receptor-γ activation. Hypertension, 54(4), 782-787.
Tubtim, S., & Wasiksiri, A. (2007). 28-Day repeated dose oral toxicity study of Litsea cubeba essential oil in Sprague-Dawley rats. Thai Journal of Pharmaceutical Sciences. Sci, 31, 74-82.
Thinakaran, G., & Koo, E. H. (2008). Amyloid precursor protein trafficking, processing, and function. Journal of Biological Chemistry, 283(44), 29615-29619.
Vassar, R., Bennett, B. D., Babu-Khan, S., Kahn, S., Mendiaz, E. A., Denis, P.,
Teplow, D. B., Ross, S., Amarante, P., Loeloff, R., Fisher, S., Fuller, J., Edenson, S., Lile, J., Jarpsonski, M. A., Biere, A. L., Curran, E., Burgess, T., Louis, J. C., Collins, F., Treanor, J., Rogers, G., Citron, M., & Luo, Y. (1999). β-Secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science, 286(5440), 735-741.
Vassar, R., Kovacs, D. M., Yan, R., & Wong, P. C. (2009). The β-secretase enzyme BACE in health and Alzheimer's disease: regulation, cell biology, function, and therapeutic potential. Journal of Neuroscience, 29(41), 12787-12794.
Wang, Y., Jiang, Z.T., Li, R. (2009). Complexation and molecular microcapsules of Litsea cubeba essential oil with β-cyclodextrin and its derivatives. European Research and Technology 228, 865–873
Wang, H., & Liu, Y. (2010). Chemical composition and antibacterial activity of
essential oils from different parts of Litsea cubeba. Chemistry & Biodiversity, 7(1), 229-235.
Wang, X., Wang, W., Li, L., Perry, G., Lee, H. G., & Zhu, X. (2014). Oxidative stress and mitochondrial dysfunction in Alzheimer's disease. Biochimicaet Biophysica Acta (BBA)-Molecular Basis of Disease, 1842(8), 1240-1247.
Walsh, D. M., Klyubin, I., Fadeeva, J. V., Cullen, W. K., Anwyl, R., Wolfe, M.
S., Rowan, M. J., & Selkoe, D. J. (2002). Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature, 416(6880), 535-539.
Walsh, D. M., Klyubin, I., Fadeeva, J. V., Rowan, M. J., & Selkoe, D. J. (2002).
Amyloid-β oligomers: their production, toxicity and therapeutic inhibition. Biochemical Society Transactions,30 (4), 552-557.
Weisgraber, K. H. (1994). Apolipoprotein E: structure-function relationships.
Advances in Protein Chemistry, 45, 249-302.
Yang, Y., Jiang, J., Qimei, L., Yan, X., Zhao, J., Yuan, H., Qin, Z., & Wang, M. (2010). The fungicidal terpenoids and essential oil from Litsea cubeba in Tibet. Molecules, 15(10), 7075-7082.
Yang, N. C., Lin, H. C., Wu, J. H., Ou, H. C., Chai, Y. C., Tseng, C. Y., Liao, J. W., & Song, T. Y. (2012). Ergothioneine protects against neuronal injury induced by β-amyloid in mice. Food and Chemical Toxicology, 50(11), 3902-3911
Yang, K., Wang, C. F., You, C. X., Geng, Z. F., Sun, R. Q., Guo, S. S., Du, S. S.,
Liu, Z. L., & Deng, Z.W. (2014). Bioactivity of essential oil of Litsea cubeba from China and its main compounds against two stored product insects. Journal of Asia-Pacific Entomology, 17(3), 459-466.
Zhang, W., Hu, J. F., Lv, W. W., Zhao, Q. C., & Shi, G. B. (2012). Antibacterial,
antifungal and cytotoxic isoquinoline alkaloids from Litsea cubeba. Molecules, 17(11), 12950-12960.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊