跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 10:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施韋慈
研究生(外文):Wei-Tzu Shih
論文名稱:大豆豆渣、豆漿泡沫之機能成分分析、其複合錠劑製備及釋放評估
論文名稱(外文):Study on the functional component contents of soybean fiber (okara) as well as the preparation and releasing evaluation of complex okara tablets
指導教授:江伯源江伯源引用關係
口試委員:蘇正德張永和黃健政黃書政
口試日期:2017-06-28
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品暨應用生物科技學系所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:208
中文關鍵詞:大豆豆渣泡沫水解液複合錠劑幾丁聚醣&海藻酸鈉複合間質錠釋放評估
外文關鍵詞:okarafoam hydrolysateextended releasechitosan–sodium alginate matrix tabletsreleasing evaluation
相關次數:
  • 被引用被引用:6
  • 點閱點閱:681
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
大豆豆渣和豆漿泡沫為大豆加工常見之副產物,大豆豆渣含高膳食纖維、蛋白質等營養,泡沫組成類似豆漿。近年保健食品產量增加,錠劑為主要劑型之一,其中配方設計修飾錠劑崩散和指標成分釋放情形為研究主題之一。本實驗欲以大豆豆渣和豆漿泡沫水解液應用在錠劑,且利用海藻酸鈉和幾丁聚醣修飾錠劑釋放特性製備纖維補充品。實驗結果如下:豆渣粗纖維含量扣除水分高達49.41%,豆渣異黃酮含量153.56μg / g,泡沫總皂苷含量33.12 mg/ g dry basis,泡沫水解液隨著水解時間增加總多酚和DPPH清除能力上升,由電泳分子量組成結果選擇12小時水解液,並以1.3%海藻酸鈉液模擬泡沫水解液,並添加1%紅色色素液作為指標物。在大豆纖維&紅色色素液複合錠劑結果可得知:豆渣、海藻酸鈉和幾丁聚醣會降低錠劑緻密度和硬度,海藻酸鈉和幾丁聚醣可延長錠劑釋放,15%豆渣混合海藻酸鈉與幾丁聚醣錠劑(15%CR)可延緩釋放達12小時,累積釋放比率為60.28%、殘存質量比為33.71%、膨潤比率為546.41%,符合零級動力學,具延長釋放效果。大豆纖維&泡沫水解液複合錠硬度、緻密度較差,豆漿泡沫水解液混合海藻酸鈉與幾丁聚醣錠劑(CF)組別較豆漿泡沫水解液混合海藻酸鈉錠劑(AF)組別易崩散,可能為泡沫水解液組成較複雜影響錠劑緻密度,水解液pH值為弱酸性,促使幾丁聚醣崩散加劇,以15%AF有較佳延長釋放結果。錠劑異黃酮、總多酚、DPPH清除能力和總胺基酸含量,隨大豆豆渣含量減少而減少。本實驗可得大豆纖維複合錠劑配方模組,透過海藻酸鈉和幾丁聚醣修飾並探討賦形劑對於錠劑之物性、釋放特性與釋放動力學影響,未來可用於設計不同釋放時間之錠劑配方,希盼本實驗結果可為錠劑開發、大豆豆渣及豆漿泡沫相關產品之參考,並使大豆豆渣及泡沫有更多元化應用發展。
摘要 I
Abstract II
目次 III
圖表索引 IX
表次 IX
圖次 XI
壹、引言 1
貳、文獻回顧 3
一、大豆( Soybean )之介紹 3
(一)大豆之簡介 3
(二)大豆主要產地及產量 3
(三)大豆之組成分 4
二、大豆之機能成分 8
(一)大豆異黃酮 8
(二)大豆胜肽 10
(1)抗氧化 10
(2)抗肥胖 10
(3)抗癌 11
(4)降膽固醇 11
(5)抗高血壓 11
(6)免疫調節性 11
(三)大豆固醇( Soy sterols ) 12
(四)卵磷脂( Lecithin ) 12
(五)植酸(Phytic acid) 14
(六)大豆皂苷( Saponins) 15
三、豆渣介紹 18
(一)豆渣簡介 18
(二)豆渣產量 18
(三)豆渣目前用途 18
(四)豆渣的營養成分 19
四、大豆豆漿泡沫介紹 24
(一)豆漿泡沫由來 24
(二)水解液之機能功效 24
(1)水解方法 24
(2)機能功效 25
五、錠劑介紹 26
(一)保健食品簡介與市場概況 26
(二)錠劑簡介 26
(三)錠劑之製備 32
(1)直接壓錠法( Direct compression ) 32
(2)溼式造粒法( Wet granulation ) 32
(3)乾式造粒法( Dry granulation ) 33
(四)控制釋放(Controlled drug delivery, CDD) 37
(五)海藻酸鈉&幾丁聚醣錠 40
(1)海藻酸鈉間質型錠劑( Alginate based matrix tablets ) 40
(2)聚電解質複合物( Polyelectrolyte complexes ) 41
(3)幾丁聚醣&海藻酸鈉複合間質錠( Chitosan–sodium alginate matrix tablets ) 42
參、實驗目的 45
肆、實驗架構 46
伍、材料與方法 47
一、實驗材料 47
(一)主原料 47
(1)大豆( Soybean ) 47
(2)豆渣( Okara ) 47
(3)豆漿泡沫( Foam ) 47
(4)紅色色素6號( New coccin ) 47
(5)錠劑賦形劑 47
(二)實驗藥品 48
(1)標準品 48
(2)鳳梨酵素KC-102 (Bromelain) 48
二、實驗方法 48
(一)基本成分分析 48
(1)水分( Moisture ) 48
(2)灰分( Ash ) 49
(3)粗脂肪 ( Crude fat ) 49
(4)粗蛋白質 ( Crude protein ) 49
(5)粗纖維( Crude fiber ) 50
(6)無氮萃取物 (Nitrogen free extract, NFE ) 50
(二)機能成分分析 51
(1)大豆異黃酮 51
(2)總多酚( Total polyphenol ) 52
(3) DPPH清除自由基能力 ( DPPH scavenging activity ) 52
(4)總皂苷 53
(三)豆漿泡沫水解液之製備 53
(1)酵素液之製備 53
(2)豆漿泡沫水解 53
(3)胺基態氮含量( Amino nitrogen ) 53
(4)水解率測定( Degree of hydrolysis, DH ) 54
(5)胺基酸組成 54
(6)聚丙醯胺膠體電泳(sodium dodecyl sulfate polyacrylamide gel electrophoresis, SDS-PAGE) 54
(四)大豆纖維&紅色色素液複合錠 57
(五)大豆纖維&豆漿泡沫水解液複合錠 57
(六)錠劑物性因子試驗 60
(1)重量差異度試驗(Variance of tablet weight ) 60
(2)直徑厚度( Diameter & Thickness ) 60
(3)硬度( Hardness ) 60
(4)脆碎度( Friability ) 60
(5)崩解時間(Disintegrating time ) 61
(6)色澤( Color ) 61
(7) 示差熱掃描分析儀( Differential scanning calorimetry, DSC ) 61
(8)掃描式電子顯微鏡( Scanning electron microscope, SEM ) 61
(9)傅立葉轉換紅外線光譜分析( FT-IR ) 62
(10)X光繞射分析( X-ray diffraction analysis, XRD ) 62
(11)水活性( Water activity ) 62
(12)粉體假密度( Bulk density ) 62
(13)粉體振實密度( Tapped density ) 63
(14)粉體流動性 63
(七)錠劑體外模擬釋放試驗 65
(1)模擬胃腸液之配製 65
(2)模擬胃腸液連續釋放試驗 65
(3)侵蝕膨潤試驗 66
(七)統計分析 66
陸、結果與討論 67
第一章「大豆豆渣、豆漿泡沫水解液製備及其理化性質評估」 67
(一)基本成分分析 68
(二)機能成分分析 71
(1)異黃酮、總皂苷、總多酚含量和DPPH能力 71
(2)胺基酸含量 76
(三)豆漿泡沫水解液 79
第二章「大豆纖維&紅色色素液複合錠研發及其構型建立」 83
(一)大豆纖維&紅色色素液複合錠之物理特性之評估 84
(1)錠劑配方粉末之微細構造 84
(2)配方錠劑之剖面微細構造 87
(3)錠劑之外觀和大小 90
(4)色澤比較 95
(5)配方粉末流動性 98
(5)錠劑之硬度、脆碎度和崩解時間 101
(6)熱性質分析比較 104
(7)FTIR分析比較 110
(8)XRD分析比較 115
(二)大豆纖維&紅色色素液機能錠於模擬胃腸液之釋放特性 119
(1)外觀 119
(2)微細構造 121
(3)錠劑之侵蝕、膨潤性 124
(4)紅色色素釋放量 128
(5)錠劑釋放動力學評估 132
(6)FTIR、XRD分析比較 138
第三章「大豆纖維&豆漿泡沫水解液複合錠釋放模式評估」 142
(一)大豆纖維&豆漿泡沫水解液複合錠之物理特性之評估 143
(1)錠劑外觀、微細構造探討 143
(2)錠劑之重量、大小和色澤評估 148
(3)錠劑之流動性 153
(4)錠劑之硬度、脆碎度、崩解時間和水活性 155
(5)錠劑熱性質、FTIR和XRD分析 158
(6)錠劑大豆異黃酮、總多酚、DPPH抗氧化和總胺基酸含量 165
(二)大豆纖維&豆漿泡沫水解液機能錠於模擬胃腸液之釋放特性 169
(1)外觀、微細構造 169
(2)侵蝕膨潤、釋放量 174
(3)釋放動力學評估 180
柒、結論 186
捌、參考文獻 188
中華穀類食品工業研究所。2011。2011年國內保健食品產值暨產業概況分析。
中華穀類食品工業研究所。2014。2014年國內保健食品產值暨產業概況分析(精要版)。
王昌蓉。2003。黑眼豆乳清粉末之起泡特性及其理化性質。國立海洋大學食品科學系碩士論文。台灣基隆。
台灣產業服務基金會。1993。產業永續發展輔導措施彙編。台灣台北。
江伯源、張心怡、陳鴻洲、張正錩。2003。黃豆製品加工技術面面觀(一)。農業世界雜誌。242:88-96。
林山陽。2003。藥品生體利用率與臨床療效。後基因體時代之生物技術第十三章。pp.191-203。台灣台北。
林宏昇。2011。以模式系統評估桂枝凝膠造粒技術。國立中興大學食品暨應用生物科技學系碩士論文。台灣台中。
林宜璇。2008。大豆之isoflavone conjugates 及其相關水解酵素之研究。國立台灣大學生物資源暨農學院農業化學所碩士論文。
林麗娟。1994。X 光繞射原理及其應用. X 光材料分析技術與應用專題。
侯祥川。1980。黄豆一人類的重要食品。食品工業科技。vol.1,p 35-37。
侯曉暉、劉白玲。2000。藥物控制釋放用天然多糖載體的製備技術研究進展。中國科學院上海冶金研究所,材料物理與化學博士論文。
洪筱鈞、黃銘賢。2007。以溶劑法提取並分離大豆異黃酮之研究。第54屆化學工程研討會。
姬盈璋。2004。大豆異黃酮代謝動力學及與西藥之交互作用。中國醫藥大學藥物化學研究所碩士論文。
殷儷容、江善宗。2010。機能性胜肽乳酸菌發酵產品之開發。農業生技產業季刊。Vol 23 22-28。
高山幸英. (1991). 日本粉体工業技術協会編,“造粒г⑦ЭйЧヱ”. 飼料工業ズれんペ造粒」, レみу社, 606.
高毓茹。2009。熱和酵素處理對市售大豆蛋白泡沫與其他功能特性分析。實踐大學食品營養與保健生技研究所碩士論文。台灣台北。
張振山、葉素萍、李泉、王玉民。2004。豆渣的處理與加工利用。食品科學,25期10卷。400-405。
曹巧巧、申丽静、陶昆、施昕磊、张俐勤、张建群。2016。响应面法优化豆渣中抗氧化活性物质的提取工艺。轻工科技,(9), 3-5。
曹琼?。2006。泡沫與消泡劑。化工之友第六期。21-22。
許明照。1988。錠劑處方探討與研究。藥學雜誌。14(2): p47-118。
郭孟鎧。2002。Oxatomide錠劑之配方設計及研究。中國醫藥大學藥物化學研究所碩士論文。台灣台中。
郭詠梅。2014。發芽稻穀成分分析及其葉綠素微膠囊技術開發之研究。國立中興大學食品暨應用生物科技學系碩士論文。台灣台中。
陳介武。1999。胜肽與您的健康。美國黃豆出口協會。
陳俞伶。2005。發酵豆乳中活性胜肽之生產。國立海洋大學食品科學系碩士論文。台灣基隆。
黄晓东、王璐、李绍中、高新義、朱麟。2006。豆渣提取抗氧化物稳定性的研究。中国酿造, 25(4), 42-43。
黄晓东、陈玲、胡华俊。2004。豆渣提取物抗氧化性能的研究. 食品工业科技。 25(3), 109-110。
彭詩純。2003。鯖魚肉酵素水解物之游離胺基酸及胜肽與抗氧化性。國立海洋大學食品科學系碩士論文。台灣基隆。
黃玉鈴。2015。綠茶粉及綠茶萃取物之多顆粒緩釋錠劑研發及其物性評估。國立中興大學食品暨應用生物科技學系碩士論文。台灣台中。
黃芬民。2002。認識藥丸。高醫醫訊月刊。第二十二卷第三期。
董國強。1998。豆製品生產中產生泡沫的原因與消除。中國調味品第一期。23-24。
廖萱芹。2000。家禽機械去骨肉之酵素水解物的製作及其特性之研究。國立中興大學畜產學系碩士論文。台灣台中。
劉正雄。2016。Ansel’s 藥物劑型與遞藥系統(第十版)。台灣台北。
蔡立勤。2009。利用黃豆渣製備納豆激酶之研究。國立台灣大學農業化學系碩士論文。台灣台北。
蔡卓、程龍軍、江彩英、趙靜。2008。大豆卵磷脂的研究現狀。化工技術與開發。第三十七卷第九期。
蔡昀靜、蔡偉皇。2016。機能性食品發展國際研討會紀實。農業生技產業季刊。47:58-64。
鄭信民, & 林麗娟. (2002). X 光繞射應用簡介. 工業材料雜誌 (181), 頁, 100-108.
顧倖華。2014。 含豆渣發酵豆乳之微晶球粒子製備及其釋放性評估。國立中興大學食品暨應用生物科技學系碩士論文。台灣台中。
Aburahma, M. H., & Mahmoud, A. A. (2011). Biodegradable ocular inserts for sustained delivery of brimonidine tartarate: preparation and in vitro/in vivo evaluation. Aaps Pharmscitech, 12(4), 1335-1347.
Adler-Nissen, J. (1986). Enzymic hydrolysis of food proteins. Elsevier Applied Science Publishers.
Alvarez, M. C., Cuitino, A. M., Roddy, M. J., & Lordi, N. G. (1998). Comparison of the microstructure and mechanical behavior of visco-plastic and visco-elastic solids during compaction. Pharm Sci S, 1, 179.
Alvarez, M.C., Cuitino A.M.,. Roddy M.J. & Lordi N.G, (1998) Comparison of the microstructure and mechanical behavior of visco-plastic and visco-elastic solids during compaction, Pharmaceutical Sciences, 1S 179.
Al-Zoubi, N. M., AlKhatib, H. S., & Obeidat, W. M. (2011). Evaluation of hydrophilic matrix tablets based on Carbopol® 971P and low-viscosity sodium alginate for pH-independent controlled drug release. Drug development and industrial pharmacy, 37(7), 798-808.
Arafat, A., Samad, S. A., Masum, S. M., & Moniruzzaman, M. (2015). Preparation and Characterization of Chitosan from Shrimp shell waste. International Journal of Scientific & Engineering Research, 6(5).
Barbosa, M. A., Pêgo, A. P., & Amaral, I. F. (2011). 2.213—Chitosan. Comprehensive Biomaterials, 221-237.
Bastos, M. D. O., Friedrich, R. B., & Beck, R. C. (2008). Effects of filler-binders and lubricants on physicochemical properties of tablets obtained by direct compression: a 22 factorial design. Lat Am J Pharm, 27, 578-583.
Ben, O. (2005). Lunasin: a cancer-preventive soy peptide. Nutrition reviews, 63(1), 16-21.
Berger, J., Reist, M., Mayer, J. M., Felt, O., & Gurny, R. (2004). Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics, 57(1), 35-52.
Berger, J., Reist, M., Mayer, J. M., Felt, O., Peppas, N. A., & Gurny, R. (2004). Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics, 57(1), 19-34.
Blanes, P. S., Bordoni, M. E., González, J. C., García, S. I., Atria, A. M., Sala, L. F., & Bellú, S. E. (2016). Application of soy hull biomass in removal of Cr (VI) from contaminated waters. Kinetic, thermodynamic and continuous sorption studies. Journal of Environmental Chemical Engineering, 4(1), 516-526.
Bowles, S., & Demiate, I. M. (2006). Caracterização físico-química de okara e aplicação em pães do tipo francês. Ciência e Tecnologia de Alimentos, 26(3), 652-659.
Cabrera-Orozco, A., Jiménez-Martínez, C., & Dávila-Ortiz, G. (2013). Soybean: Non-nutritional factors and their biological functionality. INTECH Open Access Publisher.
Capriotti, A. L., Caruso, G., Cavaliere, C., Samperi, R., Ventura, S., Chiozzi, R. Z., & Laganà, A. (2015). Identification of potential bioactive peptides generated by simulated gastrointestinal digestion of soybean seeds and soy milk proteins. Journal of Food Composition and Analysis, 44, 205-213.
Ching, A. L., Liew, C. V., Chan, L. W., & Heng, P. W. S. (2008). Modifying matrix micro-environmental pH to achieve sustained drug release from highly laminating alginate matrices. european journal of pharmaceutical sciences, 33(4), 361-370.
Chiou, D., & Langrish, T. A. G. (2007). Development and characterisation of novel nutraceuticals with spray drying technology. Journal of Food Engineering, 82(1), 84-91.
Daemi, H., & Barikani, M. (2012). Synthesis and characterization of calcium alginate nanoparticles, sodium homopolymannuronate salt and its calcium nanoparticles. Scientia iranica, 19(6), 2023-2028.
Dash, S., Murthy, P. N., Nath, L., & Chowdhury, P. (2010). Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm, 67(3), 217-23.
de Castro Spadari, C., Lopes, L. B., & Ishida, K. (2017). Potential Use of Alginate-Based Carriers As Antifungal Delivery System. Frontiers in microbiology, 8.
de Lima, F. S., Kurozawa, L. E., & Ida, E. I. (2014). The effects of soybean soaking on grain properties and isoflavones loss. LWT-Food Science and Technology, 59(2), 1274-1282.
de Mejia, E. (2005). Potential of Bioactive Peptides in Prevention of Chronic Disease. The Soy Connection for Health Professionals Health & Nutrition, 13(1).
Delaney, S. P., Nethercott, M. J., Mays, C. J., Winquist, N. T., Arthur, D., Calahan, J. L., ... & Munson, E. J. (2017). Characterization of Synthesized and Commercial Forms of Magnesium Stearate Using Differential Scanning Calorimetry, Thermogravimetric Analysis, Powder X-Ray Diffraction, and Solid-State NMR Spectroscopy. Journal of Pharmaceutical Sciences, 106(1), 338-347.
Ding, J., Na, L., & Mao, S. (2012). Chitosan and its derivatives as the carrier for intranasal drug delivery. Asian J Pharm Sci, 7(6), 349-61.
Eisen, B., Ungar, Y., & Shimoni, E. (2003). Stability of isoflavones in soy milk stored at elevated and ambient temperatures. Journal of agricultural and food chemistry, 51(8), 2212-2215.
El-Hafian, E. A., Elgannoudi, E. S., Mainal, A., & Yahaya, A. H. B. (2010). Characterization of chitosan in acetic acid: Rheological and thermal studies. Turkish Journal of Chemistry, 34(1), 47-56.
Elnaggar, Y. S. R., El-Massik, M. A., Abdallah, O. Y., & Ebian, A. E. R. (2010). Maltodextrin: a novel excipient used in sugar-based orally disintegrating tablets and phase transition process. Aaps Pharmscitech, 11(2), 645-651.
Fei, L., Zhenkun, C., Yang, L., & Bo, L. (2013). The Effect of okara on the qualities of noodle and steamed bread. Advanced J Food Scie Technol, 5(7), 960-968.
Fenwick, D. E., & Oakenfull, D. (1983). Saponin content of food plants and some prepared foods. Journal of the Science of Food and Agriculture, 34(2), 186-191.
Fu, S., Buckner, I. S., & Block, L. H. (2014). Inter-grade and inter-batch variability of sodium alginate used in alginate-based matrix tablets. AAPS PharmSciTech, 15(5), 1228-1237.
George, M., & Abraham, T. E. (2006). Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. Journal of controlled release, 114(1), 1-14.
Gnanasambandam, R., & Proctor, A. (1999). Preparation of soy hull pectin. Food Chemistry, 65(4), 461-467.
Góes-Favoni, S. P., Carrão-Panizzi, M. C., & Beleia, A. (2010). Changes of isoflavone in soybean cotyledons soaked in different volumes of water. Food chemistry, 119(4), 1605-1612.
Güçlü-Üstündağ, Ö., & Mazza, G. (2007). Saponins: properties, applications and processing. Critical reviews in food science and nutrition, 47(3), 231-258.
Gurfinkel, D. M., & Rao, A. V. (2002). Determination of saponins in legumes by direct densitometry. Journal of agricultural and food chemistry, 50(3), 426-430.
Gustafsson, C., Bonferoni, M. C., Caramella, C., Lennholm, H., & Nyström, C. (1999). Characterisation of particle properties and compaction behaviour of hydroxypropyl methylcellulose with different degrees of methoxy/hydroxypropyl substitution. European journal of pharmaceutical sciences, 9(2), 171-184.
Hamman, J. H. (2010). Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems. Marine drugs, 8(4), 1305-1322.
Hannan, P. A., Khan, J. A., Khan, A., & Safiullah, S. (2016). Oral dispersible system: A new approach in drug delivery system. Indian journal of pharmaceutical sciences, 78(1), 2.
Haytowitz, D. B., & Matthews, R. H. (1986). Composition of Foods: Legumes and Legume Products, Raw, Processed, Prepared (No. 8-16). US Department of Agriculture, Human Nutrition Information Service.
Hideyuki, A. O. K. I., Ichiyo, U. D. A., Tagami, K., Furuya, Y., & Fujimoto, K. (2003). The production of a new tempeh-like fermented soybean containing a high level of γ-aminobutyric acid by anaerobic incubation with Rhizopus. Bioscience, biotechnology, and biochemistry, 67(5), 1018-1023.
Hirose, A., & Miyashita, K. (1999). Inhibitory effect of proteins and their hydolysates on the oxidation of triacylglycerols containing docosahexaenoic acids in emulsion. Journal-Japanese Society of Food Science and Technology, 46(12), 799-805.
Hodsdon, A. C., Mitchell, J. R., Davies, M. C., & Melia, C. D. (1995). Structure and behaviour in hydrophilic matrix sustained release dosage forms: 3. The influence of pH on the sustained-release performance and internal gel structure of sodium alginate matrices. Journal of Controlled Release, 33(1), 143-152.
Holte, Ø., Onsyen, E., Myrvold, R., & Karlsen, J. (2003). Sustained release of water-soluble drug from directly compressed alginate tablets. European journal of pharmaceutical sciences, 20(4), 403-407.
Huguet, M. L., Neufeld, R. J., & Dellacherie, E. (1996). Calcium-alginate beads coated with polycationic polymers: comparison of chitosan and DEAE-dextran. Process Biochemistry, 31(4), 347-353.
Imam, S. H., Gordon, S. H., Mohamed, A., Harry-O'kuru, R., Chiou, B. S., Glenn, G. M., & Orts, W. J. (2006). Enzyme catalysis of insoluble cornstarch granules: Impact on surface morphology, properties and biodegradability. Polymer degradation and stability, 91(12), 2894-2900.
Jackson, C. J., Dini, J. P., Lavandier, C., Rupasinghe, H. P. V., Faulkner, H., Poysa, V., ... & DeGrandis, S. (2002). Effects of processing on the content and composition of isoflavones during manufacturing of soy beverage and tofu. Process Biochemistry, 37(10), 1117-1123.
Jahan, M. S., Saeed, A., He, Z., & Ni, Y. (2011). Jute as raw material for the preparation of microcrystalline cellulose. Cellulose, 18(2), 451-459.
Jose A. Gerde and Pamela J. White. 2008. Lipids. Soybeans - Chemistry, Production Processing, and Utilization. 193-228.
Juliano, P., & Barbosa-Cánovas, G. V. (2010). Food powders flowability characterization: theory, methods, and applications. Annual review of food science and technology, 1, 211-239.
Kalita, R. D., Nath, Y., Ochubiojo, M. E., & Buragohain, A. K. (2013). Extraction and characterization of microcrystalline cellulose from fodder grass; Setaria glauca (L) P. Beauv, and its potential as a drug delivery vehicle for isoniazid, a first line antituberculosis drug. Colloids and Surfaces B: Biointerfaces, 108, 85-89.
Kane, R., & Kuchekar, B. (2010). Preparation, physicochemical characterization, dissolution and formulation studies of telmisartan cyclodextrin inclusion complexes. Asian Journal of Pharmaceutics, 4(1), 52.
Karna, S., Chaturvedi, S., Agrawal, V., & Alim, M. (2015). Formulation approaches for sustained release dosage forms: a review. Asian J Pharm Clin Res, 8(5), 46-53.
Katan, M. B., Grundy, S. M., Jones, P., Law, M., Miettinen, T., Paoletti, R., & Participants, S. W. (2003). Efficacy and safety of plant stanols and sterols in the management of blood cholesterol levels. In Mayo Clinic Proceedings (Vol. 78, No. 8, pp. 965-978). Elsevier.
Keshk, S. M., & Haija, M. A. (2011). A new method for producing microcrystalline cellulose from Gluconacetobacter xylinus and kenaf. Carbohydrate polymers, 84(4), 1301-1305.
Khare, S. K., Jha, K., & Gandhi, A. P. (1995). Citric acid production from okara (soy-residue) by solid-state fermentation. Bioresource Technology, 54(3), 323-325.
Khlibsuwan, R., & Pongjanyakul, T. (2016). Chitosan-clay matrix tablets for sustained-release drug delivery: Effect of chitosan molecular weight and lubricant. Journal of Drug Delivery Science and Technology, 35, 303-313.
Khokhar, S., & Chauhan, B. M. (1986). Antinutritional factors in moth bean (Vigna aconitifolia): varietal differences and effects of methods of domestic processing and cooking. Journal of Food Science, 51(3), 591-594.
Kitagawa, I.; Taniyama, T.; Nagahama, Y.; Okubo, K.; Yamauchi, F.; Yoshikawa, M. (1988). Saponin and Sapogenol. XLII.: Structures of Acetyl-soyasaponins A1, A2, and A3, Astringent Partially Acetylated Bisdesmosides of Soyasapogenol A, from American Soybean, the Seeds of Glycine max MERRILL. Chemical and pharmaceutical bulletin, 36(8), 2819-2828.
Klevan, I. (2011). Compression Analysis of Pharmaceutical Powders: Assessment of Mechanical Properties and Tablet Manufacturability Prediction.
Kodera, T., & Nio, N. (2006). Identification of an Angiotensin I‐converting Enzyme Inhibitory Peptides from Protein Hydrolysates by a Soybean Protease and the Antihypertensive Effects of Hydrolysates in 4 Spontaneously Hypertensive Model Rats. Journal of food science, 71(3).
Kodera, T., & Nio, N. (2006). Identification of an Angiotensin I‐converting Enzyme Inhibitory Peptides from Protein Hydrolysates by a Soybean Protease and the Antihypertensive Effects of Hydrolysates in 4 Spontaneously Hypertensive Model Rats. Journal of food science, 71(3).
Koga, D., Chen, R., & Chen, H. C. (1998). Chitin enzymology - chitinase. Adv. Chitin Sci, 3, 16-23.
Konoshima, T., & Takasaki, M. (2000). Anti-tumor-promoting activities (cancer chemopreventive activities) of natural products. Studies in Natural Products Chemistry, 24, 215-267.
Kulig, D., Zimoch-Korzycka, A., Jarmoluk, A., & Marycz, K. (2016). Study on Alginate–Chitosan Complex Formed with Different Polymers Ratio. Polymers, 8(5), 167.
Kumar, K. S., Bhowmik, D., Chandira, C. M., & Tripathi, K. K. (2010). Innovations in sustained release drug delivery system and its market opportunities. Journal of Chemical and Pharmaceutical Research, 2(1), 349-360.
Kumar, K. S., Bhowmik, D., Chandira, C. M., & Tripathi, K. K. (2010). Innovations in sustained release drug delivery system and its market opportunities. Journal of Chemical and Pharmaceutical Research, 2(1), 349-360.
Lacerda, L., Parize, A. L., Fávere, V., Laranjeira, M. C. M., & Stulzer, H. K. (2014). Development and evaluation of pH-sensitive sodium alginate/chitosan microparticles containing the antituberculosis drug rifampicin. Materials Science and Engineering: C, 39, 161-167.
Lam, Y., Galvez, A., & de Lumen, B. O. (2003). Lunasin™ suppresses E1A-mediated transformation of mammalian cells but does not inhibit growth of immortalized and established cancer cell lines. Nutrition and cancer, 47(1), 88-94.
Lawrence A. J., Pamela J. W., Richard G., 2008, Soybeans Chemistry, Production, Processing, and Utilization.
Lee, I. A., Park, Y. J., Yeo, H. K., Han, M. J., & Kim, D. H. (2010). Soyasaponin I attenuates TNBS-induced colitis in mice by inhibiting NF-κB pathway. Journal of agricultural and food chemistry, 58(20), 10929-10934.
Lee, K. Y., & Mooney, D. J. (2012). Alginate: properties and biomedical applications. Progress in polymer science, 37(1), 106-126.
Lee, M. J., Seo, D. Y., Lee, H. E., Wang, I. C., Kim, W. S., Jeong, M. Y., & Choi, G. J. (2011). In line NIR quantification of film thickness on pharmaceutical pellets during a fluid bed coating process. International journal of pharmaceutics, 403(1), 66-72.
Li, B., Qiao, M., & Lu, F. (2012). Composition, nutrition, and utilization of okara (soybean residue). Food Reviews International, 28(3), 231-252.
Li, L., Li, J., Si, S., Wang, L., Shi, C., Sun, Y., ... & Mao, S. (2015). Effect of formulation variables on in vitro release of a water-soluble drug from chitosan–sodium alginate matrix tablets. asian journal of pharmaceutical sciences, 10(4), 314-321.
Li, L., Wang, L., Li, J., Jiang, S., Wang, Y., Zhang, X., Ding, J., Yu, T., & Mao, S. (2014). Insights into the mechanisms of chitosan–anionic polymers-based matrix tablets for extended drug release. International Journal of Pharmaceutics, 476(1-2): 253-265.
Li, L., Wang, L., Shao, Y., Ni, R., Zhang, T., & Mao, S. (2013). Drug release characteristics from chitosan–alginate matrix tablets based on the theory of self-assembled film. International Journal of Pharmaceutics, 450(1-2): 197-207.
Liew, C. V., Chan, L. W., Ching, A. L., & Heng, P. W. S. (2006). Evaluation of sodium alginate as drug release modifier in matrix tablets. International journal of pharmaceutics, 309(1), 25-37.
Lin, J., & Wang, C. (2004). Soybean saponins: chemistry, analysis, and potential of health effects. Soybeans as Functional Foods and Ingredients, 73-100.
Liu K. 2016. Soybean: Overview. In Encyclopedia of Food Grains (Second Edition), Academic Press, Oxford.
López-Córdoba, A., Matera, S., Deladino, L., Hoya, A., Navarro, A., & Martino, M. (2015). Compressed tablets based on mineral-functionalized starch and co-crystallized sucrose with natural antioxidants. Journal of Food Engineering, 146, 234-242.
Lovati, M. R., Manzoni, C., Corsini, A., Granata, A., Fumagalli, R., & Sirtori, C. R. (1996). 7S globulin from soybean is metabolized in human cell cultures by a specific uptake and degradation system. Journal of Nutrition, 126(11), 2831-2842.
Mahours, G. M., Shaaban, D. E. Z., Shazly, G. A., & Auda, S. H. (2017). The effect of binder concentration and dry mixing time on granules, tablet characteristics and content uniformity of low dose drug in high shear wet granulation. Journal of Drug Delivery Science and Technology, 39, 192-199.
Mandal, S., Basu, S. K., & Sa, B. (2009). Sustained release of a water-soluble drug from alginate matrix tablets prepared by wet granulation method. AAPS PharmSciTech, 10(4), 1348.
Mangolim, C. S., Moriwaki, C., Nogueira, A. C., Sato, F., Baesso, M. L., Neto, A. M., & Matioli, G. (2014). Curcumin–β-cyclodextrin inclusion complex: stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application. Food chemistry, 153, 361-370.
Manivannan, R. (2009). Oral disintegrating tablets: A future compaction. Drug Invention Today, 1(1), 61-65.
Mitra, A. K., Kwatra, D., & Vadlapudi, A. D. (2014). Drug delivery. Jones & Bartlett Publishers.
Mohamad Zen, N. I., Abd Gani, S. S., Shamsudin, R., & Fard Masoumi, H. R. (2015). The use of D-optimal mixture design in optimizing development of okara tablet formulation as a dietary supplement. The Scientific World Journal, 2015.
Mohamad Zen, N. I., Abd Gani, S. S., Shamsudin, R., & Fard Masoumi, H. R. (2015). The use of D-optimal mixture design in optimizing development of okara tablet formulation as a dietary supplement. The Scientific World Journal, 2015.
Moreau, R. A., Whitaker, B. D., & Hicks, K. B. (2002). Phytosterols, phytostanols, and their conjugates in foods: structural diversity, quantitative analysis, and health-promoting uses. Progress in lipid research, 41(6), 457-500.
Moreton, R. C., (2008). Pharmaceutical dosage forms: Tablets. Rational design and formulation. Vol. 2 of Pharmaceutical Dosage Forms: Tablets.
Muliterno, M. M., Rodrigues, D., de Lima, F. S., Ida, E. I., & Kurozawa, L. E. (2017). Conversion/degradation of isoflavones and color alterations during the drying of okara. LWT-Food Science and Technology, 75, 512-519.
Muzzarelli, R., Baldassarre, V., Conti, F., Ferrara, P., Biagini, G., Gazzanelli, G., & Vasi, V. (1988). Biological activity of chitosan: ultrastructural study. Biomaterials, 9(3), 247-252.
Nakashima, H., Okubo, K., Honda, Y., Tamura, T., Matsuda, S., & Yamamoto, N. (1989). Inhibitory effect of glycosides like saponin from soybean on the infectivity of HIV in vitro. Aids, 3(10), 655-658.
Nakashima, H., Okubo, K., Honda, Y., Tamura, T., Matsuda, S., & Yamamoto, N. (1989). Inhibitory effect of glycosides like saponin from soybean on the infectivity of HIV in vitro. Aids, 3(10), 655-658.
Nerurkar, J., Jun, H. W., Price, J. C., & Park, M. O. (2005). Controlled-release matrix tablets of ibuprofen using cellulose ethers and carrageenans: effect of formulation factors on dissolution rates. European Journal of Pharmaceutics and Biopharmaceutics, 61(1), 56-68.
Okubo, K., Iijima, M., Kobayashi, Y., Yoshikoshi, M., Uchida, T., & Kudou, S. (1992). Components responsible for the undesirable taste of soybean seeds. Bioscience, biotechnology, and biochemistry, 56(1), 99-103.
O'Toole, DK. (2016). Soybean Soymilk, Tofu, and Okara. Reference Module in Food Science. Elsevier.
Papadimitriou, E., Efentakis, M., & Choulis, N. H. (1992). Evaluation of maltodextrins as excipients for direct compression tablets and their influence on the rate of dissolution. International journal of pharmaceutics, 86(2-3), 131-136.
Patil Dipak, R., IngolePravin, G., Singh, K., & DalalDipak, S. (2012). FTIR, 1 H-NMR Spectral, Powder X-ray diffraction and DSC studies of β-cyclodextrin-para-chlorobenzonitrile Inclusion Complex. Res J Chem Sci, 2, 60-63.
Peleg, M. (1977). Flowability of food powders and methods for its evaluation—a review. Journal of Food Process Engineering, 1(4), 303-328.
Peñta‐Ramos, E. A., & Xiong, Y. L. (2002). Antioxidant activity of soy protein hydrolysates in a liposomal system. Journal of Food Science, 67(8), 2952-2956.
Picker, K. M. (1999). The use of carrageenan in mixture with microcrystalline cellulose and its functionality for making tablets. European journal of pharmaceutics and biopharmaceutics, 48(1), 27-36.
Prashanth, K. H., Kittur, F. S., & Tharanathan, R. N. (2002). Solid state structure of chitosan prepared under different N-deacetylating conditions. Carbohydrate Polymers, 50(1), 27-33.
Price, K. R., Johnson, I. T., Fenwick, G. R., & Malinow, M. R. (1987). The chemistry and biological significance of saponins in foods and feedingstuffs. Critical Reviews in Food Science & Nutrition, 26(1), 27-135.
Quintana, G., Gerbino, E., & Gómez-Zavaglia, A. (2017). Okara: A Nutritionally Valuable By-product Able to Stabilize Lactobacillus plantarum during Freeze-drying, Spray-drying, and Storage. Frontiers in Microbiology, 8.
Rana, A. S., & Hari Kumar, S. L. (2013). Manufacturing defects of tablets-a review. Journal of Drug Delivery and Therapeutics, 3(6), 200-206.
Rayo, L. M., e Carvalho, L. C., Sardá, F. A., Dacanal, G. C., Menezes, E. W., & Tadini, C. C. (2015). Production of instant green banana flour (Musa cavendischii, var. Nanicão) by a pulsed-fluidized bed agglomeration. LWT-Food Science and Technology, 63(1), 461-469.
Roberts, G. A. (1992). Structure of chitin and chitosan. In Chitin Chemistry (pp. 1-53). Macmillan Education UK.
Roik, N. V., & Belyakova, L. A. (2011). IR spectroscopy, X-ray diffraction and thermal analysis studies of solid “β-cyclodextrin—para-aminobenzoic acid” inclusion complex. Phys. Chem. Solid State, 12, 168-173.
Romano, N., Tavera-Quiroz, M. J., Bertola, N., Mobili, P., Pinotti, A., & Gómez-Zavaglia, A. (2014). Edible methylcellulose-based films containing fructo-oligosaccharides as vehicles for lactic acid bacteria. Food Research International, 64, 560-566.
Rupasinghe, H. V., Jackson, C. J. C., Poysa, V., Di Berardo, C., Bewley, J. D., & Jenkinson, J. (2003). Soyasapogenol A and B distribution in soybean (Glycine max L. Merr.) in relation to seed physiology, genetic variability, and growing location. Journal of agricultural and food chemistry, 51(20), 5888-5894.
Shao, Y., Li, L., Gu, X., Wang, L., & Mao, S. (2015). Evaluation of chitosan–anionic polymers based tablets for extended-release of highly water-soluble drugs. asian journal of pharmaceutical sciences, 10(1), 24-30.
Shepherd, R., Reader, S., & Falshaw, A. (1997). Chitosan functional properties. Glycoconjugate journal, 14(4), 535-542.
Shi, J., Arunasalam, K., Yeung, D., Kakuda, Y., Mittal, G., & Jiang, Y. (2004). Saponins from edible legumes: chemistry, processing, and health benefits. Journal of medicinal food, 7(1), 67-78.
Shlieout, G., Arnold, K., & Müller, G. (2002). Powder and mechanical properties of microcrystalline cellulose with different degrees of polymerization. AAPS PharmSciTech, 3(2), 45-54.
Soy 20/20, (2005). Okara: Overview of current utilisation. http://www.soy2020.ca/pdfs/overviewofokarautilisation.pdf Accessed 01.01.16.
Sriamornsak, P., Thirawong, N., & Korkerd, K. (2007). Swelling, erosion and release behavior of alginate-based matrix tablets. European Journal of Pharmaceutics and Biopharmaceutics, 66(3), 435-450.
Sriamornsak, P., Thirawong, N., & Korkerd, K. (2007). Swelling, erosion and release behavior of alginate-based matrix tablets. European Journal of Pharmaceutics and Biopharmaceutics, 66(3), 435-450.
Sritham, E., & Gunasekaran, S. (2017). FTIR spectroscopic evaluation of sucrose-maltodextrin-sodium citrate bioglass. Food Hydrocolloids, 70, 371-382.
Sun, J. X., Sun, X. F., Zhao, H., & Sun, R. C. (2004). Isolation and characterization of cellulose from sugarcane bagasse. Polymer Degradation and Stability, 84(2), 331-339.
Tapia, C. E. M. J. F. C., Costa, E., Moris, M., Sapag-Hagar, J., Valenzuela, F., & Basualto, C. (2002). Study of the influence of the pH media dissolution, degree of polymerization, and degree of swelling of the polymers on the mechanism of release of diltiazem from matrices based on mixtures of chitosan/alginate. Drug development and industrial pharmacy, 28(2), 217-224.
Taylor, M., & Elhissi, A. M. (2011). Predicting the physical properties of tablets from ATR-FTIR spectra using partial least squares regression. Pharmaceutical development and technology, 16(2), 110-117.
Tuyen, C. K., Nguyen, M. H., & Roach, P. D. (2010). Effects of spray drying conditions on the physicochemical and antioxidant properties of the Gac (Momordica cochinchinensis) fruit aril powder. Journal of Food Engineering, 98(3), 385-392.
Ullah, I., Yin, T., Xiong, S., Zhang, J., Din, Z. U., & Zhang, M. (2017). Structural characteristics and physicochemical properties of okara (soybean residue) insoluble dietary fiber modified by high-energy wet media milling. LWT-Food Science and Technology, 82, 15-22.
USP 29-NF 24, (2007). United States Pharmacopeia – National Formulary, Rockville, MD.
Van der Riet, W. B., Wight, A. W., Cilliers, J. J. L., & Datel, J. M. (1989). Food chemical investigation of tofu and its byproduct okara. Food Chemistry, 34(3), 193-202.
Villares, A., Rostagno, M. A., García-Lafuente, A., Guillamón, E., & Martínez, J. A. (2011). Content and profile of isoflavones in soy-based foods as a function of the production process. Food and Bioprocess Technology, 4(1), 27-38.
Wang T, (2016) Soybean: Processing. Encyclopedia of Food Grains ( Second Edition ). Elsevier. UK.
Wang, H. J., & Murphy, P. A. (1996). Mass balance study of isoflavones during soybean processing. Journal of Agricultural and Food Chemistry, 44(8), 2377-2383.
Wang, L., Han, G., & Zhang, Y. (2007). Comparative study of composition, structure and properties of Apocynum venetum fibers under different pretreatments. Carbohydrate Polymers, 69(2), 391-397.
WHO, F., & Protein, U. N. U. (2007). amino acid requirements in human nutrition: report of a joint FAO/WHO/UNU expert consultation. Geneva: World Health Organ.
Xu, Q., Nakajima, M., Liu, Z., & Shiina, T. (2011). Soybean-based surfactants and their applications. In Soybean-Applications and Technology. InTech.
Yu, H., Zheng, L., Yin, L., Xu, L., Qi, Y., Han, X., ... & Peng, J. (2014). Protective effects of the total saponins from Dioscorea nipponica Makino against carbon tetrachloride-induced liver injury in mice through suppression of apoptosis and inflammation. International immunopharmacology, 19(2), 233-244.
Zameeruddin, M., Namdev, H., Jadhav, S. B., Kadam, V. S., Bharkad, V. B., & Anil, B. (2014). Recent Advances of Sustained Release Oral Drug Delivery System: A Review. International Journal of Pharmaceutical Sciences and Biomedical Sciences, 3, 1479-1489.
Zhang, X. Z., Wang, H. Y., Fu, X. Q., Wu, X. X., & Xu, G. L. (1998). Bioactive small peptides from soybean protein. Annals of the New York Academy of Sciences, 864(1), 640-645.
Zhao, H. L., Harding, S. V., Marinangeli, C. P. F., Kim, Y. S., & Jones, P. J. H. (2008). Hypocholesterolemic and Anti‐Obesity Effects of Saponins from Platycodon grandiflorum in Hamsters Fed Atherogenic Diets. Journal of Food Science, 73(8), H195-H200.
Zhu, Y. P., Fan, J. F., Cheng, Y. Q., & Li, L. T. (2008). Improvement of the antioxidant activity of Chinese traditional fermented okara (Meitauza) using Bacillus subtilis B2. Food Control, 19(7), 654-661.
Zou, T. B., He, T. P., Li, H. B., Tang, H. W., & Xia, E. Q. (2016). The structure-activity relationship of the antioxidant peptides from natural proteins. Molecules, 21(1), 72.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top