跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2025/01/19 07:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳宗諺
研究生(外文):Tsung-Yen Wu
論文名稱:冷壓電漿處理對香蕉澱粉理化性質及其應用之探討
論文名稱(外文):Evaluation and application of cold plasma technology on modifying the physicochemical properties of banana starch
指導教授:周志輝
口試委員:潘敏雄蘇南維謝昌衛許輔
口試日期:2017-07-14
學位類別:博士
校院名稱:國立中興大學
系所名稱:食品暨應用生物科技學系所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:112
中文關鍵詞:香蕉澱粉抗性澱粉昇糖指數電暈放電冷電漿澱粉特性
外文關鍵詞:banana starchresistant starchglycemic indexcorona electrical dischargecold plasmastarch property
相關次數:
  • 被引用被引用:3
  • 點閱點閱:462
  • 評分評分:
  • 下載下載:56
  • 收藏至我的研究室書目清單書目收藏:1
香蕉在台灣以北蕉(Musa Pei Chiao)為主要栽培品種,近年發生產銷失衡的現象造成農民的損失,因此香蕉多元化加工開發是較佳解決此問題的方法。本試驗主要為添加不同比例的香蕉澱粉取代高筋麵粉,探討製作麵糰之流變性質、吐司的品質、昇糖指數、和感官品質,另外也觀察吐司在儲存過程中的品質變化情形。結果顯示添加香蕉澱粉的吐司質地和全麵粉所製作的質地和口感都不一樣,且香蕉澱粉對於麵糰流變性質會有顯著的影響。香蕉澱粉取代麵粉後在加熱冷卻的過程會顯著提升冷卻後澱粉液的黏度。香蕉澱粉中所含之抗性澱粉能降低吐司昇糖指數。部分取代香蕉澱粉所製作的吐司經消費者喜好性品評,主要是在口感嚼勁、色澤和風味受到消費者喜愛。但是含有香蕉澱粉的吐司在經過儲藏後容易有老化情形造成口感較硬的情形發生。
另一方面,本研究是選用台灣綠香蕉所分離的香蕉澱粉來探討電暈放電 (corona electrical discharge; CED)對其之影響,CED是屬於大氣壓冷電漿的一種。香蕉澱粉中的抗性澱粉和直鏈澱粉含量分別為58.4 和14.5 g/100 g。利用CED在不同電場強度30 kV/cm、40 kV/cm和50 kV/cm下處理3 min,結果顯示抗性澱粉和直鏈澱粉含量無顯著變化,僅在不同電場強度下造成顆粒表面蝕刻及非穿透性損傷。CED處理也減少香蕉澱粉X-ray繞射峰總面積、糊化熱焓值(減少21-38%)。也造成澱粉不同尖峰黏度、黏度裂解值、最終黏度和黏度回升值等成糊特性,但能增加香蕉澱粉的相對結晶度和糊化溫度。研究結果顯示CED電漿有潛力作為修飾香蕉澱粉特性的新穎性技術。
本研究結果期望能為香蕉澱粉應用在烘焙產品開發提供更多的理論基礎和配方參考依據,並替國產香蕉帶來新的應用性,能解決香蕉易產銷失衡的問題,預期可以開發延緩餐後血糖上升或是低卡路里保健素材或食品,以增加香蕉的附加價值和產業的經濟效益。
Musa Pei Chiao is the main cultivated variety of banana in Taiwan. The objective of this study was to investigate the different substitution ratios of banana starch in wheat flour. The changes in the pasting properties of flour, rheological properties of dough, glycemic index, and sensory of white bread quality in terms of processing were investigated.
The results showed that banana starch incorporation in the making of bread could affect its taste and texture. The rheological properties of the dough were significantly changed by different substitution ratios of banana starch. The highest peak viscosity and final viscosity were observed in the sample with a high ratio of banana starch. The addition of banana starch increased flavor diversity and consumers’ preferences of the bread. As a consequence of the compositional changes, a slow and low rate of enzymatic hydrolysis of carbohydrate was observed. Therefore, banana starch was found to be playing a key role in reducing glycemic index after meal. However, the hardness of the bread was significantly increased by the use of banana starch at a higher ratio. The retrogradation of starch molecules during storage led to an increase of hardness of toast.
Corona electrical discharge (CED) belongs to an atmospheric pressure cold plasma. In this study, raw banana starch (indigenous to Taiwan), which contained resistant starch and amylose at a level of 58.4 g/100 g and 14.5 g/100 g, respectively, was treated by CED at 30 kV/cm, 40 kV/cm, and 50 kV/cm for 3 minutes. After the CED treatment, starch analyses showed that there were no apparent changes in the resistant starch and amylose contents. Only surface and non-penetrative damage caused by plasma etching at different voltage strengths were observed on the starch granules.
The CED treatments reduced the total area of diffraction peak, gelatinization enthalpy (by -21% to -38%), and different pasting behaviors including peak viscosity, breakdown, final viscosity, and setback. The CED treatments were capable of increasing relative crystallinity and gelatinization temperature. This study revealed the potential of CED plasma technology as a tool to modify the characteristics of banana starch.
All these results would provide more theoretical basis for the utilization of banana starch. The application of the novel CED plasma technology might have the potential to increase the use and economical value of banana. Our results suggested that the CED treated banana starch could also be applied in in various food products (e.g., frozen foods, sauces, baked goods) as well as other starch-based products to promote their health potential.
中文摘要 i
英文摘要 iii
目錄 v
表次 x
圖次 xii

1. 緒論
1.1台灣香蕉產業現況 1
1.2香蕉營養價值與保健功效 3
1.2.1香蕉主要營養成份 3
1.2.2 香蕉的主要保健功效 5
1.3 抗性澱粉研究現況及產業發展 8
1.3.1 抗性澱粉的分類 11
1.3.1.1 物理包埋澱粉(physically trapped starch, RS1) 14
1.3.1.2 天然具抗性的澱粉(resistant starch granules, RS2) 14
1.3.1.3 回凝所產生之抗性澱粉(retrograded starch, RS3) 15
1.3.1.4 化學修飾後產生之抗性澱粉(chemically modified
starch, RS4) 15
1.3.2 抗性澱粉之結構 16
1.3.2.1 澱粉之結構 16
1.3.2.2 抗性澱粉之結構 23
1.3.3 抗性澱粉形成因素 26
1.3.3.1 澱粉內在因素 26
1.3.4 抗性澱粉在食品加工之應用 29
1.4 澱粉的應用及發展現況 32
1.5 修飾澱粉的研究現況 34
1.5.1一般修飾澱粉方法 34
1.5.2澱粉修飾之新穎性技術 35
1.5.2.1 高壓處理 35
1.5.2.2超音波處理 37
1.5.2.3 微波處理 37
1.5.2.4電離輻射處理 38
1.6 電漿技術 39
1.6.1 電漿技術應用於食品及澱粉之應用現況 44
2. 本試驗之研究目的 47
3. 材料與方法
3.1 香蕉澱粉加工之理化性質 49
3.1.1香蕉澱粉製備 49
3.1.2香蕉澱粉抗性澱粉含量測定 49
3.1.3總澱粉測定及直鏈澱粉含量分析 52
3.1.4 香蕉吐司製作 54
3.1.5 麵糰特性分析 54
3.1.6 麵粉及香蕉澱粉混和之成糊特性評估 56
3.1.7 昇糖指數(GI)評估 56
3.1.8 消費者接受性試驗 56
3.1.9 吐司質地測定 57
3.2 電暈放電電漿修飾香蕉澱粉之影響 57
3.2.1 電暈放電(CED)處理 57
3.2.2 直鏈澱粉與抗性澱粉含量測定 59
3.2.3澱粉顆粒型態觀察 59
3.2.4掃描式電子顯微鏡觀察 59
3.2.5 X-ray繞射分析 59
3.2.6 熱焓性質分析 60
3.2.7 成糊特性分析 61
3.3統計分析 61
4. 結果與討論
4.1 香蕉澱粉對加工理化性質之影響評估 62
4.1.1 香蕉澱粉和麵粉組成差異 62
4.1.2 香蕉澱粉對麵糰和吐司外觀之影響 64
4.1.3 不同香蕉澱粉取代率對粉質性質之影響 66
4.1.4 不同香蕉澱粉取代率對麵糰吹泡性質之影響 70
4.1.5 不同取代率之香蕉澱粉對麵粉糊化特性之影響 73
4.1.6 不同取代率之香蕉澱粉製作吐司之水解指數(HI)與預測昇
糖指數(GI) 76
4.1.7 不同取代率香蕉澱粉吐司之消費者品評 77
4.1.8 不同取代率香蕉澱粉吐司之儲藏情形 81
4.1.9 小結 81
4.2 應用電暈電漿(CED)於香蕉澱粉修飾之影響評估 84
4.2.1 CED處理對澱粉組成之影響 84
4.2.2 CED處理對澱粉顆粒型態之觀察 86
4.2.3 CED處理對澱粉顆粒表面電子顯微鏡之觀察 89
4.2.4 CED處理香蕉澱粉之X-ray繞射圖譜 91
4.2.5 CED處理香蕉澱粉之示差掃描熱分析(DSC) 93
4.2.6 CED處理香蕉澱粉之成糊性質 97
4.2.7 小結 100
5. 總結 102
6. 參考文獻 103

表次
表1、歷年台灣香蕉產量與價格統計表 2
表2、不同生理時期香蕉和大蕉之營養成份 4
表3、不同地區抗性澱粉市場規模,2012-2019年(百萬美元) 12
表4、不同地區抗性澱粉市場需求量,2012-2019 (千噸) 13
表5、修飾澱粉種類與製備方法 36
表6、不同香蕉澱粉取代含量之吐司配方 55
表7、香蕉澱粉和麵粉基本組成份分析 63
表8、不同香蕉澱粉取代率之麵糰攪拌性 68
表9、不同香蕉澱粉取代率對麵糰吹泡性之影響 71
表10、利用快速黏度分析儀評估香蕉澱粉取代不同麵粉比例之
成糊特性 74
表11、不同取代率之香蕉澱粉製作吐司之水解指數和預測昇糖
指數 78
表12、吐司樣品之消費者喜好性品評分析 79
表13、不同配方吐司之儲藏期間質地特性 82
表14、電暈電漿處理香蕉澱粉對直鏈澱粉和抗性澱粉含量之影響 85
表15、香蕉澱粉經電暈電漿處理之熱焓性質 96
表16、香蕉澱粉經電暈電漿處理之成糊特性 99

圖次
圖1、抗性澱粉對於健康相關研究報告分布 10
圖2、直鏈澱粉模型 17
圖3、支鏈澱粉的簇狀結構模型 19
圖4、澱粉顆粒結構示意圖 21
圖5、澱粉X-ray繞射圖譜名稱 22
圖6、交鏈澱粉製備流程 25
圖7、電暈放電設備形式 42
圖8、基本介電質放電電極組合方式 43
圖9、試驗架構圖 50
圖10、利用電暈放電電漿修飾澱粉特性試驗示意圖 58
圖11、混和不同比例香蕉澱粉之麵團階段發酵情形 65
圖12、混和不同比例香蕉澱粉之吐司外觀 67
圖13、光學顯微鏡觀察電暈電漿處理香蕉澱粉顆粒前後之型態 87
圖14、電暈電漿處理香蕉澱粉顆粒前後十字偏光性 88
圖15、電子顯微鏡觀察電暈電漿處理香蕉澱粉顆粒表面變化 90
圖16、香蕉澱粉經電暈電漿處理後之X-ray繞射圖 92
圖17、香蕉澱粉經電暈電漿處理之熱焓性質 95
圖18、香蕉澱粉經電暈電漿處理之快速黏度測定曲線圖 98
金征宇。(2000)。抗性澱粉的研究與分析。中國糧油學。15:1-5。
徐丹鴻與徐紅華。(2005)。抗性澱粉製備及其性質研究。糧食與油脂。4:9-11。
魏益民、任嘉嘉、張波、陳鋒亮與胡新中。(2009)。高溫處理燕麥籽粒對麵粉黏度特性的影響。農業工程學報。299-302。
廖家鼎。2004。低壓電漿與電暈對澱粉理化性質之影響。碩士論文。國立台灣大學。
Abera, S., & Rakshit, S. K. (2003). Processing technology comparison of physicochemical and functional properties of cassava starch extracted from fresh root and dry chips. Starch‐Stärke, 55, 287-296.
Angelis-Pereira, M. C. D., Barcelos, M. D. F. P., Sousa, M. S. B., & Pereira, J. D. A. R. (2013). Effects of the kefir and banana pulp and skin flours on hypercholesterolemic rats. Acta Cirurgica Brasileira, 28, 481-486.
Aparicio-Saguilán, A., Sayago-Ayerdi, S. G., Vargas-Torres, A., Tovar, J., Ascencio-Otero, T. E., & Bello-Pérez, L. A. (2007). Slowly digestible cookies prepared from resistant starch-rich lintnerized banana starch. Journal of Food Composition and Analysis, 20, 175-181.
Augustin, M. A., Sanguansri, P., & Htoon, A. (2008). Functional performance of a resistant starch ingredient modified using a microfluidiser. Innovative Food Science and Emerging Technologies, 9, 224–231.
Aurore, G., Parfait, B., & Fahrasmane, L. (2009). Bananas, raw materials for making processed food products. Trends in Food Science & Technology, 20, 78-91.
Baghurst, P. A., Baghurst, K. I., & Record, S. J. (1996). Dietary fibre, non-starch polysaccharides and resistant starch: a review. Food Australia, 48, S3-S35.
Baixauli, R., Salvador, A., Martinez-Cervera, S., & Fiszman, S. M. (2008). Distinctive sensory features introduced by resistant starch in baked products. Food Science and Technology, 41, 1927–1933.
Barbosa‐Canovas, G. V., Zhang, Q. H., Pierson, M. D., & Schaffner, D. W. (2000). High voltage arc discharge. Journal of Food Science, 65, 80-81.
Barros, F., Awika, J. M., & Rooney, L. W. (2012). Interaction of tannins and other sorghum phenolic compounds with starch and effects on in vitro starch digestibility. Journal of Agricultural and Food Chemistry, 60, 11609-11617.
Bastos, D. C., Santos, A. E., da Silva, M. L., & Simão, R. A. (2009). Hydrophobic corn starch thermoplastic films produced by plasma treatment. Ultramicroscopy, 109, 1089-1093.
Berry, C. S. (1986). Resistant starch: formation and measurement of starch that survives exhaustive digestion with amylolytic enzymes during the determination of dietary fibre. Journal of Cereal Science, 4, 301-314.
Bettaïeb, N. B., Jerbi, M. T., & Ghorbel, D. (2014). Gamma radiation influences pasting, thermal and structural properties of corn starch. Radiation Physics and Chemistry, 103, 1-8.
Bie, P., Li, X., Xie, F., Chen, L., Zhang, B., & Li, L. (2016). Supramolecular structure and thermal behavior of cassava starch treated by oxygen and helium glow-plasmas. Innovative Food Science & Emerging Technologies, 34, 336-343.
Birt, D. F., Boylston, T., Hendrich, S., Jane, J. L., Hollis, J., Li, L,…& Schalinske, K. (2013). Resistant starch: promise for improving human health. Advances in Nutrition: An International Review Journal, 4, 587-601.
Chaiwat, W., Wongsagonsup, R., Tangpanichyanon, N., Jariyaporn, T., Deeyai, P., Suphantharika, M. & Dangtip, S. (2016). Argon Plasma Treatment of Tapioca Starch Using a Semi-continuous Downer Reactor. Food and Bioprocess Technology, 9, 1125-1134.
Chang, J. S., Lawless, P. A., & Yamamoto, T. (1991). Corona discharge processes. IEEE Transactions on Plasma Science, 19, 1152-1166.
Charles, A. L., Chang, Y. H., Ko, W. C., Sriroth, K., & Huang, T. C. (2004). Some physical and chemical properties of starch isolates of cassava genotypes. Starch‐Stärke, 56, 413-418.
Che, L. M., Wang, L. J., Li, D., Bhandari, B., Özkan, N., Chen, X. D., & Mao, Z. H. (2009). Starch pastes thinning during high-pressure homogenization. Carbohydrate Polymers, 75, 32-38.
Chen, L., Pu, H., Li, X., & Yu, L. (2011). A novel oral colon-targeting drug delivery system based on resistant starch acetate. Journal of Controlled Release, 152, e51-e52.
Chen, M. H., Bergman, C. J., McClung, A. M., Everette, J. D., & Tabien, R. E. (2017). Resistant Starch: Variation among High Amylose Rice Varieties and Its Relationship with Apparent Amylose Content, Pasting Properties and Cooking Methods. Food Chemistry, 234, 180-189.
Chockchaisawasdee, S., & Poosaran, N. (2013). Production of isomaltooligosaccharides from banana flour. Journal of the Science of Food and Agriculture, 93, 180-186.
Choi, S., Puligundla, P., & Mok, C. (2017). Effect of corona discharge plasma on microbial decontamination of dried squid shreds including physico-chemical and sensory evaluation. LWT-Food Science and Technology, 75, 323-328.
Choo, C. L., & Aziz, N. A. A. (2010). Effects of banana flour and β-glucan on the nutritional and sensory evaluation of noodles. Food Chemistry, 119, 34-40.
Chung, H. J., Liu, Q., & Hoover, R. (2009). Impact of annealing and heat-moisture treatment on rapidly digestible, slowly digestible and resistant starch levels in native and gelatinized corn, pea and lentil starches. Carbohydrate Polymers, 75, 436-447.
Collar, C., Santos, E., & Rosell, C. M. (2007). Assessment of the rheological profile of fibre-enriched bread doughs by response surface methodology. Journal of Food Engineering, 78, 820-826.
Colman, T. A. D., Demiate, I. M., & Schnitzler, E. (2014). The effect of microwave radiation on some thermal, rheological and structural properties of cassava starch. Journal of Thermal Analysis and Calorimetry, 115, 2245-2252.
Cooke, D., & Gidley, M. J. (1992). Loss of crystalline and molecular order during starch gelatinisation: origin of the enthalpic transition. Carbohydrate Research, 227, 103-112.
Crittenden, R. G., Morris, L. F., Harvey, M. L., Tran, L. T., Mitchell, H. L., & Playne, M. J. (2001). Selection of a Bifidobacterium strain to complement resistant starch in a synbiotic yoghurt. Journal of Applied Microbiology, 90, 268-278.
da Mota, R. V., Lajolo, F. M., Cordenunsi, B. R., & Ciacco, C. (2000). Composition and functional properties of banana flour from different varieties. Starch‐Stärke, 52, 63-68.
Donald, A. M., Kato, K. L., Perry, P. A., & Waigh, T. A. (2001). Scattering studies of the internal structure of starch granules. Starch‐Stärke, 53, 504-512.
Eerlingen, R. C., Decuninck, M., & Delcour, J. A. (1993). Enzyme resistant starch 11. Influence of amylose chain length on resistant starch and formation. Cereal Chemistry, 70, 345-350.
Eggleston, G., Swennen, R., & Akoni, S. (1992). Physicochemical studies on starches isolated from plantain cultivars, plantain hybrids and cooking bananas. Starch‐Stärke, 44, 121-128.
Eliasson, A. C., Finstad, H., & Ljunger, G. (1988). A Study of Starch‐Lipid Interactions for Some Native and Modified Maize Starches. Starch‐Stärke, 40, 95-100.
EL‐Tayeb, A., EL‐Shazly, A. H., Elkady, M. F., & Abdel‐Rahman, A. (2016). Simulation and Experimental Study for Degradation of Organic Dyes Using Dual pin‐to‐plate Corona Discharge Plasma reactors for Industrial Wastewater Treatment. Contributions to Plasma Physics, 56, 855-869.
Englyst, H. N., Trowell, H., Southgate, D. A., & Cummings, J. H. (1987). Dietary fiber and resistant starch. The American Journal of Clinical Nutrition 46, 873-874.
Escarpa, A., González, M. C., Morales, M. D., & Saura-Calixto, F. (1997). An approach to the influence of nutrients and other food constituents on resistant starch formation. Food Chemistry, 60, 527-532.
Faisant, N., Buleon, A., Colonna, P., Molis, C., Lartigue, S., Galmiche, J. P., & Champ, M. (1995). Digestion of raw banana starch in the small intestine of healthy humans: structural features of resistant starch. British Journal of Nutrition, 73, 111-123.
Faisant, N., Gallant, D. J., Bouchet, B., & Champ, M. (1995). Banana starch breakdown in the human small intestine studied by electron microscopy. European Journal of Clinical Nutrition, 49, 98-104.
Fu, R., Yan, T., Wang, Q., Guo, Q., Yao, H., Wu, X., & Li, Y. (2012). Suppression of endothelial cell adhesion by XJP-1, a new phenolic compound derived from banana peel. Vascular Pharmacology, 57, 105-112.
Gallant, D. J., Bouchet, B., Buleon, A., & Perez, S. (1992). Physical characteristics of starch granules and susceptibility to enzymatic. European Journal of Clinical Nutrition, 46, S3-S16.
Gani, A., Nazia, S., Rather, S. A., Wani, S. M., Shah, A., Bashir, M., & Gani, A. (2014). Effect of γ-irradiation on granule structure and physicochemical properties of starch extracted from two types of potatoes grown in Jammu & Kashmir, India. LWT-Food Science and Technology, 58, 239-246.
Goldring, J. M. (2004). Resistant starch: safe intakes and legal status. Journal of AOAC International, 87(3), 733-739.
Granfeldt, Y., Bjorck, I., Drews, A., & Tovar, J. (1992). An in vitro procedure based on chewing to predict metabolic response to. European Journal of Clinical Nutrition, 46, 649-660.
Haddy, F. J., Vanhoutte, P. M., & Feletou, M. (2006). Role of potassium in regulating blood flow and blood pressure. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 290, R546-R552.
Han, X. Z., & Hamaker, B. R. (2001). Amylopectin fine structure and rice starch paste breakdown. Journal of Cereal Science, 34(3), 279-284.
Han, Z., Zeng, X. A., Zhang, B. S., & Yu, S. J. (2009). Effects of pulsed electric fields (PEF) treatment on the properties of corn starch. Journal of Food Engineering, 93, 318-323.
Haralampu, S. G. (2000). Resistant starch—a review of the physical properties and biological impact of RS 3. Carbohydrate polymers, 41, 285-292.
Higgins, J. A. (2004). Resistant starch: metabolic effects and potential health benefits. Journal of AOAC International, 87, 761-768.
Hong, D., Rabat, H., Bauchire, J. M., & Chang, M. B. (2014). Measurement of ozone production in non-thermal plasma actuator using surface dielectric barrier discharge. Plasma Chemistry and Plasma Processing, 34, 887-897.
Hooda, S., & Jood, S. (2003). Physicochemical, rheological, and organoleptic characteristics of wheat‐fenugreek supplemented blends. Molecular Nutrition & Food Research, 47, 265-268.
Hoover, R. (2001). Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydrate Polymers, 45, 253-267.
Hoover, R., & Zhou, Y. (2003). In vitro and in vivo hydrolysis of legume starches by α-amylase and resistant starch formation in legumes—a review. Carbohydrate Polymers, 54, 401-417.
Jambrak, A. R., Herceg, Z., Šubarić, D., Babić, J., Brnčić, M., Brnčić, S. R., & Gelo, J. (2010). Ultrasound effect on physical properties of corn starch. Carbohydrate Polymers, 79, 91-100.
Juansang, J., Puttanlek, C., Rungsardthong, V., Puncha-arnon, S., & Uttapap, D. (2012). Effect of gelatinization on slowly digestible starch and resistant starch of heat-moisture treated and chemically modified canna starches. Food Chemistry, 131, 500-507.
Juarez-Garcia, E., Agama-Acevedo, E., Sáyago-Ayerdi, S. G., Rodríguez-Ambriz, S. L., & Bello-Perez, L. A. (2006). Composition, digestibility and application in breadmaking of banana flour. Plant Foods for Human Nutrition, 61, 131.
Kainuma, K., & French, D. (1972). Naegeli amylodextrin and its relationship to starch granule structure. II. Role of water in crystallization of B‐starch. Biopolymers, 11, 2241-2250.
Kanazawa, K., & Sakakibara, H. (2000). High content of dopamine, a strong antioxidant, in cavendish banana. Journal of Agricultural and Food Chemistry, 48, 844-848.
Katopo, H., Song, Y., & Jane, J. L. (2002). Effect and mechanism of ultrahigh hydrostatic pressure on the structure and properties of starches. Carbohydrate Polymers, 47, 233-244.
Kendall, C. W., Emam, A., Augustin, L. S., & Jenkins, D. J. (2004). Resistant starches and health. Journal of AOAC International, 87, 769-774.
Khorram, S., Zakerhamidi, M. S., & Karimzadeh, Z. (2015). Polarity functions’ characterization and the mechanism of starch modification by DC glow discharge plasma. Carbohydrate Polymers, 127, 72-78.
Knutson, C. A. (1990). Annealing of maize starches at elevated temperatures. Cereal Chemistry, 67, 376-384.
Konik, C. M., Mikkelsen, L. M., Moss, R., & Gore, P. J. (1994). Relationships between physical starch properties and yellow alkaline noodle quality. Starch‐Stärke, 46, 292-299.
Korus, J., Witczak, M., Ziobro, R., & Juszczak, L. (2009). The impact of resistant starch on characteristics of gluten-free dough and bread. Food Hydrocolloids, 23, 988-995.
Lii, C. Y., Chang, S. M., & Young, Y. L. (1982). Investigation of the physical and chemical properties of banana starches. Journal of Food Science, 47, 1493-1497.
Lii, C. Y., Liao, C. D., Stobinski, L., & Tomasik, P. (2002). Behaviour of granular starches in low-pressure glow plasma. Carbohydrate Polymers, 49, 499-507.
Lii, C. Y., Liao, C. D., Stobinski, L., & Tomasik, P. (2002). Effects of hydrogen, oxygen, and ammonia low-pressure glow plasma on granular starches. Carbohydrate Polymers, 49, 449-456.
Lii, C. Y., Liao, C. D., Stobinski, L., & Tomasik, P. (2002). Exposure of granular starches to low-pressure glow ethylene plasma. European Polymer Journal, 38, 1601-1606.
Mahadevamma, S., Prashanth, K. H., & Tharanathan, R. N. (2003). Resistant starch derived from processed legumes—purification and structural characterization. Carbohydrate Polymers, 54, 215-219.
Massaux, C., Sindic, M., Lenartz, J., Sinnaeve, G., Bodson, B., Falisse, A., & Deroanne, C. (2008). Variations in physicochemical and functional properties of starches extracted from European soft wheat (Triticum aestivum L.): The importance to preserve the varietal identity. Carbohydrate Polymers, 71, 32-41.
Merca, F. E., & Juliano, B. O. (1981). Physicochemical Properties of Starch of Intermediate‐Amylose and Waxy Rices Differing in Grain Quality. Starch‐Stärke, 33, 253-260.
Misra, N. N., Pankaj, S. K., Segat, A., & Ishikawa, K. (2016). Cold plasma interactions with enzymes in foods and model systems. Trends in Food Science & Technology, 55, 39-47.
Mun, S. H., & Shin, M. (2006). Mild hydrolysis of resistant starch from maize. Food Chemistry, 96, 115-121.
Nara, S., & Komiya, T. (1983). Studies on the relationship between water‐satured state and crystallinity by the diffraction method for moistened potato starch. Starch‐Stärke, 35, 407-410.
Ormerod, A., Ralfs, J., Jobling, S., & Gidley, M. (2002). The influence of starch swelling on the material properties of cooked potatoes. Journal of Materials Science, 37, 1667-1673.
Parovuori, P., Hamunen, A., Forssell, P., Autio, K., & Poutanen, K. (1995). Oxidation of potato starch by hydrogen peroxide. Starch‐Stärke, 47, 19-23.
Pratiwi, M., Faridah, D. N., & Lioe, H. N. (2017). Structural Changes to Starch after Acid Hydrolysis, Debranching, Autoclaving‐Cooling Cycles, and Heat Moisture Treatment (HMT): A Review. Starch‐Stärke, 68.
Romphophak, T., Siriphanich, J., Kazuhiro, A. B. E., & Chachin, K. (2005). Changes in concentrations of phenolic compounds and polyphenol oxidase activity in banana peel during storage. Food Preservation Science, 31, 111-115.
Rosell, C. M., Santos, E., & Collar, C. (2006). Mixing properties of fibre-enriched wheat bread doughs: A response surface methodology study. European Food Research and Technology, 223, 333-340.
Sajilata, M. G., Singhal, R. S., & Kulkarni, P. R. (2006). Resistant starch–a review. Comprehensive Reviews in Food Science and Food Safety, 5, 1-17.
Sawicki, C. M., Shah, V., Livingston, K. A., Roberts, S. B., Chung, M., & McKeown, N. M. (2016). Evidence Mapping: Resistant Starch Interventions and Health Outcomes. Diabetes, 3, 5.
Seetharaman, K., Tziotis, A., Borras, F., White, P. J., Ferrer, M., & Robutti, J. (2001). Thermal and functional characterization of starch from Argentinean corn. Cereal Chemistry, 78, 379-386.
Sharma, A., Yadav, B. S., & Ritika (2008). Resistant starch: Physiological roles and food applications. Food Reviews International, 24, 193-234.
Singh, B., Singh, J. P., Kaur, A., & Singh, N. (2016). Bioactive compounds in banana and their associated health benefits–A review. Food Chemistry, 206, 1-11.
Singh, J., Kaur, L., & McCarthy, O. J. (2007). Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications—A review. Food Hydrocolloids, 21, 1-22.
Singh, J., Kaur, L., & McCarthy, O. J. (2007). Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications—A review. Food Hydrocolloids, 21, 1-22.
Singh, N., Singh, J., Kaur, L., Sodhi, N. S., & Gill, B. S. (2003). Morphological, thermal and rheological properties of starches from different botanical sources. Food Chemistry, 81, 219-231.
Sofi, B. A., Wani, I. A., Masoodi, F. A., Saba, I., & Muzaffar, S. (2013). Effect of gamma irradiation on physicochemical properties of broad bean (Vicia faba L.) starch. LWT-Food Science and Technology, 54, 63-72.
Sozer, N., Dalgıc, A. C., & Kaya, A. (2007). Thermal, textural and cooking properties of spaghetti enriched with resistant starch. Journal of Food Engineering, 81, 476-484.
Stolt, M., Stoforos, N. G., Taoukis, P. S., & Autio, K. (1999). Evaluation and modelling of rheological properties of high pressure treated waxy maize starch dispersions. Journal of Food Engineering, 40, 293-298.
Sudha, M. L., Vetrimani, R., & Leelavathi, K. (2007). Influence of fibre from different cereals on the rheological characteristics of wheat flour dough and on biscuit quality. Food Chemistry, 100, 1365-1370.
Sujka, M., & Jamroz, J. (2013). Ultrasound-treated starch: SEM and TEM imaging, and functional behaviour. Food Hydrocolloids, 31, 413-419.
Sullivan, W. R., Hughes, J. G., Cockman, R. W., & Small, D. M. (2017). The effects of temperature on the crystalline properties and resistant starch during storage of white bread. Food Chemistry, 228, 57-61.
Tester, R. F., Karkalas, J., & Qi, X. (2004). Starch—composition, fine structure and architecture. Journal of Cereal Science, 39, 151-165.
Themeier, H., Hollmann, J., Neese, U., & Lindhauer, M. G. (2005). Structural and morphological factors influencing the quantification of resistant starch II in starches of different botanical origin. Carbohydrate Polymers, 61, 72-79.
Thirumdas, R., Sarangapani, C., & Annapure, U. S. (2015). Cold plasma: a novel non-thermal technology for food processing. Food Biophysics, 10, 1-11.
Thirumdas, R., Trimukhe, A., Deshmukh, R. R., & Annapure, U. S. (2017). Functional and rheological properties of cold plasma treated rice starch. Carbohydrate Polymers, 157, 1723-1731.
Tonks, L., & Langmuir, I. (1929). Oscillations in ionized gases. Physical Review, 33, 195.
Topping, D. L., & Clifton, P. M. (2001). Short chain fatty acids and human colonic function. Relative roles of resistant starch and non-starch polysaccharides. Physiological Review, 81, 1031-1064.
Tribess, T. B., Hernández-Uribe, J. P., Méndez-Montealvo, M. G. C., Menezes, E. W., Bello-Perez, L. A., & Tadini, C. C. (2009). Thermal properties and resistant starch content of green banana flour (Musa cavendishii) produced at different drying conditions. LWT-Food Science and Technology, 42, 1022-1025.
Tsutsui, K., Katsuta, K., Matoba, T., Takemasa, M., Funami, T., Sato, E., & Nishinari, K. (2013). Effects of time and temperature of annealing on rheological and thermal properties of rice starch suspensions during gelatinization. Journal of Texture Studies, 44, 21-33.
Varavinit, S., Shobsngob, S., Varanyanond, W., Chinachoti, P., & Naivikul, O. (2003). Effect of amylose content on gelatinization, retrogradation and pasting properties of flours from different cultivars of Thai rice. Starch‐Stärke, 55, 410-415.
Vittadini, E., Carini, E., Chiavaro, E., Rovere, P., & Barbanti, D. (2008). High pressure-induced tapioca starch gels: physico-chemical characterization and stability. European Food Research and Technology, 226, 889-896.
Wang, J., Rosell, C. M., & de Barber, C. B. (2002). Effect of the addition of different fibres on wheat dough performance and bread quality. Food Chemistry, 79, 221-226.
Whelton, P. K., He, J., Cutler, J. A., Brancati, F. L., Appel, L. J., Follmann, D., & Klag, M. J. (1997). Effects of oral potassium on blood pressure: meta-analysis of randomized controlled clinical trials. Jama, 277, 1624-1632.
Whistler, R. L., & BeMiller, J. N. (1997). Carbohydrate chemistry for food scientists. Eagan press.
Wing, R. E., & Willett, J. L. (1997). Water soluble oxidized starches by peroxide reactive extrusion. Industrial Crops and Products, 7, 45-52.
Wongsagonsup, R., Deeyai, P., Chaiwat, W., Horrungsiwat, S., Leejariensuk, K., Suphantharika, M., & Dangtip, S. (2014). Modification of tapioca starch by non-chemical route using jet atmospheric argon plasma. Carbohydrate Polymers, 102, 790-798.
Yan, K., Hui, H., Cui, M., Miao, J., Wu, X., Bao, C., & Li, R. (1998). Corona induced non-thermal plasmas: Fundamental study and industrial applications. Journal of Electrostatics, 44, 17-39.
Yang, Q., Qi, L., Luo, Z., Kong, X., Xiao, Z., Wang, P., & Peng, X. (2017). Effect of microwave irradiation on internal molecular structure and physical properties of waxy maize starch. Food Hydrocolloids, 69, 473-482.
Yin, X., Quan, J., & Kanazawa, T. (2008). Banana prevents plasma oxidative stress in healthy individuals. Plant Foods for Human Nutrition, 63, 71-76.
Yuan, Y., Zhang, L., Dai, Y., & Yu, J. (2007). Physicochemical properties of starch obtained from Dioscorea nipponica Makino comparison with other tuber starches. Journal of Food Engineering, 82, 436-442.
Yue, P., & Waring, S. (1998). Resistant starch in food applications. Cereal Foods World, 43, 690–695.
Zaidul, I. S. M., Norulaini, N. N., Omar, A. M., Yamauchi, H., & Noda, T. (2007). RVA analysis of mixtures of wheat flour and potato, sweet potato, yam, and cassava starches. Carbohydrate Polymers, 69, 784-791.
Zhang, B., Chen, L., Li, X., Li, L., & Zhang, H. (2015). Understanding the multi-scale structure and functional properties of starch modulated by glow-plasma: A structure-functionality relationship. Food Hydrocolloids, 50, 228-236.
Zhang, P., Whistler, R. L., BeMiller, J. N., & Hamaker, B. R. (2005). Banana starch: production, physicochemical properties, and digestibility-a review. Carbohydrate polymers, 59, 443-458.
Zhang, P., & Hamaker, B. R. (2012). Banana starch structure and digestibility. Carbohydrate Polymers, 87, 1552-1558.
Zobel, H. F., Young, S. N., & Rocca, L. A. (1988). Starch gelatinization: An X-ray diffraction study. Cereal Chemistry, 65, 443-446.
Zou, J. J., Liu, C. J., & Eliasson, B. (2004). Modification of starch by glow discharge plasma. Carbohydrate Polymers, 55, 23-26.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊