林慶文。2006。乳品加工學,第136頁。第三版。華香園出版社,台北市。
李宜筠。2015。添加葡萄糖酸內酯及檸檬酸對泰式發酵香腸Nham之影響。國立中興大學動物科學所碩士論文,台中市。Ahn, Y. J., P. Ganesan and H. S. Kwak. 2011. Composition, structure, and bioactive components in milk fat globule membrane. Korean J. Food Sci. Ani. Resour. 31:1-8.
Arranz, E., and M. Corredig. 2017. Invited review: Milk phospholipid vesicles, their colloidal properties, and potential as delivery vehicles for bioactive molecules. J. Dairy Sci. 100:1-10.
Atroshi, F., T. Alaviuhkola, R. Schildt and M. Sandholm. 1983. Fat globule membrane of sow milk as a target for adhesion of K88-positive Escherichia coli. Comp. Immunol. Microb. 6:235-245.
Bermúdez-Aguirre, D., R. Mawson and G. V. Barbosa-Cánovas. 2008. Microstructure of fat globules in whole milk after thermosonication treatment. J. Food Sci. 73:325-332.
Bezelgues, J. B., F. Morgan, G. Palomo, L. Crosset-Perrotin and P. Ducret. 2009. Short communication: Milk fat globule membrane as a potential delivery system for liposoluble nutrients. J. Dairy Sci. 92:2524-2528.
Brisson, G., H. F. Payken, J. P. Sharpe and R. Jiménez-Flores. 2010. Characterization of Lactobacillus reuteri interaction with milk fat globule membrane components in dairy products. J. Agric. Food Chem. 58:5612-5619.
Bu, H. F., X. L. Zuo, X. Wang, M. A. Ensslin, V. Koti, W. Hsueh, A. S. Raymond, B. D. Shur and X. D. Tan. 2007. Milk fat globule-EGF factor 8/lactadherin plays a crucial role in maintenance and repair of murine intestinal epithelium. J. Clin. Invest. 117:3673-3683.
Burgain, J., J. Scher, G. Francius, F. Borges, M. Corgneau, A. M. Revol-Junelles, C. Cailliez-Grimal and C. Gaiani. 2014. Lactic acid bacteria in dairy food: Surface characterization and interactions with food matrix components. Adv. Colloid Interfac. 213:21-35.
Clare, D. A., Z. Zheng, H. M. Hassan, H. E. Swaisgood and G. L. Catignani. 2008. Antimicrobial properties of milk fat globule membrane fractions. J. Food Prot. 71:126-133.
Conway, V., P. Couture, C. Richard, S. F. Gauthier,Y. Pouliot and B. Lamarche. 2013. Impact of buttermilk consumption on plasma lipids and surrogate markers of cholesterol homeostasis in men and women. Nutr. Metab. Cardiovasc. Dis. 23:1255-1262.
Corredig, M. and D. G. Dalgleish. 1997. Isolates from industrial buttermilk: emulsifying properties of materials derived from the milk fat globule membrane. J. Agric. Food Chem. 45:4595-4600.
Corredig, M. and D. G. Dalgleish. 1998a. Buttermilk properties in emulsions with soybean oil as affected by fat globule membrane-derived proteins. J. Food Sci. 63:476-480.
Corredig, M. and D. G. Dalgleish. 1998b. Characterization of the interface of an oil-in-water emulsion stabilized by milk fat globule membrane material. J. Dairy Res. 65:465-477.
Corredig, M., R. R. Roesch and D. G. Dalgleish. 2003. Production of a novel ingredient from buttermilk. J. Dairy Sci. 86:2744-2750.
Darilmaz, D. O. and B. Yavuz. 2012. Investigating hydrophobicity and the effect of exopolysaccharide on aggregation properties of dairy propionibacteria isolated from turkish homemade cheeses. J. Food Prot. 75:359-365.
Dewettinck, K., R. Rombau, N. Thienpon, T. T. Le, K. Messen and J. Van Camp. 2008. Nutritional and technological aspects of milk fat globule membrane material. Int. Dairy J. 18:436-457.
Douëllou, T., M. C. Montel, and D. T. Sergentet. 2017. Invited review: Anti-adhesive properties of bovine oligosaccharides and bovine milk fat globule membrane- associated glycoconjugates against bacterial food enteropathogens. J. Dairy Sci. 100:3348-3359.
Et-Thakafy, O., F. Guyomarc’h and C. Lopez. 2017. Lipid domains in the milk fat globule membrane: Dynamics investigated in situ in milk in relation to temperature and time. Food Chem. 220:352-361.
Evers, J. M. 2004. The milk fat globule membrane-compositional and structural changes post secretion by the mammary secretory cell. Int. Dairy J. 14:661-674.
Evers, J. M., R. G. Haverkamp, S. E. Holroyd, G. B. Jameson, D. D. S. Mackenzie and O. J. McCarthy. 2008. Heterogeneity of milk fat globule membrane structure and composition as observed using fluorescence microscopy techniques. Int. Dairy J. 18:1081-1089.
Fong, B. Y., C. S. Norris and A. K. H. MacGibbon. 2007. Protein and lipid composition of bovine milk-fat-globule membrane. Int. Dairy J. 17:275-288.
Gallier, S., D. Gragson, R. JiméNez-Flores and D. Everett. 2010. Using confocal laser scanning microscopy to probe the milk fat globule membrane and associated proteins. J. Agric. Food Chem. 58:4250-4257.
Gallier, S., E. Shaw, A. Laubscher, D. Gragson, H. Singh, and R. Jiménez-Flores. 2014. Adsorption of bile salts to milk phospholipid and phospholipid-protein monolayers. J. Agric. Food Chem. 62:1363-1372.
Guri, A., M. Griffiths, C. M. Khursigara and M. Corredig. 2012. The effect of milk fat globules on adherence and internalization of Salmonella Enteritidis to HT-29 cells. J. Dairy Sci. 95:6937-6945.
Gurnida, D. A., A. M. Rowan, P. Idjradinata, D. Muchtadi and N. Sekarwana. 2012. Association of complex lipids containing gangliosides with cognitive development of 6-month-old infants. Early Hum. Dev. 88:595-601.
Gülseren, İ., and M. Corredig. 2013. Storage stability and physical characteristics of tea-polyphenol-bearing nanoliposomes prepared with milk fat globule membrane phospholipids. J. Agric. Food Chem. 61:3242-3251.
Heid, H. W. and T. W. Keenan. 2005. Intracellular origin and secretion of milk fat globules. Eur. J. Cell. Biol. 84:245-258.
Hernell, O., N. Timby, M. Domellöf and B. Lönnerdal. 2016. Clinical benefits of milk fat globule membranes for infants and children. J. Pediatr. 173:S60-S65.
Holzmuller, W., and U. Kulozik. 2016a. Technical difficulties and future challenges in isolation membrane material from milk fat globules in industrial settings-A critical review. Int. Dairy J. 61:51-66.
Holzmuller, W., and U. Kulozik. 2016b. Isolation of milk fat globule membrane (MFGM) material by coagulation and diafiltration of buttermilk. Int. Dairy J. 63:88-91.
Holzmuller, W., O. Gmach, A. Griebel and U. Kulozik. 2016. Casein precipitation by acid and rennet coagulation buttermilk: impact of pH and temperature on isolation of milk fat globule membrane proteins. Int. Dairy J. 63:115-123.
Horemans, T., M. Kerstens, S. Clais, K. Struijs, P. V. D. Abbeele, T. V. Assche, L. Maes and P. Cos. 2012. Evaluation of the anti-adhesive effect of milk fat globule membrane glycoproteins on Helicobacter pylori in the human NCI-N87 cell line and C57BL⁄6 mouse model. Helicobacter 17:1523-5378.
Howard, A. N., and J. Marks. 1979. Effect of milk products on serum cholesterol. Lancet 2:957.
Hyronimus, B., C. Le Marrec, A. Hadj Sassi and A. Deschamps. 2000. Acid and bile tolerance of spore-forming lactic acid bacteria. Int. J. Food Microbiol. 61:193-197.
Jiang, P. L., H. J. Lin, H. W. Wang, Wen. Y. Tsai, S. F. Lin, M. Y. Chien, P. H. Liang, Y. Y. Huang and D. Z. Liu. 2015. Galactosylated liposome as a dendritic cell-targeted mucosal vaccine for inducing protective anti-tumor immunity. Acta Biomater. 11:356-367.
Jin, H. H., Q. Lu, and J. G. Jiang. 2016. Curcumin liposomes prepared with milk fat globule membrane phospholipids and soybean lecithin. J. Dairy Sci. 99:1780-1790.
Kanno, C., Y. Shimomura and E. Takano. 1991. Physicochemical properties of milk fat emulsions stabilized with bovine milk fat globule membrane. J. Food Sci. 56:1219-1223.
Kralj, M., and N. Pipan. 1992. The role of exocytosis in the apocrine secretion of milk lipidglobules in mouse mammary gland during lactogenesis. Biol. Cell. 75:211-216.
Kvistgaard, A. S., L. T. Pallesen, C. F. Arias, S. Lopez, T. E. Petersen, C. W. Heegaard and J. T. Rasmussen. 2004. Inhibitory effect of human and bovine milk constituents on rotavirus infections. J. Dairy Sci. 87:4088-4096.
Laloy, E., J. Vuillemard, M. E. Soda, and R. E. Simard. 1996. Influence of the fat content of cheddar cheese on retention and localization of starters. Int. Dairy J. 6:729-740.
Le, T. T., J. Van Camp, R. Rombaut, F. V. Leeckwyck and K. Dewettinck. 2009. Effect of washing conditions on the recovery of milk fat globule membrane proteins during the isolation of milk fat globule membrane from milk. J. Dairy Sci. 92:3592-3603.
Le, T. T., T. Van de Wiele, T. N. H. Do, G. Debyser, K. Struijs, B. Devreese, K. Dewettinck and J. Van Camp. 2012. Stability of milk fat globule membrane proteins toward human enzymatic gastrointestinal digestion. J. Dairy Sci. 95:2307-2318.
Le, T. T., G. Debyser, W. Gilbert, K. Struijs, J. Van Camp, T. Van de Wiele, B. Devreese and K. Dewettinck. 2013. Distribution and isolation of milk fat globule membrane protein during dairy processing as revealed by proteomic analysis. Int. Dairy J. 32:110-120.
Lopez, C., M. B. Maillard, V. Briard-Bion, B. Camier, and J. A. Hannon. 2006. Lipolysis during ripening of Emmental cheese considering organization of fat and preferential localization of bacteria. J. Agric. Food Chem. 54:5855-5867.
Lopez, C., M. N. Madec and R. Jiménez-Flores. 2010. Lipid rafts in the bovine milk fat globule membrane revealed by the lateral segregation of phospholipids and heterogeneous distribution of glycoproteins. Food Chem. 120:22-33.
Lopez, C. 2011. Milk fat globules enveloped by their biological membrane: Unique colloidal assemblies with a specific composition and structure. Curr. Opin. Colloid Interface Sci. 16:391-404.
Lopez, C., C. Cauty and F. Guyomarc’h. 2015. Organization of lipids in milks, infant milk formulas and various dairy products: role of technological processes and potential impacts. Dairy Sci. & Technol. 95:863-893.
Lopez, C., C. Cauty, F. Rousseau, M. Blot, A. Margolis and M. H. Famelart. 2017. Lipid droplets coated with milk fat globule membrane fragments: Microstructure and functional properties as a function of pH. Food Res. Int. 91:26-37.
Liu, W., A. Ye, C. Liu, W. Liu, and H. Singh. 2012. Structure and integrity of liposomes prepared from milk or soybean-derived phospholipids during in vitro digestion. Food Res. Int. 48:499-506.
Liu, B., Z. Yu, C. Chen, D. E. Kling and D. S. Newburg. 2012. Human milk mucin 1 and mucin 4 inhibit Salmonella enterica serovar Typhimurium invasion of human intestinal epithelial cells in vitro. J. Nutr. 142:1504-1509.
Ly, M. H., N. H. Vo, T. M. Le, J. M. Belin and Y. Waché. 2006. Diversity of surface properties of Lactococci and consequences on adhesion to food components. Colloids Surf. B Biointerfaces. 52:149-153.
Markworth, J. F., B. Durainayagam, V. C. Figueiredo, K. Liu, J. Guan, A. K. H. MacGibbon, B. Y. Fong, A. C. Fanning, A. Rowan, P. McJarrow and D. Cameron-Smith. 2017. Dietary supplementation with bovine derived milk fat globule membrane lipids promotes neuromuscular development in growing rats. Nutr. Metab. 14:9.
Mather, I. M. 2000. A review and proposed nomenclature for major proteins of the milk fat globule membrane. J. Dairy Sci. 83:203-247.
Mather, I. M. 2011. Milk Lipids: Milk fat globule membrane. Page 680-690 in Encyclopedia of Dairy Sciences. J. W. Fuquay, 2 ed. Academic Press. San Diego, CA, USA.
McGann, T. C. A., and P. F. Fox. 1974. Physico-chemical properties of casein micelles reformed from urea-treated milk. J. Dairy Res. 41:45-53.
Motouri, M., H. Matsuyama, J. I. Yamamura, M. Tanaka, S. Aoe, T. Iwanaga and H. Kawakami. 2003. Milk sphingomyelin accelerates enzymatic and morphological maturation of the intestine in artificially reared rats. J. Pediatr. Gastr. Nutr. 36:241-274.
Moicinovic, J., T. T. Le, E. Fredrick, P. Van der Meeren, P. Pudja and K. Dewettinck. 2014. A comparison of composition and emulsifying properties of MFGM materials prepared from different dairy sources by microfiltration. Food Sci. Technol. Int. 20:441-451.
Morin, P., R. Jiménez-Flores and Y. Pouliot. 2004. Effect of temperature and pore size on the fractionation of fresh and reconstituted bttermilk by microfiltration. J. Dairy Sci. 87:267-273.
Morin, P., Y. Pouliot and R. Jiménez-Flores. 2006. A comparative study of the fractionation of regular buttermilk and whey buttermilk by microfiltration. J. Food Eng. 77:521-528.
Morin, P., M. Britten, R. Jiménez-Flores and Y. Pouliot. 2007a. Microfiltration of buttermilk and wash cream buttermilk for concentration of milk fat globule membrane composition. J. Dairy Sci. 90:2132-2140.
Morin, P., M. Britten, R. Jiménez-Flores and Y. Pouliot. 2007b. Effect of processing on the composition and microstructure of buttermilk and its milk fat globule membranes. Int. Dairy J. 17:1179-1187.
Nilsson, A. 2016. Role of sphingolipids in infant gut health and immunity. J. Pediatr. 173:S53-S59.
Noh, S. K., and S. I. Koo. 2003. Egg sphingomyelin lowers the lymphatic absorption of cholesterol and alpha-tocopherol in rats. J Nutr. 133:3571-3576.
Noh, S. K., and S. I. Koo. 2004. Milk sphingomyelin is more effective than egg sphingomyelin in inhibiting intestinal absorption of cholesterol and fat in rats. J. Nutr. 134:2611-2616.
Novakovic, P., Y. Y. Huang, B. Lockerbie, F. Shahriar, J. Kelly, J. R. Gordon, D. M. Middleton, M. E. Loewen, B. A. Kidney and E. simko. 2015a. Identification of Escherichia coli F4ac-binding proteins in porcine milk fat globule membrane. Can. J. Vet. Res. 79:120-128.
Novakovic, P., C. Charavaryamath, I. Moshynskyy, B. Lockerbie, R. S. Kaushik, M. E. Loewen, B. A. Kidney, C. Stuart and E. simko. 2015b. Evaluation of inhibition of F4ac positive Escherichia coli attachment with xanthine dehydrogenase, butyrophilin, lactadherin and fatty acid binding protein. BMC Vet. Res. 11:238-248.
O’Connell, J. E., A. L. Kelly, M. A. E. Auty, P. F. Fox and K. G. de Kruif. 2001a. Ethanol-dependent temperature-induced dissociation of casein micelles. J. Agric. Food Chem. 49:4420-4423.
O’Connell, J. E., A. L. Kelly, P. F. Fox and K. G. de Kruif. 2001b. Mechanism for the ethanol-dependent heat-induced dissociation of casein micelles. J. Agric. Food Chem. 49:4424-4428.
Ogg, S. L., A. K. Weldon, L. Dobbie, A. J. H. Smith and I. H. Mather. 2004. Expression of butyrophilin (Btn1a1) in lactating mammary glandis essential for the regulate dsecretion of milk-lipid droplets. Proc. Natl. Acad. Sci. USA 101:10084-10089.
Ohlsson, L., H. Burling and A. Nilsson. 2009. Long term effects on human plasma lipoproteins of a formulation enriched in butter milk polar lipid. Lipids Health Dis. 8:44.
Oshida, K., T. Shimizu, M. Takase, Y. Tamura, T. Shimizu and Y. Yamashiro. 2003. Effects of dietary sphingomyelin on central nervous system myelination in developing rats. Pediatr. Res. 53:589-593.
Park, J. S., C. K. Choi and K. D. Kihm. 2004. Optically sliced micro-PIV using confocal laser scanning microscopy (CLSM). Exp. Fluids. 37:105-119.
Parker, P., L. Sando, R. Pearson, K. Kongsuwan, R. L. Tellam and S. Smith. 2010. Bovine Muc1 inhibits binding of enteric bacteria to Caco-2 cells. Glycoconj. J. 27:89-97.
Prado, M. R., L. M. Blandón, L. P. S. Vandenberghe, C. Rodrigues, G. R. Castro, V. T. Soccol and C. R. Soccol. 2015. Milk kefir: composition, microbial cultures, biological activities, and related products. Front. Microbiol. 30:1-10.
Ramprasath, V. R., P. J. H. Jones, D. D. Buckley, L. A. Woollett and J. E. Heubi. 2013. Effect of dietary sphingomyelin on absorption and fractional synthetic rate of cholesterol and serum lipid profile in humans. Lipids Health Dis. 12:125.
Raymond, A., M. A. Ensslin and B. D. Shur. 2009. SED1/MFG-E8: a bi-motif protein that orchestrates diverse cellular interactions. J. Cell. Biochem. 106:957-966.
Roesch, R. R., A. Rincon and M. Corredig. 2004. Emulsifying properties of fractions prepared from commercial buttermilk by microfiltration. J. Dairy Sci. 87:4080-4087.
Rombaut, R., V. Dejonckheere and K. Dewettinck. 2006. Microfiltration of butter serum upon casein micelle destabilization. J. Dairy Sci. 89:1915-1925.
Rombaut, R., V. Dejonckheere and K. Dewettinck. 2007. Filtration of milk fat globule membrane fragments from acid buttermilk cheese whey. J. Dairy Sci. 90:1662-1673.
Rombaut, R. and K. Dewettinck. 2007. Thermocalcic aggregation of milk fat globule membrane fragments from acid buttermilk cheese whey. J. Dairy Sci. 90:2665-2674.
Rosqvist, F., A. Smedman, H. Lindmark-Mansson, M. Paulsson, P. Petrus, S. Straniero, M. Rudling, I. Dahlman and U. Risérus. 2015. Potential role of milk fat globule membrane in modulating plasma lipoproteins, gene expression, and cholesterol metabolism in humans: a randomized study. Am. J. Clin. Nutr. 102:20-30.
Ross, S. A., J. A. Lane, M. Kilcoyne, L. Joshi and R. M. Hickey. 2016. Defatted bovine milk fat globule membrane inhibits association of enterohaemorrhagic Escherichia coli O157:H7 with human HT-29 cells. Int. Dairy J. 59:36-43.
Sachdeva, S. and W. Buchheim. 1997. Recovery of phospholipids from buttermilk using membrane processing. Kieler Milchw. Forsch. 49:47-68.
Sandra, S., M. Ho, M. Alexander and M. Corredig. 2012. Effect of soluble calcium on the renneting properties of casein micelles as measured by rheology and diffusing wave spectroscopy. J. Dairy Sci. 95:75-82.
Singh, H. 2006. The milk fat globule membrane - A biophysical system for food application. Curr. Opin. Colloid Interface Sci. 11:154-163.
Spitsberg, V. L. 2005. Invited review: Bovine milk fat globule membrane as a potential nutraceutical. J. Dairy Sci. 88:2289-2294.
Struijs, K., T. Van de Wiele, T. T. Le, G. Debyser, K. Dewettinck, B. Devreese and J. Van Camp. 2013. Milk fat globule membrane glycoproteins prevent adhesion of the colonic microbiota and result in increased bacterial butyrate production. Int. Dairy J. 32:99-109.
Tellez, A., M. Corredig, A. Guri, R. Zanabria, M. W. Griffiths and V. Delcenserie. 2012. Bovine milk fat globule membrane affects virulence expression in Escherichia coli O157:H7. J. Dairy Sci. 95:6313-6319.
Tercinier, L., A. Ye, S. G. Anema, A. Singh and H. Singh. 2013. Adsorption of milk proteins on to calcium phosphate particles. J. Colloid Interf. Sci. 394:458-466.
Tercinier, L., A. Ye, S. G. Anema, A. Singh and H. Singh. 2014. Interactions of casein micelles with calcium phosphate particles. J. Agric. Food Chem. 62:5983-5992.
Thomas, A., and C. T. Sathian. 2014. Cleaning-In-Place (CIP) System in dairy plant-review. IOSR-JESTFT. 8:41-44.
Thompson, A. K., and H. Singh. 2006. Preparation of liposomes from milk fat globule membrane phospholipids using a microfluidizer. J. Dairy Sci. 89:410-419.
Thompson, A. K., D. Haisman and H. Singh. 2006a. Physical stability of liposomes prepared from milk fat globule membrane and soya phospholipids. J. Agric. Food Chem. 54:6390-6397.
Thompson, A. K., J. P. Hindmarsh, D. Haisman, T. Rades, and H. Singh. 2006b. Comparison of the structure and properties of liposomes prepared from milk fat globule membrane and soy phospholipids. J. Agric. Food Chem. 54:3704-3711.
Thompson, A. K., M. R. Mozafari and H. Singh. 2007. The properties of liposomes produced from milk fat globule membrane material using different techniques. Lait 87:349-360.
Thompson, A. K., A. Couchoud, and H. Singh. 2009. Comparison of hydrophobic and hydrophilic encapsulation using liposomes prepared from milk fat globule-derived phospholipids and soya phospholipids. Dairy Sci. Technol. 89:99-113.
Timby, N., E. Domellöf, O. Hernell, B. Lönnerdal and M. Domellöf. 2014. Neurodevelopment, nutrition, and growth until 12 mo of age in infants fed a low-energy, low-protein formula supplemented with bovine milk fat globule membranes: a randomized controlled trial. Am. J. Clin. Nutr. 99:860-868.
Udabage, P., I. R. McKinnon and M. A. Augustin. 2000. Mineral and casein equilibria in milk: effects of added salts and calcium-chelating agents. J. Dairy Res. 67:361-370.
Vorbach, C., A. Scriven and M. R. Capecchi. 2002. The housekeeping gene xanthine oxidoreductase is necessary for milk fat droplet enveloping and secretion: gene sharing in the lactating mammary gland. Genes Dev. 16:3223-3235.
Wang, X. S., Hirmo, R. Willén and T. Wadström. 2001. Inhibition of Helicobacter pylori infection by bovine milk glycoconjugates in a BALB/cA mouse model. J. Med. Microbiol. 50:430-435.
Wooding, F. B. P. 1971. The mechanism of secretion of the milk fat globule. J. Cell Sci. 9:805-821.
Ye, A., H. Singh, M. W. Taylor, and S. Anema. 2002. Characterization of protein components of natural and heat-treated milk fat globule membranes. Int. Dairy J. 12:393-402.
Yolken, R. H., J. A. Peterson, S. L. Vonderfecht, E. T. Fouts, K. Midthun and D. S. Newburg. 1992. Human milk mucin inhibits rotavirus replication and prevents experimental gastroenteritis. J. Clin. Invest. 90:1984-1991.
Zadow, J. G. 1993. Alcohol-mediated temperature-induced reversible dissociation of the casein micelle in milk. Aust. J. Dairy Technol. 48:78-81.
Zheng, H., R. Jiménez-Flores and D. W. Everett. 2013. Bovine milk fat globule membrane proteins are affected by centrifugal washing processes. J. Agric. Food Chem. 61:8403-8411.
Zheng, H., R. Jiménez-Flores and D. W. Everett. 2014. Lateral lipid organization of the bovine milk fat globule membrane is revealed by washing processes. J. Dairy Sci. 97:5964-5974.