跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/12 09:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:游慧娟
研究生(外文):Hui-Chuan Yu
論文名稱:不同酶、超音波處理與水解條件對豬肝蛋白質水解物抗氧化特性之研究
論文名稱(外文):Investigation of different enzymes, ultrasonic treatments, and hydrolysis conditions on the antioxidant properties of porcine liver protein hydrolysates
指導教授:譚發瑞劉登城
指導教授(外文):Fa-Jui TanDeng-Cheng Liu
口試委員:林慧生紀學斌陳怡兆
口試委員(外文):Hwei-shen LinSuey-Ping ChiYi-Chao Chen
口試日期:2017-07-28
學位類別:博士
校院名稱:國立中興大學
系所名稱:動物科學系所
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:87
中文關鍵詞:Alcalase®抗氧化活性紅麴菌木瓜蛋白酶胃蛋白酶蛋白質水解物反應曲面法超音波
外文關鍵詞:Alcalase®Antioxidant activityMonascus purpureusPapainPepsinProtein hydrolysatesResponse surface methodologyUltrasound
相關次數:
  • 被引用被引用:0
  • 點閱點閱:376
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
豬肝是豬屠宰的副產品,富含蛋白質及各種營養素,然而台灣較少利用。酶水解用於回收及改善來自魚類和動物副產物的蛋白質之營養及功能特性,以產生機能性成分。超音波已被用於改善蛋白質水解及修飾酶活性。因此,本研究之目的是評估不同酶,超音波處理和水解條件對豬肝酶水解產生水解產物的影響,並進一步評估其抗氧化活性。
試驗一,評估使用Alcalase®,木瓜蛋白酶,胃蛋白酶或紅麴黴菌微生物懸浮液 (分別為APLH,PaPLH,PePLH和MPLH) 在各種水解時間 (3, 6和12h) 後製備的豬肝蛋白水解物之抗氧化活性。結果顯示APLH之產率及胜肽含量最高,PaPLH的水解率高於其他組別。MPLH具有最高的2, 2-diphenyl-1-picrylhydrazyl (DPPH)自由基清除活性及還原能力,APLH及PaPLH具有較MPLH更高的亞鐵離子螯合能力,所有水解產物的分子量小於10 kDa。PaPLH的總胺基酸及疏水性胺基酸含量最高。15個從MPLH獲得的抗氧化胜肽片段含有一個或多個胺基酸 (酪胺酸,色胺酸,丙胺酸,脯胺酸,蛋胺酸,賴胺酸,天冬胺酸,半胱胺酸,纈胺酸,亮胺酸或組胺酸等)。儘管由紅麴黴菌微生物懸浮液水解的水解產物顯示出最高的DPPH自由基清除活性及還原力,但是其產量和水解率最低。因此,選擇具有能產生最高產量、胜肽含量及和亞鐵離子螯合能力之Alcalase®進行後續試驗。
試驗二中,進而藉由超音波處理來提高水解產物的抗氧化活性。在試驗中,評估超音波預處理 (0, 15, 30, 45及60 s) 對使用Alcalase®的豬肝蛋白水解物 (PLPH) 的抗氧化活性之影響。隨著超音波處理時間的延長,PLPH的水解率及胜肽含量增加。60秒超音波預處理的水解產物顯示出最高的水解率及胜肽含量。45秒超音波預處理的水解產物顯示出最高的亞鐵離子螯合能力及還原力。30秒超音波預處理的水解產物顯示出最高的DPPH自由基清除活性及在亞麻油酸自氧化系統中較高的抑制活性;所有水解物胜肽的分子量小於6,200 Da。
試驗三進一步藉由運用反應曲面法(Response surface methodology; RSM) 來評估不同水解參數 (E/S比,pH值和溫度) 對超音波輔助酶水解豬肝蛋白質水解物(PLH)的影響。結果顯示E/S比、pH值及溫度對豬肝水解物的抗氧化活性有顯著影響(P <0.01)。當E/S比1.4% (v/w)、溫度55.5 °C及初始pH值10.15時,能產生具有最高DPPH自由基清除活性的PLH,其水解率、DPPH自由基清除活性、亞鐵離子螯合能力、還原力、分子量及疏水性胺基酸含量分別為24.12%、79%、98.18%、0.601、< 5,400 Da、45.7%。
由本研究結果得知,藉由使用紅麴黴菌微生物懸浮液、應用超音波處理及選擇最佳水解條件進行酶水解時,可自豬肝中獲得性能優良的抗氧化水解物,具有預防食品中脂質氧化的潛在應用。
Porcine liver, a by-product of pig slaughtering, is rich in proteins and various nutrients. However, it is rarely used in Taiwan. Enzymatic hydrolysis is used to recover and improve the nutritional and functional properties of proteins from fish and animal byproducts to yield functional components. Ultrasonic has been used to improve protein hydrolysis and modify enzyme activities. Therefore, the objective of this study was to evaluate the effects of different enzymes, ultrasonic treatments, and hydrolysis conditions on the enzymatic hydrolysis of porcine liver for the production of hydrolysates and further characterization of their antioxidant activities.
In the experiment 1, the antioxidant activity of porcine liver protein hydrolysates (PLPH) prepared by using Alcalase®, papain, pepsin, or Monascus purpureus microbial suspension (APLH, PaPLH, PePLH, and MPLH, respectively) after various hydrolysis time (3, 6, and 12 h) was evaluated. The results exhibited that the highest yield and peptide content were obtained from APLH, whereas the degree of hydrolysis (DH) of PaPLH was higher than the others. MPLH had the highest 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and reducing power, whereas APLH and PaPLH had higher ferrous ion-chelating ability than did MPLH. The molecular weights of all the hydrolysates were <10 kDa. The PaPLH exhibited the highest contents of total amino acids and hydrophobic amino acids. Fifteen antioxidant fractions obtained from MPLH contained one or more of the following amino acids in their sequences: Tyr, Trp, Ala, Pro, Met, Lys, Asp, Cys, Val, Leu, and His. Even though the hydrolysate hydrolyzed by Monascus purpureus microbial suspension exhibited the highest DPPH free radical scavenging activity and reducing power, it had the lowest yield and DH. Therefore, Alcalase® which exhibited the highest yield, peptide content and ferrous ion-chelating ability has been selected to hydrolyze porcine liver proteins in the next experiment.
In the experiment 2, ultrasonic was applied on the enzymatic hydrolysis in order to improve the antioxidant activity of the porcine liver hydrolysate. The effect of the ultrasonic pretreatment (0, 15, 30, 45, and 60 s) on the antioxidant activity of PLPH employing Alcalase® was evaluated. The results exhibited the DH and peptide contents of the PLPHs increased as the time of ultrasonication increased. The hydrolysate pretreated with ultrasonication for 60 s exhibited the highest DH and peptide contents. The hydrolysate pretreated with ultrasonication for 45 s exhibited the highest ferrous ion chelating ability and reducing power. The hydrolysate pretreated with ultrasonication for 30 s exhibited the highest DPPH radical scavenging activity and the higher inhibitory activity in the linoleic acid autoxidation system. The molecular weight of the peptides in the hydrolysates was less than 6.2 kDa.
In the experiment 3, by using response surface methodology (RSM), the effect of various hydrolysis parameters (E/S ratio, pH, and temperature) on the ultrasonic-assisted enzymatic hydrolysis of PLPH was evaluated. The results exhibited that E/S ratio, pH, and temperature significantly affected the antioxidant activity of the hydrolysate (P < 0.01). The optimal conditions for producing PLPH with the highest scavenging activity by using RSM were as follows: E/S ratio, 1.4% (v/w); temperature, 55.5°C; and initial pH, 10.15. Under these conditions, the degree of hydrolysis, DPPH free radical scavenging activity, ferrous ion chelating ability, and reducing power of PLPHs were 24.12%, 79%, 98.18%, and 0.601, respectively. The molecular weight of PLPH produced under these optimal conditions was less than 5,400 Da and contained 45.7% hydrophobic amino acids.
In conclusion, favorable antioxidant hydrolysates from porcine liver enzymatic hydrolysis, which have a potential application for retarding lipid oxidation in food products, can be obtained by using Monascus purpureus microbial suspension, applying of ultrasonic treatment as well as selecting of the optimal hydrolysis conditions.
誌 謝 辭 i
摘 要 ii
ABSTRACT iv
TABLE OF CONTENTS vii
LIST OF TABLES xi
LIST OF FIGURES xii
CHAPTER 1 1
1.1 Animal by-products/Porcine liver 2
1.2 Monascus spp. 3
1.3 Enzymes 3
1.3.1 Aspartic proteinase 4
1.3.2 Alcalase® 4
1.3.3 Pepsin 5
1.3.4 Papain 5
1.4 Protein hydrolysates 6
1.4.1 Enzymatic hydrolysis 7
1.4.2 Factors affecting enzymatic hydrolysis of proteins 8
1.5 Ultrasonication 11
1.5.1 Introduction 11
1.5.2 The effects of ultrasonication on protein structures, functionality, and performance 12
1.6 Response surface methodology (RSM) 14
Aim of this study 15
CHAPTER 2 17
2.1 Abstract 18
2.2 Introduction 18
2.3 Materials and methods 21
2.3.1 Preparation of M. purpureus microbial suspension 21
2.3.2 Preparation of porcine liver hydrolysates using various proteases 21
2.3.3 Measurement of yields and DH of hydrolysates 22
2.3.4 Determination of peptide content 22
2.3.5 Determination of antioxidant activities 23
2.3.6 Determination of amino acid composition and molecular weight distribution of PLPHs 23
2.3.7 Determination of antioxidant peptide sequence 24
2.3.8 Statistical analysis 24
2.4 Results and Discussion 24
2.4.1 Enzymatic hydrolysis 24
2.4.2 Antioxidant properties of hydrolysates 26
2.4.3 The molecular weight distribution of protein hydrolysates 28
2.4.4 Amino acid composition of hydrolysates 29
2.4.5 Characterization of antioxidant peptides 30
CHAPTER 3 40
3.1 Abstract 41
3.2 Introduction 41
3.3 Materials and methods 43
3.3.1 Materials 43
3.3.2 Ultrasonic pretreatment of porcine liver 43
3.3.3 Determination of soluble protein content 44
3.3.4 Preparation of porcine liver protein hydrolysates 44
3.3.5 Determination of the DH of hydrolysates 45
3.3.6 Determination of peptide contents 46
3.3.7 Determination of antioxidant activities 46
3.3.8 Inhibition of linoleic acid autoxidation 46
3.3.9 Determination of the molecular weight distribution of hydrolysates 47
3.3.10 Statistical analysis 48
3.4 Results and discussion 48
3.4.1 DH, soluble protein content, and peptide content 48
3.4.2 Antioxidant activities of hydrolysates 50
3.4.3 Molecular weight distribution of protein hydrolysates 52
CHAPTER 4 59
4.1 Abstract 60
4.2 Introduction 61
4.3 Materials and methods 62
4.3.1 Preparation of PLPHs 62
4.3.2 RSM 62
4.3.3 DH measurement 63
4.3.4 Antioxidant activity measurement 63
4.3.5 Determination of PLPH molecular weight distribution and amino acid composition 64
4.3.6 Statistical analysis 64
4.4 Results and discussion 64
4.4.1 Optimization of the hydrolysis process 64
4.4.2 Visual analysis of the RSM experiment 66
4.4.3 Optimization of technical conditions 67
4.4.4 DH and antioxidant activity 68
4.4.5 Molecular weight and amino acid composition of the PLPH produced under optimal conditions 69
CHAPTER 5 77
5.1 Conclusion 78
5.2 Future research 79
REFERENCES 80
Adamson, N. J., & Reynolds, E. C. (1996). Characterization of casein phosphopeptides prepared alcalase: Determination of enzyme specificity. Enzyme and Microbial Technology, 19(3):202–7.
Adler-Nissen, J. (1986). A review of food protein hydrolysis specific areas. In J. Adler-Nissen (Eds.), Enzymic hydrolysis of food proteins (pp. 57–109). Elsevier Applied Science Publishers, N.Y., U.S.A.
Ahn, C. B., Lee, K. H., & Je, J. Y. (2010). Enzymatic production of bioactive protein hydrolysates from tuna liver: effects of enzymes and molecular weight on bioactivity. International Journal of Food Science & Technology, 45(3):562–568.
Annegowda, H. V., Bhat, R., Liong, M. Z., Karim, A. A., & Mansor, S.M. (2012). Influence of sonication treatments and extraction solvents on the phenolics and antioxidants in star fruits. Journal of Food Science and Technology, 49(4): 510–514.
Aspmo, S. I., Horn, S. J., & Eijsink, & V. G. H. (2005). Enzymatic hydrolysis of Atlantic cod (Gadus morhua L.) viscera. Process Biochemistry, 40: 1957–1966.
Bernardini, R. D., Harnedy, P., Bolton, D., Kerry, J., O’Neill, E., Mullen, A. M., & Hayes, M. (2011). Antioxidant and antimicrobial peptidic hydrolysates from muscle protein sources and by-products. Food Chemistry, 124(4): 1296–1307.
Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5): 965-977.
Bhaskar, N., Modi, V. K., Govindaraju, K., Radha, C., & Lalitha, R. G. (2007). Utilization of meat industry by products: Protein hydrolysate from sheep visceral mass. Bioresource Technology, 98: 388–394.
Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248–254.
Chabeaud, A., Dutournié, P., Guérard, F., Vandanjon, L., & Bourseau, P. (2009). Application of response surface methodology to optimise the antioxidant activity of a saithe (Pollachius virens) hydrolysate. Marine Biotechnology, 11(4):445–455.
Chandrapala, J., Zisu, B., Palmer, M., Kentish, S., & Ashokkumar, M. (2011). Effects of ultrasound on the thermal and structural characteristics of proteins in reconstituted whey protein concentrate. Ultrasonics Sonochemistry, 18(5): 951–957.
Chen, L., Chen, J., Ren, J., & Zhao, M. (2011). Effects of ultrasound pretreatment on the enzymatic hydrolysis of soy protein isolates and on the emulsifying properties of hydrolysates. Journal of Agricultural and Food Chemistry, 59: 2600–2609.
Chien, P. J., Sheu, F., Huang, W.T., & Su, M.S. (2007). Effect of molecular weight of chitosans on their antioxidative activities in apple juice. Food Chemistry, 102: 1192–1198.
Church, F. C., Swaisgood, H. E., Porter, D. H., & Catignani, G. L. (1983). Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. Journal of Dairy Science, 66: 1219–1227.
Cui, C., Zhou, X., Zhao, M., & Yang, B. (2009). Effect of thermal treatment on the enzymatic hydrolysis of chicken proteins. Innovative Food Science & Emerging Technologies, 10(1): 37–41.
Dinis, T. C. P., Madeira, V. M. C., Almeida, L. M. (1994). Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Archives of Biochemistry and Biophysics, 315:161−169.
Dong, S., Zeng, M., Wang, D., Liu, Z., Zhao, Y., & Yang, H. (2008). Antioxidant and biochemical properties of protein hydrolysates prepared from silver carp (Hypophthalmichthys molitrix). Food Chemistry, 107(4): 1485–1493.
Fang, X., Xie, N., Chen, X., Yu, H., & Chen, J. (2012). Optimization of antioxidant hydrolysate production from flying squid muscle protein using response surface methodology. Food and Bioproducts Processing, 90(4):676–682.
FDA (Food and Drug Administration, Taiwan). (2017). Sanitary standard for edible natural colorants (FDA Food No. 8246254). Available from: https://consumer.fda.gov.tw/Law/Detail.aspx?nodeID=518&lawid=139&k=%u5929%u7136%u98DF%u7528%u8272%u7D. Accessed May. 31, 2017.
Grzonka, Z., Kasprzykowski, F., & Wiczk, W. (2007). Cysteine proteases. In J. Polaina, & A. P. Maccab (Eds.), Industrial enzymes-structure, function and applications (pp. 181-196). Netherlands: Springer Netherlands.
Guerard, F., Sumaya-Martinez, M. T., Laroque, D., Chabeaud, A., & Dufossé, L. (2007). Optimization of free radical scavenging activity by response surface methodology in the hydrolysis of shrimp processing discards. Process Biochemistry, 42:1486–1491.
Gülseren, I., Güzey, D., Bruce, B.D., & Weiss, J. (2007). Structural and functional changes in ultrasonicated bovine serum albumin solutions. Ultrasonics Sonochemistry, 14(2): 173–183.
Hmidet, N., Balti, R., Nasri, R., Sila, A., Bougatef, A., & Nasri, M. (2011). Improvement of functional properties and antioxidant activities of cuttlefish (Sepia officinalis) muscle proteins hydrolyzed with Bacillus mojavensis A21 proteases. Food Research International, 44: 2703–2711.
Hsu, K.C. (2010). Purification of antioxidative peptides prepared from enzymatic hydrolysates of tuna dark muscle by-product. Food Chemistry, 122: 42–48.
Huang, G. R., Zhao, J., & Jiang, J. X. (2011). Effect of defatting and enzyme type on antioxidative activity of shrimp processing byproducts hydrolysate. Food Science and Biotechnology, 20(3): 651–657.
Iida, Y., Tuziuti, T., Yasui, K., Kozuka, T., & Towata, A. (2008). Protein release from yeast cells as an evaluation method of physical effects in ultrasonic field. Ultrasonics Sonochemistry, 15(6): 995–1000.
Jain, S. & Anal, A.K. (2016). Optimization of extraction of functional protein hydrolysates from chicken egg shell membrane (ESM) by ultrasonic assisted extraction (UAE) and enzymatic hydrolysis. LWT - Food Science and Technology, 69: 295–302.
Jambrak, A. R., Lelas, V., Mason, T. J., Krešić, G., & Badanjak, M. (2009). Physical properties of ultrasound treated soy proteins. Journal of Food Engineering, 93: 386–393.
Jambrak, A. R., Mason, T. J., Lelas, V., Herceg, Z., & Herceg, I. L. (2008). Effect of ultrasound treatment on solubility and foaming properties of whey protein suspensions. Journal of Food Engineering, 86(2): 281–287.
Je, Y. J., Lee, K. H., Lee, M. H., & Ahn, C. B. (2009). Antioxidant and antihypertensive protein hydrolysates produced from tuna liver by enzymatic hydrolysis. Food Research International, 42(9):1266–1272.
Jia, J., Ma, H., Zhao, W., Wang, Z., Tain, W., Luo, L., & He, R. (2010). The use of ultrasound for enzymatic preparation of ACE-inhibitory peptides from wheat germ protein. Food Chemistry, 119: 336–342.
Jin, T., & Wu, Y. (2013). Effects of production factors on the antioxidant activity of protein hydrolysates from little hairtail (Trichiurus haumela) of East China Sea. Journal of Food, Agriculture & Environment, 11(1): 95–98.
Kamau, S. M., & Lu, R. R. (2011). The effect of enzymes and hydrolysis conditions on degree of hydrolysis and dpph radical scavenging activity of whey protein hydrolysates. Current Research in Dairy Sciences, 3:25–35.
Kim, S. K., Kim, Y. T., Byun, H. G., Park, P. J., Ito, H. (2001). Purification and characterization of antioxidative peptides from bovine skin. Journal of biochemistry and molecular biology, 34(3): 219–224.
Kim, E. K., Lee, S. J., Jeon, B. T., Moon, S. H., Kim, B., Park, T. K., Han, J. S., & Park, P. J. (2009). Purification and characterisation of antioxidative peptides from enzymatic hydrolysates of venison protein. Food Chemistry, 114: 1365–1370.
Klompong, V., Benjakul, S., Kantachote, D., & Shahidi, F. (2007). Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chemistry, 102(4): 1317–1327.
Kristinsson, H. G., & Rasco, B. A. (2000). Fish protein hydrolysates: production, biochemical, and functional properties. Critical Reviews in Food Science and Nutrition, 40(1): 43–81.
Kuba, M., Tana, C., Tawata, S., & Yasuda, M. (2005). Production of angiotensin I-converting enzyme inhibitory peptides from soybean protein with Monascus purpureus acid proteinase. Process Biochemistry, 40: 2191–2196.
Lakshman, P. L. N, Tachibana, S., Toyama, H., Taira, T., Suganuma, T., Suntornsuk, W., & Yasuda, M. (2011). Application of an acid proteinase from Monascus purpureus to reduce antigenicity of bovine milk whey protein. Journal of Industrial Microbiology and Biotechnology, 38(9): 1485-1492.
Lee, Y. L., Yang, J. H., & Mau, J. L. (2008). Antioxidant properties of water extracts from Monascus fermented soybeans. Food Chemistry, 106(3): 1128–1137.
Lei, B., Majumder, K., Shen, S., & Wu, J. (2011). Effect of sonication on thermolysin hydrolysis of ovotransferrin. Food Chemistry, 124: 808–815.
Li, X.X., Han, L.J., & Chen, L.J. (2008b). In vitro antioxidant activity of protein hydrolysates prepared from corn gluten meal. Journal of the Science of Food and Agriculture, 88(9): 1660–1666.
Li, Y., Jiang, B., Zhang, T., Mu, W., & Lin, J. (2008a). Antioxidant and free radical-scavenging activities of chickpea protein hydrolysate (CPH). Food Chemistry, 106: 444–450.
Liceaga-Gesualdo, A. M., & Li-Chan, E. C. Y. (1999). Functional properties of fish protein hydrolysate from herring (Clupea harengus). Journal of Food Science, 64(6): 1000–1004.
Liu, Q., Kong, B., Xiong, Y.L., & Xia, X. (2010). Antioxidant activity and functional properties of porcine plasma protein hydrolysate as influenced by the degree of hydrolysis. Food Chemistry, 118: 403–410.
Lourenco da Costa, E., Antonio da Rocha Gontijo, J., & Netto, F.M. (2007). Effect of heat and enzymatic treatment on the antihypertensive activity of whey protein hydrolysates. International Dairy Journal, 17(6) : 632–640.
Ma, J., Li, Y., Ye, Q., Li, J., Hua, Y., & Ju, D. (2000). Constituents of red yeast rice, a traditional Chinese food and medicine. Journal of Agricultural and Food Chemistry, 48: 5220–5225.
Mendis, E., Rajapakse, N., Byun, H. G., & Kim, S. K. (2005). Investigation of jumbo squid (Dosidicus gigas) skin gelatin peptides for their in vitro antioxidant effects. Life Science, 77(17): 2166–2178.
Mitsuda, H., Yasumoto, K., & Iwami, K. (1996). Antioxidative action of indole compounds during the autoxidation of linoleic acid. Eiyo to Shokuryo, 19: 210–214.
Murray B. A., & Fitzgerald R. J. (2007). Angiotensin converting enzyme inhibitory peptides derived from food proteins: biochemistry, bioactivity and production. Current Pharmaceutical Design, 13:773–791.
Nagodawithana, T. W., Nelles, L., & Trivedi, N. B. (2010). Protein hydrolysates as hypoallergenic, flavors and pallatants for companion animals. In V. K. Pasupuleti, & A. L. Demain (Eds.), Protein Hydrolysates in Biotechnology (pp. 191–207). New York: Springer Dordrecht Heidelberg.
Nalinanon, S., Benjakul, S., Kishimura, H., Shahidi, F. (2011). Functionalities and antioxidant properties of protein hydrolysates from the muscle of ornate threadfin bream treated with pepsin from skipjack tuna. Food Chemistry, 124(4):1354-1362.
Novozyme. (2017). Protease enzymes. Available from: http://www.novozymes.com/en/solutions/pharmaceuticals/biocatalysis/protease-enzymes. Accessed July. 17, 2017.
Ockerman, H. W., & Basu, L. (2004). By-products/edible, for human consumption. In W. K. Jensen (Eds.), Encyclopedia of meat sciences (pp. 104–112). United Kingdom: Elsevier Ltd.
Osawa, T., & Namiki, M. (1985). Natural antioxidant isolated from eucalyptus leaf waxes. Journal of Agriculture and Food Chemistry, 33: 777–780.
Ovissipour, M., Kenari, A. A., Motamedzadegan, A., & Nazari, R. M. (2012). Optimization of enzymatic hydrolysis of visceral waste proteins of yellowfin tuna (Thunnus albacares). Food and Bioprocess Technology, 5(2):696–705.
Oyaizu, M. (1986). Studies on products of browning reaction: antioxidative activity of products of browning reaction prepared from glucosamine. Japanese Journal of Nutrition, 44: 307–315.
Park, P. J., Jung, W. K., Nam, K. S., Shahidi, F., & Kim, S. K. (2001). Purification and characterization of antioxidative peptides from protein hydrolysate of lecithin-free egg yolk. Journal of the American Oil Chemists' Society, 78(6): 651–656.
Petroselli, G., Mandal, M. K., Chen, L. C., Ruiz, G. T., Wolcan, E., Hiraoka, K., Nonami, H., & Erra-Balsells, R. (2012). Mass spectrometry of rhenium complexes: a comparative study by using LDI-MS, MALDI-MS, PESI-MS and ESI-MS. Journal of Mass Spectrometry, 47(3): 312–321.
Rajapakse, N., Mendis, E., Jung, W.K., Je, J.Y., & Kim, S.K. (2005). Purification of a radical scavenging peptide from fermented mussel sauce and its antioxidant properties. Food Research International, 38: 175–182.
Ravallec-Plé, R., Charlot, C., Pires, C., Braga, V., Batista, I., Wormhoudt, A. V., Gal, Y. L., & Fouchereau-Péron, M. (2001). The presence of bioactive peptides in hydrolysates prepared from processing waste of sardine (Sardina pilchardus). Journal of the Science of Food and Agriculture, 81: 1120–1125.
Ren, J., Zhao, M., Shi, J., Wang, J., Jiang, Y., Cui, C., Kakuda, Y., & Xue, X. J. (2008). Optimization of antioxidant peptide production from grass carp sarcoplasmic protein using response surface methodology. LWT - Food Science and Technology, 41(9):1624–1632.
Ruan, C. Q., Chi, Y. J., & Zhang, R. D. (2010). Kinetics of hydrolysis of egg white protein by pepsin. Czech Journal of Food Sciences, 28(5):355–363.
Sarmadi, B. H., & Ismail, A. (2010). Antioxidative peptides from food proteins. A review. Peptides, 31: 1949–1956.
Seong, P. N., Park, K. M., Cho, S. H., Kang, S. M., Kang, G. H., Park, B. Y., Moon, S. S., & Ba, H. V. (2014). Characterization of edible pork by-products by means of yield and nutritional composition. Korean Journal for Food Science of Animal Resources, 34(3): 297–306.
Shimada, K., Fujikawa, K., Yahara, K., & Nakamura, T. (1992). Antioxidative properties of xanthan on the anti-oxidation of soybean oil in cyclodextrin emulsion. Journal of Agricultural and Food Chemistry, 40: 945–948.
Shimizu, M., Tanabe, S., Morimatsu, F., Nagao, K., Yanagita, T., Kato, N., & Nishimura, T. (2006). Consumption of pork-liver protein hydrolysate reduces body fat in otsuka long-evanstokushima fatty rats by suppressing hepatic lipogenesis. Bioscience, Biotechnology, and Biochemistry, 70(1): 112–118.
Sigma-Aldrich. (2017). Protease from Bacillus licheniformis. Available from: http://www.sigmaaldrich.com/catalog/product/sigma/p4860?lang=en®ion=TW. Accessed July. 17, 2017.
Thiansilakul, Y., Benjakul, S., & Shahidi, F. (2007). Compositions, functional properties and antioxidative activity of protein hydrolysates prepared from round scad (Decapterus maruadsi). Food Chemistry, 103(4): 1385–1394.
Tseng, Y. Y. (1999). The utilization of Monascus purpureus as a curing agent in meat products. Ph. D. dissertation, National Chung-Hsing University, Taichung, Taiwan.
Wang, Y., Wang, Z., Handa, C. L., Xu, J. (2017). Effects of ultrasound pre-treatment on the structure of β-conglycinin and glycinin and the antioxidant activity of their hydrolysates. Food Chemistry, 218: 165–172.
Whitehurst, R. J., & Oort, M. V. (2010). Enzymes in food technology. (2ed ed.). UK: A John Wiley & Sons, Ltd., Publication, (Chacper 1).
Wu, J. H., Wang, Z., & Xu, S. Y. (2008). Enzymatic production of bioactive peptides from sericin recovered from silk industry wastewater. Process Biochemistry, 43(5):480–487.
Yang, K. T., Lin, C., Liu, C. W., Chen, Y. C. (2014). Effects of chicken-liver hydrolysates on lipid metabolism in a high-fat diet. Food Chemistry, 160:148–156.
Yasuda, M., & Sakaguchi, M. (1998). Degradation of soybean protein by an acid proteinase from Monascus anka. Food Science and Technology International, 4(1): 6–8.
You, S. J., & Wu, J. (2011). Angiotensin-I converting enzyme inhibitory and antioxidant activities of egg protein hydrolysates produced with gastrointestinal and nongastrointestinal enzymes. Journal of Food Science, 76(6): C801–C807.
You, L., Zhao, M., Cui, C., Zhao, H., & Yang, B. (2009). Effect of degree of hydrolysis on the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates. Innovative Food Science and Emerging Technologies, 10: 235–240.
Yu, L., Sun, J., Liu, S., Bi, J., Zhang, C., & Yang, Q. (2012). Ultrasonic-assisted enzymolysis to improve the antioxidant activities of peanut (Arachin conarachin L.) antioxidant hydrolysate. International Journal of Molecular Sciences, 13(7): 9051–9068.
Zhu, K.X., Su, C.Y., Guo, X.N., Peng, W., & Zhou, H.M. (2011). Influence of ultrasound during wheat gluten hydrolysis on the antioxidant activities of the resulting hydrolysate. International Journal of Food Science & Technology, 46(5): 1053–1059.
Zhuang, Y. L., Zhao, X., & Li, B. F. (2009). Optimization of antioxidant activity by response surface methodology in hydrolysates of jellyfish (Rhopilema esculentum) umbrella collagen. Journal of Zheijang University SCIENCE B, 10(8):572–579.
Zou, Y., Wang, W., Li, Q., Chen, Y., Zheng, D., Zou, Y., Zhang, M., Zhao, T., Mao, G., Feng, W., Wu, X., & Yang, L. (2016). Physicochemical, functional properties and antioxidant activities of porcine cerebral hydrolysate peptides produced by ultrasound processing. Process Biochemistry, 51(3): 431–443.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊