跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/11 14:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:明亮
研究生(外文):K.Teepalak Rangubhet
論文名稱:評估菇類廢棄基質青貯料飼糧對荷蘭閹公牛之生長性狀、 瘤胃醱酵與甲烷排放之影響
論文名稱(外文):Evaluation of spent mushroom (Flamulina velutipes) substrate silage-based diets on the growth performance, rumen fermentation, and methane emission in Holstein steers
指導教授:江信毅
指導教授(外文):Hsin-I Chiang
口試委員:范揚廣徐濟泰楊价民陳淵國
口試委員(外文):Yang-Kwang FanJih-Tay HsuChe-Ming YangYuan-Guo Chen
口試日期:2017-07-17
學位類別:博士
校院名稱:國立中興大學
系所名稱:動物科學系所
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:82
外文關鍵詞:enteric methanespent mushroom substratesilageprotozoasteer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:251
  • 評分評分:
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:0
Direct modification of rumen microbial fermentation could provide universal and cost-effective solutions to reduce methane emissions from ruminant livestock. In this study, nutritive and bioactive values of sawdust-based spent mushroom (golden needle mushroom, Flammulina velutipes) substrate (SMS)-based silage were evaluated and effects of SMS silage-based diet on the growth performance, rumen fermentation and enteric methane emission in Holstein steers were investigated. Spent mushroom substrate and whole crop corn were ensiled for 60 days with or without urea in four recipes as follows: High SMS content without urea (90% SMS and 10% whole crop corn); High SMS content with urea (90% SMS, 1% urea and 9% whole crop corn); Low SMS content without urea (80% SMS and 20% whole crop corn); Low SMS content with urea (80% SMS, 1% urea and 19% whole crop corn) on dry matter (DM) basis. There was improvement on nutritive values in SMS-silage supplemented with urea. Low SMS content with 20% whole crop corn could favor the fermentation of silage. The maximum activity of laccase, lignin peroxidase and manganese peroxidase was found in High-SMS with 1% urea (20.8, 2545, 182 U/L, respectively) throughout the 60 days of fermentation period. Treatment diets that contained high SMS-based silage had higher range of total phenol and tannin (9.63-9.89, 1.96-2.03 mg of GAE/g, respectively) than the low SMS-based silage (9.02-9.22, 1.81-1.89 mg of GAE/g, respectively). SMS level and urea supplementation affected (P < 0.05) the cumulative gas production. High SMS contained in silage without urea could reduce (P < 0.05) gas production. Five dietary treatments were prepared as follows: 1) a control diet made-up of 50% concentrate and 50% bermuda hay (Cynodon dectylon), and 2) four diets formulated by replacing 40% of the bermuda hay in the control diet with the four SMS-based silages described above. Five Holstein steers (mean BW 542 ± 72 kg) were assigned to a 5 × 5 Latin square design and offered the five dietary treatments. The results demonstrated that the digestibility of all nutrients in SMS silage-based diets did not differ from the control diet but there were significantly decreased (P < 0.01) on feed conversion ratio in Holstein steers fed SMS-silage based diets. Nitrogen balance tended to be increased (P = 0.06) in animals fed SMS silage which contained 1% urea. Energy loss as methane energy was reduced (P < 0.05) in animal fed SMS silage-based diet. Holstein steers fed with SMS silage-based diets showed blood characteristics within the normal range as the steers fed control diet. Moreover, results of the rumen fermentation revealed that Holstein steers fed diets containing SMS-based silages had lower total protozoa population (3.75 × 105/mL vs. 6.09 × 105/mL), rumen acetate (55.43 mM/L vs. 57.61 mM/L) and methane emission (211 g/day vs. 252 g/day) (P < 0.05) than Holstein steers fed control diet. When comparing the inclusion levels of SMS-based silages in the diets, cattle fed diets with lower levels of SMS-based silages (80% SMS) had higher acetate contents (56.61 mM/L vs. 54.25), protozoa population (3.92 × 105/mL vs. 2.84 × 105/mL) and methane emission (226 g/day vs. 196 g/day) than animal fed diets with higher levels of SMS-based silage (90% SMS). The study revealed that spent Flamulina velutipes substrate silage can be used as forage source in Holstein steers which shows no significant effect on animal health. Feeding steers SMS-based silage can significantly elevate the balance of energy, hence increase body weight gain as well. This work also supports methane mitigating strategies based on reduction of rumen protozoa populations, and the inhibition of methanogenesis in the rumen probably through the presence of phenolic compounds. The study thus unveiled a novel migration strategy for reducing greenhouse gas production in ruminants using agro-industrial by-products. It is also a possible strategy to replace 20% bermuda hay (DM basis) in rations of Holstein steers to reduce feed cost up to 40 NTD/kg ADG.
Contents

Page
Acknowledgements i
Abstract ii
Contents iv
List of Tables vii
List of Figures viii
Chapter 1 Introduction 1
1.1 Introduction 1
1.2 Literature Review 3
1.2.1 Spent mushroom substrate (SMS) 3
1.2.1.1 Nutritive value of SMS 3
1.2.1.2 Bioactive compound of SMS 4
1.2.1.3 In vitro digestibility of SMS 6
1.2.2 Applying SMS as roughage source for ruminant feed 6
1.2.2.1 SMS silage-based diets 6
1.2.2.2 Effects of SMS on animal health 7
1.2.2.3 Effects of tannin complex protein in rumen 9
1.2.3 Methane emission and methane mitigation strategies 12
1.2.4 Protozoa population and methane emission 16
1.2.5 Urea supplementation 18
Chapter 2 Evaluation of SMS-based silage on nutritive and bioactive values 20
2.1 Introduction 20
2.2 Materials and methods 21
2.2.1 Mushroom cultivation 21
2.2.2 Silage preparation 21
2.2.3 Chemical analysis 22
2.2.4 Silage fermentative characteristics 22
2.2.5 In vitro gas production 23
2.3 Results and discussion 26
2.3.1 Nutritional composition 26
2.3.2 Silage quality parameters 28
2.3.3 Bioactive compositions 30
2.3.4 In vitro gas production 32
2.4 Conclusions 35
Chapter 3 Economic and evaluation of SMS silage-based diets on growth performance and blood characteristics in Holstein steers 36
3.1 Introduction 36
3.2 Materials and methods 37
3.2.1 Silage preparation 37
3.2.2 Animal experiment 38
3.2.3 Chemical analysis 38
3.2.4 Blood characteristics 39
3.2.5 Statistical analysis 40
3.3 Results and discussion 41
3.3.1 Ingredients andchemical composition 41
3.3.2 Daily feed intake and digestibility 44
3.3.3 Daily weight gain and retention of nitrogen and energy 47
3.3.4 Blood characteristics 49
3.3.5 Economic evaluation 51
3.4 Conclusions 52
Chapter 4 Evaluation of SMS silage-based diets on rumen fermentation and methane emission in Holstein steers 53
4.1 Introduction 53
4.2 Materials and methods 54
4.2.1 Experimental design and animal management 54
4.2.2 Rumen fermentation 54
4.2.3 Protozoa quantification 55
4.2.4 Methane emission 56
4.2.5 Statistical analysis 58
4.3 Results and discussion 59
4.3.1 Rumen fermentation parameters 59
4.3.2 Protozoa population and methane emission 63
4.4 Conclusions 66
Chapter 5 Conclusions 67
References 68
Publication list 79
Curriculum vitae 82


List of Tables

Page
Table 1 Blood characteristics for healthy cattle 8
Table 2 Methane abatement strategies, mechanism of abatement, and considerations for use 15
Table 3 Nutritional composition (on DM basis) of SMS-based silage 27
Table 4 Silage quality parameters (on DM basis) of SMS-based silage 29
Table 5 Bioactive compounds of SMS-based silage (on DM basis) 31
Table 6 In vitro gas production and gas production parameters of SMS-based silage (on DM basis) 34
Table 7 Ingredients and chemical composition of treatment diets 43
Table 8 Daily intake of feed component (on DM basis) in Holstein steers fed with SMS silage-based diets 45
Table 9 Digestibility (on DM basis) of nutrients in Holstein steers fed with SMS silage-based diets 46
Table 10 Average body weight, dry matter intake, FCR and retention of nitrogen and energy in Holstein steers fed SMS silage-based diets (on DM basis) 48
Table 11 Blood characteristics in Holstein steers fed SMS silage-based diets (on DM basis) 50
Table 12 Economic evaluation of feeding SMS silage-based diets to Holstein steers 51
Table 13 Rumen fermentation parameters in Holstein steers fed with SMS silage-based diets (on DM basis) 62
Table 14 Methane emission and protozoa population in Holstein steers fed with SMS silage-based diets (on DM basis) 65


List of Figures

Page
Figure 1 Flammulina velutipes (golden needle mushroom)
2
Figure 2 Spent mushroom substrate from Flammulina velutipe 2
Figure 3 Monomeric units of condensed (catechin and gallocatechin) and hydrolysable tannins (gallic and ellagic acid). 6
Figure 4 The chemical structure effect of tannins on protein bounding 12
Figure 5 The mechanism of formation and disassociation of tannin-protein complex in ruminant gastrointestinal tract 13
Figure 6 Rumen microorganisms, including bacteria, protozoa, and fungi, ferment carbohydrates to obtain energy and generate significant amounts of reducing equivalents (FADH2, NADH and others) in the process 16
Figure 7 Relationship between methane emission and rumen protozoa concentration 21
Figure 8 Urea pathway 23
Figure 9 Glass syringes, for in vitro gas production technique, with samples were incubated at 39 ºC for 0, 3, 6, 9, 12, 18, 24, 36 and 48 h 30
Figure 10 Kinetic parameter fitted by Y = a+b (1-e-ct) 31
Figure 11 In vitro gas production of SMS based-silage (on DM basis) 40
Figure 12 Blood collected from tail vein and prepared into blood collection tube 48
Figure 13 Protozoa populations (A) counted by counting chamber (B) 69
Figure 14 Cattle was confined in individual respiration chambers 71
Figure 15 Gas (A) collected from the respiration chambers and methane analyzed by GC (B) 71
References

Abdullah, N., Khan, A.D., Ejaz, N., 2004. Influence of nutrients carbon and nitrogen supplementation on biodegradation of wheat straw by Trametes versicolor. Micol. Aplicada Int. 16, 7-12.
Adamovic, M., Grubic, G., Milenkovic, I., Jovanovic, R., Protic, R., Sretenovic, L., Stoicevic, L., 1998. The biodegradation of wheat straw by Pleurotus ostreatus mushroom and its use in cattle feeding. Anim. Feed Sci. Technol. 71, 357-362.
Akinfemi, A., 2010. Bioconversion of peanut husk with white rot fungi Pleurotus ostreatus and Pleurotus pulmonarius. Livest. Res. Rural Develop. 22, http://www.lrrd.org/lrrd22/3/akin22049.htm
Akinfemi, A., Ogunwole, O.A., Ladipo, M.K., Adu, O.A., Osineye, O.M., Apata, E.S., 2008. Enhancement of the nutritive value of maize leaf treated with white-rot fungi: Pleurotus sajor caju and Pleurotus pulmonarius, and the effects on chemical composition and in vitro digestibility. Prod. Agric. Technol. 4, 106-114.
AOAC. 2000. Official methods of analysis. 17th edn. Association of official analytical chemists: Arlington, VA.
Aslam, S., Saifullah, 2013. Organic management of root knot nematodes in tomato with spent mushroom compost. Sarhad J. Agric. 29, 63-69.
Beelman, R.B., Royse, D.J., Chikthimmah, N., 2003. Bioactive components in button mushroom Agaricus bisporus (J. Lge) Imbach (Agaricomycetideae) of nutritional, medicinal and biological importance (review). J. Med.Mush. 5, 321-337.
Bhatta, R., Saravanan, M., Baruah, L., Sampath, K.T., Prasad, C.S., 2013. Effect of plant secondary compounds on in vitro methane, ammonia production and ruminal protozoa population. J. Appl. Microbiol. 115, 455-465.
Bhatta, R., Saravanan, M., Baruah, L., Prasad, C.S., 2014. Effect of graded levels of tannin-containing tropical tree leaves on in vitro rumen fermentation, total protozoa and methane production. J. Appl. Microbiol. 118, 557-264.
Carberry, A.C., Kenny, D.A., Kelly, A.K., Waters, S.M., 2014. Quantitative analysis of ruminal methanogenic microbial populations in beef cattle divergent in phenotypic residual feed intake (RFI) offered contrasting diets. J. Anim. Sci. Biotechnol. 5, 41.
Chang, S.T., Miles, P.G., 2004. Mushrooms: Cultivation, Nutritional Value, Medicinal Effect, and Environmental Impact, 2nd ed.; Boca Raton, FL, USA: CRC Press.
Cieslak, A., Szumacher-Strabel, M., Stochmal, A., Oleszek, W., 2013. Plant components with specific activities against rumen methanogens. Anim.7, 253–265.
Cozzi, G., Ravarotto, L., Gottardo, F., Stefaani, A.L., Contiero, B., Moro, L., Brscic, M., Dalvit, P., 2011. Reference values for bloods parameters in Holstein dairy cows: Effect of parity, stage of lactation, and season of production. J. Dairy Sci. 94, 3895-3901.
Dehority, B.A., 1993. Laboratory Manual for Classification and Morphology of Ruminal Ciliate Protozoa. (Ed. Press CRC) p. 120. CRC Press, Inc., Boca Raton, FL.
Domas, B.T., Watson, W.A., Biggs, H.G., 1971. Albumin standards and the measurement of serum albumin with bromocresol green. Clin. Chim. Acta. 31, 87-96.
Eugene, M., Archimede, H., Sauvant, D., 2004. Quantitative meta-analysis on the effects of defaunation of the rumen on growth, intake and digestion in ruminants. Livest. Sci. 85, 81-97.
Fazaeli, H., Masoodi, A.R., 2006. Spent wheat straw compost of Agaricus bisprus mushroom as ruminant feed. Asian. Aust. J. Anim. Sci. 19, 845-851.
Fazaeli, H., A. Azizi and M. Amile., 2006. Nutritive value index of treated wheat straw with Pleurotus fungi fed to sheep. Pakistan J. Biol. Sci. 9 (13), 2444-2449.
Flack, C.P., Woollen, J.W., 1984. Prevention of interference by dextran with biuret type assay of serum. Clin. Chem. 30, 559-561.
Farrance, I., 1987. Plasma glucose methods, a review. Clin. Chem. Rev. 8, 55-68.
kaurHarith, N., Abdullah, N., Sabaratnem, V., 2014. Cultivation of Flammulina velutipes mushroom using variation agro-residues as a fruiting substrate. Pesq. Agropec. Bras. 49, 181-188.
Hegarty, R.S., 1999. Reducing rumen methane emission through elimination of rumen protozoa. Aust. J. Agric. Res. 50, 1321-1327.
Hillman K., Williams, A.G., Lloyd, D., 1995. Postprandial variations in endogenous metabolic activities of ovine rumen ciliate protozoa. Anim. Feed Sci. Technol. 52, 237-247.
Horisawa, S., Sunagawa, M., Tamai, Y., Yamashita, K., Miura, T., Terazawa, M., 1999. Biodegradation of nonlignocellulosic substances II: physical and chemical properties of sawdust before and after use as artificial soil. J. Wood Sci. 45, 492-497.
Hook, S.E., Wright, A.G., McBride, B.W., 2010. Methanogens: Methane producers of the rumen and mitigation strategies. Archaea, doi:10.1155/2010/945785.
Hook, S.E., Steele, M.A., Northwood, K.S., Wright, A.G., McBride, B.W., 2011. Impact of high-concentrate feeding and low ruminal pH on methanogens and protozoa in the rumen of dairy cows. Microb. Ecol. 62, 94-105.
Huisden, C.M., Adesogan, A.T., Kim, S.C. and Ososanya, T., 2009. Effect of applying molasses or inoculants containing homofermentative or heterofermentative bacteria at two rates on the fermentation and aerobic stability of corn silage. J. Dairy Sci. 92, 690–697.
Husdan, H., Rapoport, A., 1968. Estimation of creatinine by the Jaffe reaction: a comparison of three methods. Clin. Chem. 14, 222-238.
Islam, M., Enishi, O., Purnomoadi, A., Higuhci, K., Takusari, N., Tereda, F., 2001. Energy and protein utilization by goats fed Italian ryegrass silage treated with molasses, urea, cellulase or cellulase + lactic acid bacteria. Small Rumin. Res. 42, 49-60.
Janssen, P.H., Kirs, M., 2008. Structure of archaea community of the rumen. Appl. Environ. Microbiol. 74, 3619-3625.
Janusz, G., Czurylo, A., Frac, M., Rola, B., Sulej, J., Pawlik, A., Siwulski, M., Rogalski, J., 2015. Laccase production and metabolic diversity among Flammulina velutipes strain. World J. Microbiol. Biotechnol. 31, 121-133.
Kachlishvili, E., M. J. Penninckx, N. Tsiklauri and V. Elisashvili., 2005. Effect of nitrogen source on lignocellulolytic enzyme production by white-rot basidomycetes under solid-state cultivation. World J. Microbiol & Biotechnol. 22 (9), 391-397.
Khattaba, I.M., Salemb, A.Z.M., Abdel-Waheda, A.M., Kewana, K.Z., 2013. Effects of urea supplementation on nutrient digestibility, nitrogen utilisation and rumen fermentation in sheep fed diets containing dates. Livest. Sci. J. 155, 223 -229.
Kim, M.K., Lee, H.G., Park, J.A., Kang, S.K., Choi, Y.J., 2011. Recycling of fermented sawdust-based oyster mushroom spent substrate as feed supplement for post weaning calves. Asian-Australas. J. Anim. Sci. 24, 493-499.
Kim, Y.I., Park, J.M., Lee, Y.H., Lee, M., Choi, D.Y., Kwak, W.S., 2015. Effect of by-product feed-based silage feeding on the performance, blood metabolites, and carcass characteristics of Hanwoo steers. Asian Australas. J. Anim. Sci. 28, 180-187.
Knapp, J.R., Laur, G.L., Vadas, P.A., Weiss, W.P., Tricarico, J.M., 2014. Invited review: Enteric methane in dairy cattle production: Quantifying the oppourtunities and impact of reducing emissions. J. Dairy Sci. 97, 3231-7234.
Kumar, S., Puniya, A.K., Puniya, M., Daga,r S.S., Sirohi, S.K., Singh, K., Griffith, G.W., 2009. Factors affecting rumen methanogens and methane mitigation strategies. World J. Microbiol. Biotechnol. 25, 1557-1566.
Kutlu, H.R., Gorgulu, M., Buyukalaca, S., Baykal, L., Ozcan, N., 2000. Effect of Pleurotus florida inoculation or urea treatment on feeding value of wheat straw. Turk. J. Vet. Anim. Sci. 24, 169-175.
Kwak, W.S., Kim, Y.I., Seok, J.S., Oh, Y.K., Lee, S.M., 2009. Molasses and microbial inoculants improve fermentability and silage quality of cotton waste-based spent mushroom substrate. Bioresour. Technol. 100, 1471-1473.
Lee, T.T., Huang, C.C., Shich, X.H., Chen, C.L., Chen, L.J., Yu, B., 2010. Flavonoid, phenol and polysaccharide contents of Echinacea Purpurea L. and its immunostimulant capacity in vitro. Int. J. Environ. Sci. Dev. 1, 5-9.
Li, X., Peng, Y., Zhang, R., 2001. Composition changes of cottonseed hull substrate during P.Ostreatus growth and the effect on the feeding value of the spent substrate. Bioresour. Technol. 80, 157-161.
Li, Z., Wright, A.D.G., Lin, H., Fan, Z., Yang, F., Zhang, Z., Li, G., 2015. Response of the rumen microbiota of Sika deer (Cervus nippon) fed different concentrations of tannin rich plants. PLoS ONE. 10, e0123481.
Madrid, J., Martınez-Teruel, A., Hernandez, F. and Megıas, M., 1999. A comparative study on the determination of lactic acid in silage juice by colorimetric, high-performance liquid chromatography and enzymatic methods. J. Sci. Food Agric. 79, 1722–1726.
Mangwe, C.M., Rangubhet, K.T., Mlambo, V., Yu, B., Chiang, H.I., 2016. Effect of Lactobacillus formosensis S215T and Lactobacillus bunchneri on quality and in vitro ruminal biological activity of condensed tannins in sweet potato vines silage. J. Appl. Microbiol. 121, 1242-1253.
McGinn, S.M., Beauchemin, K.A., Coates, T., Colombatto, D., 2004. Methane emissions from beef cattle: Effects of monensin, sunflower oil, enzyme, yeast, and fumaric acid. J. Anim. Sci. 82, 3346-3356.
Medina, E., Paredes, C., Pérez-Murcia, M.D., Bustamante, M.A., Moral, R., 2009. Spent mushroom substrates as component of growing media for germination and growth of horticultural plants. Bioresour. Technol. 100, 4227-4232.
Menke, K.H. and Steingass, H., 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Develop. 28, 7–55.
Milan, J.A., Aleksandra, S.B., Ivanka, M.M., Sneyana, S.S., Adamovia, I.V., 2007. The quality of silage of corn grain and spent P. Ostreatus mushroom substrate. Proc. Natl. Acad. Sci. 113, 211-218.
Min, B.R., Attwood, T.T., Reilly, K., Sun, W., Peters, J.S., Barry, T.N., McNabb, W.C., 2002. Lotus corniculatus condensed tannins decrease in vivo populations of proteolytic bacteria and affect nitrogen metabolism in the rumen of sheep. Can J. Microbiol. 48, 911-921.
Mizuno, T.S., 1995. Bioactive biomolecules of mushrooms: food function and medicinal effect of mushroom fungi. Food Rev. 11, 151-166.
Morris, C.A., Cullen, N.G., Upreti, G.C., 1995. Plasma cholesterol and triglyceride concentrations in yearing Angus cattle. Proceed. New Zealand Soc. Anim. Prod. 55, 101-103.
Moss, A.R., Jouany, J.P., Newbold, J., 2000. Methane production by ruminants: its contribution to global warming. Ann. Zootech. 49, 231-253.
Morgavi, D.P., Forano, E., Martin, C., Newbold, C.J., 2010. Microbial ecosystem and methanogenesis in ruminants. Anim. 4, 1024-1036.
Mueller-Harvey, I., 2006. Unraveling the conundrum of tannins in animal nutrition and health. J. Sci. Food Agric. 86, 2010-2037.
Newbold, C.J., Fuent, G., Belanche, A., Ramos-Morales, E., McEwan, N.R., 2015. The role of ciliate protozoa in the rumen. Front. Microbiol. 6, 1313-1321.
Nguyen, S.H., Li, L., Hegarty, R.S., 2016. Effect of rumen protozoa of Brahman heifers and nitrate on fermentation and in vitro methane production. Asian-Australs. J. Anim. Sci. 29, 807-813.
Oh, Y.K., Lee, W.M., Choi, C.W., Kim, K.H., Hong, S.K., Lee, S.C., Seol, Y.J., Kwak, W.S., Choi, N.J., 2010. Effect of spent mushroom substrates supplementation on rumen fermentation and blood metabolites in Hanwoo steers. Asian-Australs. J. Anim. Sci. 23, 1608-1613.
Okano, K., Boonlue, S., Suzuki, Y., 2005. Effect of ammonium hudroxide treatment on the in vitro dry matter digestibility and gas production of wheat straw, sugarcane bagrass medium and konara oak rotted by edible basidiomycetes. Anim. Sci. J. 76, 147-152.
Onodera, R., Yamaguchi, H., Eguchi, C., Kandstsu, M., 1977. Limits of survival of the mingled rumen bacteria in the washed cell suspension of rumen ciliate protozoa. Agric. Biol. Chem. 41, 2465- 2466.
Ørskov, E.R. and McDonald, I., 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J Agric. Sci. 92, 499– 503.
Pal, K., Patra, A.K., Sahoo, A., Kumawat, P.K., 2015. Evaluation of several tropical tree leaves for methane production potential, degradability and rumen fermentation in vitro. Livest. Sci. 180, 98-105.
Park, Y.J., Baek, J.H., Lee, S., Kim, C., Rhee, H., Kim, H., Seo, J.S., Park, H.R., Yoon, D.E., Nam, J.Y., Kim, H.I., Kim, J.G., Yoon, H., Kang, H.W., Cho, J.Y., Song, E.S., Sung, G.H., Yoo, Y.B., Lee, C.S., Lee, B.M., Kong, W.S., 2014. Whole genome and global gene expression analyses of the model mushroom Flammulina velutipes reveal a high capacity for lignocellulose degradation. PLoS ONE. 9, e93560.
Patra, A.K., Saxena, J., 2011. Exploitation of dietary tannins to improve rumen metabolism and ruminants nutrition. J. Sci. Food Agric. 91, 24-37.
Patra, A.K., Min, B.R., Saxena, J., 2012. Dietary tannins on microbial ecology of the gastrointestinal tract in ruminants. In book: Dietary Phytochemicals and Microbes. pp. 237-262.
Patra, A., Park, T., Kim, M., Yu, Z., 2017. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J. Anim. Sci. Biotechnol. 8, 13, doi: 10.1186/s40104-017-0145-9.
Peng, J.T., 2010. Overview and prospects of edible and medicinal mushrooms: production, consumption, and marketing in Taiwan. International Training Course on Edible Mushroom Production for Asian Farmer and Entrepreneurs November 22-23, 2010 at TARI, Taiwan.
Pounden, W.D., 1952. Demonstration of collection of rumen samples for examination. J. Anim. Sci. 67, 2772-2781.
Rangubhet, K.T., Fan, Y.K., Hsieh, Y.C., Liu, Y.T., Lu, G.C., Chiang, H.I., 2014. Ligninolytic enzymes produced from Flammulina velutipes cultivation residues as the enhancer of in vitro true digestibility in ruminants. Int. Proc. Chem. Biol. Environ. Eng. 79, 36-40.
Rodrigues, M. A. M., P. Pinto, R. M. F. Bezerra, A. A. Dias, C.V. M. Guedes, V. M. G. Cardoso, J. W. Cone, L. M. M. Ferreira, J. Colaco and C. A. Sequeira., 2008. Effect of enzyme extracts isolated from white-rot fungi on chemical composition and in vitro digestibility of wheat straw. Anim. Feed Sci. and Technol. 141, 326-338.
SAS, 2006. SAS user’s guide. Version 9.1. SAS Inst., Inc., Cary, NC. USA.
Samanta, A.K., Singh, K.K., Das, M.M., Maity, S.B., Kundu, S.S., 2003. Effect of complete feed block on nutrient utilization and rumen fermentation in Barbari goat. Small Rumin. Res. 48, 95-102.
Sanchez, C., 2010. Cultivation of Pleurotus ostreatus and other edible mushrooms. Appl. Microbiol. Biotechnol. 85, 1321-1337.
Sarwar, M., Nisa, M., Hassan, Z., Shahzad, M.A., 2006. Influence of urea molasses treated wheat straw fermented with cattle manure on chemical composition and feeding value for growing buffalo calves. Livest. Sci. 105, 151– 161.
Sewell, B.H., 1993. Urea supplements for beef cattle. http://extension.missouri.edu/p/ G2071
Shrivastava, B., P. Nandal, A. Sharma, K. K. Jain, Y. P. Khasa, T. K. Das, V. Mani, N. J. Kewalramani, S. S. Kundu, R. C. Kuhad., 2012. Solid state bioconversion of wheat straw into digestible and nutritive ruminant feed by Ganoderma sp. Rckk02. Bioresour. Technol. 107, 347-351.
Silvana, A., Maria, J.P., Matilde, S., Maria, P.C., 2006. Biodegradation of agro industrial wastes by Pleurotus spp. for its used as ruminant feed. J. Biotechnol. 9, 215-220.
Steele, P., Fraser, P., Rasmussen, R., Khalil, M., Conway, T., Crawford, A., Gammon, R., Masarie, K., Thoning, K., 1987. The global distribution of methane in the troposphere. J. Atmos. Chem. 5, 125-130.
Streeter, C.L., Conway, K., Horn, G.W., Mader, T.L., 1982. Nutritional evaluation of wheat straw incubated with the edible mushroom, Pleurotus ostreatus. J. Anim. Sci. 54, 183-188.
Tamilselvi, N., Krishnamoorthy, P., Dhamotharan, R., Arumugam, P., Sagadevan, E., 2012. Analysis of total phenol, total tannins and screening of phytocomponents in Indigofera aspalathoides (Sivanar Vembu) Vahl EX DC. J. Chem. Pharma. Res. 4, 3259-3262.
TARI, 2016. Safe production of mushroom. Innovation technique. www.tari.gov.tw
Ushida, K., 2010. Symbioic methanogens and rumen ciliates. Microbiol. Monogr. 19, 25-34.
Van Soest, P.J., 2006. Rice straw, the role of silica and treatments to improve quality. 130, 137-171.
Van Soest, P.J., Robertson, J.B., Lewis, B.A., 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583-3597.
Waghorn, G., 2008. Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production-Progress and challenges. Anim. Feed Sci. Technol. 147, 116-139.
Wallace, R.J., Rooke, J.A., Duthie, C.A., Hyslop, J.J., Ross, D.W., McKain, N., Souza, S.M., Snelling, T.J., Waterhouse, A., Roehe, R., 2014. Archaeal abundance in post-morterm ruminal digesta may help predict methane emissions from beef cattle. Sci. Rep. 4, 5892-5899.
Weinberg, Z.G., Chen, Y. and Weinberg, P., 2008. Ensiling olive cake with and without molasses for ruminant feeding. Bioresour. Technol. 99, 1526–1529.
Xu, C., Cai,Y., Zhang, J., Matsuyama, H., 2010. Feeding value of total mixed ration silage with spent mushroom substrate. Anim. Sci. J. 81, 194-198.
Zadrazil, F., Puniya, A.K.P., 1995. Studies on the effect of particle size on solid-state fermentation of sugarcane bagasses into animal feed using white-rot fungi. Bioresour. Technol. 54, 58-87.
Zebeli, Q., Tafaj, M., Junck, B., Mansmann, D., Steingass, H., Drochner, W., 2008. Evaluation of the effects of dietary particle fractions on fermentation profile and concentration of microbiota in the rumen of dairy cows fed grass silage-based diets. Arch. Anim. Nutr. 62, 230-240.
Zhang, Y., Gao, W., Meng, Q., 2007. Fermentation of plant cell walls by ruminal bacteria, protozoa and fungi and their interaction with fiber particle size. Arch. Anim. Nutr. 61, 114-125.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top