跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2025/01/26 04:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭長毅
研究生(外文):Chang-I Peng
論文名稱:精密彈性光子晶體結構製作與其在全彩光柵與多重防偽標籤應用
論文名稱(外文):Fabrication of flexible photonic crystal structures with applications in full color grating and multiple anti-counterfeiting labels
指導教授:王國禎
口試委員:莊漢聲張健忠
口試日期:2017-07-05
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:45
中文關鍵詞:彈性光子晶體奈米鎳模具奈米壓印多重防偽標籤
外文關鍵詞:Flexible photonic crystalnano nickel moldnano imprintingmulti- anti-counterfeiting features
相關次數:
  • 被引用被引用:0
  • 點閱點閱:242
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的為建立一可大量生產具有奈米全彩光柵特性之可撓性光子晶體(Photonic Crystal)結構之製程,並探究彈性光子晶體之光學特性與未來之可能應用。本研究以具奈米半球結構之陽極氧化鋁膜(Anodic Aluminum Oxide)背阻障層為模板,透過電鑄鎳製程製備用於可重覆壓印具有光子晶體結構之Polycarbonate(PC)的奈米鎳模具。最後透過奈米熱壓印製程將奈米鎳模具上之結構轉移至Polycarbonate (PC) 薄膜,製作可撓性光子晶體結構。
本研究製備之可撓性PC光子晶體薄膜可做為白光光柵分光器,透過不同之入射光角度或觀測方向皆能觀察到結構色變化,即便以室內光源照射亦能顯示明亮的結構色。此外;透過幾何光學與幾何形變改變入射光角度,觀察PC光子晶體繞射特性,發現於彈性PC表面皆能產生多樣的顏色,並確認此光子晶體可轉移部份光能量至第二階繞射光譜。又彈性PC光子晶體薄膜亦可透過形變來調整結構色的顯現,達到顯示隱藏圖案的功能,亦可將螢光圖案製作於具有光子晶體結構之PC薄膜之背面,使得具光子晶體結構之PC薄膜可分別或同時於可見光與紫外光照射下顯示不同顏色與圖案,提供多重防偽功能。
In this study, a method that enables the mass production of flexible photonic crystal structures possessing nano full-color grating, allowing diverse structural colorations, is presented. Optical properties of the flexible photonic crystal structures and their feasible applications are investigated. The uniformly distributed nano-hemisphere array of the barrier layer of an anodic aluminum oxide (AAO) membrane is used as the template for nickel electroforming to obtain a nickel nano-mold. The nickel nano-mold is further used for repeatedly imprinting of flexible Polycarbonate (PC) films with a designed photonic crystal structure.
The fabricated flexible PC films can be used as a white light grating. By means of different angles of incidence or different viewing angles, the structural color change can be clearly observed, even under indoor visible light. By means of different angles of incidence or different directions of observation, the structural color change can be clearly observed. In addition, the fabricated flexible PC films can produce a variety of colors by changing the angle of the incident light through geometric deformation. The phenomenon results from the unique diffraction characteristics of the flexible PC films. Through the Bragg diffraction formula, it is confirmed that the photonic crystal structure on the flexible PC films can transfer part of the light energy to the second order diffraction spectrum. Furthermore, the flexible PC films can reveal different structural colorations under bending or coating of transparent substances with different surface tensions to exploit its optical properties for various applications. In addition, an anti-counterfeiting feature is also successfully achieved when fluorophores are patterned on the back of the polymer film and excited with UV-light irradiation.
摘要 i
Abstract ii
圖目錄 v
表目錄 vii
第一章、 緒論 1
1.1.研究動機 1
1.2. 研究目的 2
第二章、文獻回顧 3
2.1. 光子晶體概念 3
2.1.1. ㄧ維光子晶體 3
2.1.2. 二維光子晶體 4
2.1.3. 三維光子晶體 5
2.1.4. 光子晶體應用 6
2.2. 光子晶體製程介紹 7
2.3. 陽極氧化鋁(Anodic Aluminum Oxide, AAO)光子晶體 10
2.4. 光子晶體於防偽標籤之發展 12
第三章、材料與方法 16
3.1. Polycarbonate光子晶體結構薄膜之製備 16
3.1.1. 陽極氧化鋁膜製程 16
3.1.2. 黃光微影製程 17
3.1.3. 奈/微米電鑄鎳模具製造 18
3.1.4. 奈米熱壓印製程 18
3.1.5. 螢光圖案化製程 18
3.2. 光子晶體表面特徵觀測與光譜量測 19
3.2.1. 場發射掃描式電子顯微鏡檢測 19
3.2.2. 原子力顯微鏡檢測 19
3.2.3. 數位照片之拍攝裝置架設 20
3.2.4. 光子晶體Polycarbonate 薄膜之光譜量測 21
第四章、結果與討論 22
4.1. 陽極氧化鋁膜及PC 薄膜之奈米結構 22
4.1.1. 掃描式電子顯微鏡觀測陽極氧化鋁膜表面形貌 22
4.1.2. 陽極氧化鋁膜、奈微米鎳模具與PC 薄膜表面之奈米結構特徵分析 24
4.2. 以陽極氧化鋁膜與PC薄膜表面奈米結構作為光子晶體之光學特性探討 26
4.2.1. 陽極氧化鋁膜及PC薄膜表面奈米結構之光譜分析 26
4.2.2. 幾何光學及幾何形變對光子晶體之變色影響 30
4.2.3. 螢光圖案化具光子晶體結構PC薄膜 32
第五章、結論與未來展望 33
5.1. 結論 33
5.2. 未來展望 34
奈米半球結構尺寸變化 35
具拉伸特性之奈米半球結構 35
參考文獻 36
[1]M. García-Matos and L. Torner, The Wonders of Light: Cambridge University Press, 2015.
[2]C. López, "Materials aspects of photonic crystals," Advanced Materials, vol. 15, pp. 1679-1704, 2003.
[3]Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature, vol. 425, pp. 944-947, 2003.
[4]H.-G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, "A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source," Nature Photonics, vol. 2, pp. 622-626, 2008.
[5]L. L. Yuan and P. R. Herman, "Laser scanning holographic lithography for flexible 3D fabrication of multi-scale integrated nano-structures and optical biosensors," Scientific Reports, vol. 6, 2016.
[6]D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, et al., "Enhanced photovoltaic energy conversion using thermally based spectral shaping," Nature Energy, vol. 1, p. 16068, 2016.
[7]A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, "Controlling waves in space and time for imaging and focusing in complex media," Nature Photonics, vol. 6, pp. 283-292, 2012.
[8]S. Noda, A. Chutinan, and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature, vol. 407, pp. 608-610, 2000.
[9]B.-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Materials, vol. 4, pp. 207-210, 2005.
[10]C. Soukoulis, "3D Photonic Crystals: From Microwaves to Optical Frequencies," Photonic Crystals and Light Localization in the 21st Century, pp. 25-40, 2001.
[11]E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Physical Review Letters, vol. 58, p. 2059, 1987.
[12]S. John, "Strong localization of photons in certain disordered dielectric superlattices," Physical Review Letters, vol. 58, p. 2486, 1987.
[13]J. D. Joannopoulos, R. D. Meade, and N. Joshua, "Winn,“Photonic crystals”," ed: Princeton University Press, 1995.
[14]T. F. Krauss, R. M. De La Rue, and S. Brand, "Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths," Nature, vol. 383, p. 699, 1996.
[15]H. B. Lin, R. Tonucci, and A. Campillo, "Observation of two‐dimensional photonic band behavior in the visible," Applied Physics Letters, vol. 68, pp. 2927-2929, 1996.
[16]T. Sondergaard, J. Broeng, A. Bjarklev, K. Dridi, and S. E. Barkou, "Suppression of spontaneous emission for a two-dimensional honeycomb photonic bandgap structure estimated using a new effective-index model," IEEE Journal of Quantum Electronics, vol. 34, pp. 2308-2313, 1998.
[17]A. Maradudin and A. McGurn, "Out of plane propagation of electromagnetic waves in a two-dimensional periodic dielectric medium," Journal of Modern Optics, vol. 41, pp. 275-284, 1994.
[18]X.-P. Feng and Y. Arakawa, "Off-plane angle dependence of photonic band gap in a two-dimensional photonic crystal," IEEE Journal of Quantum Electronics, vol. 32, pp. 535-542, 1996.
[19]S. Ogawa, K. Tomoda, and S. Noda, "Effects of structural fluctuations on three-dimensional photonic crystals operating at near-infrared wavelengths," Journal of Applied Physics, vol. 91, pp. 513-515, 2002.
[20]Y.-L. Yang, F.-J. Hou, S.-C. Wu, W.-H. Huang, M.-C. Lai, and Y.-T. Huang, "Fabrication and characterization of three-dimensional all metallic photonic crystals for near infrared applications," Applied Physics Letters, vol. 94, p. 041122, 2009.
[21]M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nature Materials, vol. 3, pp. 444-447, 2004.
[22]H. Ohkubo, Y. Ohtera, S. Kawakami, and T. Chiba, "Transmission wavelength shift of+ 36 nm observed with Ta/sub 2/O/sub 5/-SiO/sub 2/multichannel wavelength filters consisting of three-dimensional photonic crystals," IEEE Photonics Technology Letters, vol. 16, pp. 1322-1324, 2004.
[23]R.-J. Liu, Z.-Y. Li, Z.-F. Feng, B.-Y. Cheng, and D.-Z. Zhang, "Channel-drop filters in three-dimensional woodpile photonic crystals," Journal of Applied Physics, vol. 103, p. 094514, 2008.
[24]A. Bruyant, G. Lerondel, P. Reece, and M. Gal, "All-silicon omnidirectional mirrors based on one-dimensional photonic crystals," Applied Physics Letters, vol. 82, pp. 3227-3229, 2003.
[25]Y. Li, Y. Xiang, S. Wen, J. Yong, and D. Fan, "Tunable terahertz-mirror and multi-channel terahertz-filter based on one-dimensional photonic crystals containing semiconductors," Journal of Applied Physics, vol. 110, p. 073111, 2011.
[26]H. Němec, L. Duvillaret, F. Garet, P. Kužel, P. Xavier, J. Richard, et al., "Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect," Journal of Applied Physics, vol. 96, pp. 4072-4075, 2004.
[27]H.-Y. Lee, S.-J. Cho, G.-Y. Nam, W.-H. Lee, T. Baba, H. Makino, et al., "Multiple-wavelength-transmission filters based on Si-SiO 2 one-dimensional photonic crystals," Journal of Applied Physics, vol. 97, p. 103111, 2005.
[28]H. Taniyama, "Waveguide structures using one-dimensional photonic crystal," Journal of Applied Physics, vol. 91, pp. 3511-3515, 2002.
[29]T.-W. Lu, L.-H. Chiu, P.-T. Lin, and P.-T. Lee, "One-dimensional photonic crystal nanobeam lasers on a flexible substrate," Applied Physics Letters, vol. 99, p. 071101, 2011.
[30]M. Djavid, A. Ghaffari, F. Monifi, and M. S. Abrishamian, "Photonic crystal power dividers using L-shaped bend based on ring resonators," JOSA B, vol. 25, pp. 1231-1235, 2008.
[31]P. I. Borel, L. H. Frandsen, A. Harp?th, M. Kristensen, J. S. Jensen, and O. Sigmund, "Topology optimised broadband photonic crystal Y-splitter," Electronics Letters, vol. 41, pp. 69-71, 2005.
[32]M. K. Moghaddam, A. R. Attari, and M. M. Mirsalehi, "Improved photonic crystal directional coupler with short length," Photonics and Nanostructures-Fundamentals and Applications, vol. 8, pp. 47-53, 2010.
[33]M. J. Bloemer and M. Scalora, "Transmissive properties of Ag/MgF 2 photonic band gaps," Applied Physics Letters, vol. 72, pp. 1676-1678, 1998.
[34]H.-Y. Lee, H. Makino, T. Yao, and A. Tanaka, "Si-based omnidirectional reflector and transmission filter optimized at a wavelength of 1.55 μm," Applied Physics Letters, vol. 81, pp. 4502-4504, 2002.
[35]K. M. Chen, A. W. Sparks, H.-C. Luan, D. R. Lim, K. Wada, and L. C. Kimerling, "SiO 2/TiO 2 omnidirectional reflector and microcavity resonator via the sol-gel method," Applied Physics Letters, vol. 75, pp. 3805-3807, 1999.
[36]J. Bellessa, S. Rabaste, J. Plenet, J. Dumas, J. Mugnier, and O. Marty, "Eu 3+-doped microcavities fabricated by sol–gel process," Applied Physics Letters, vol. 79, pp. 2142-2144, 2001.
[37]M. Patrini, M. Galli, M. Belotti, L. Andreani, G. Guizzetti, G. Pucker, et al., "Optical response of one-dimensional (Si/SiO 2) m photonic crystals," Journal of Applied Physics, vol. 92, pp. 1816-1820, 2002.
[38]H. A. Lopez and P. M. Fauchet, "Erbium emission from porous silicon one-dimensional photonic band gap structures," Applied Physics Letters, vol. 77, pp. 3704-3706, 2000.
[39]J. Wendt, G. Vawter, P. Gourley, T. Brennan, and B. Hammons, "Nanofabrication of photonic lattice structures in GaAs/AlGaAs," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 11, pp. 2637-2640, 1993.
[40]K. Inoue, M. Wada, K. Sakoda, A. Yamanaka, M. Hayashi, and J. W. Haus, "Fabrication of two-dimensional photonic band structure with near-infrared band gap," Japanese Journal of Applied Physics, vol. 33, p. L1463, 1994.
[41]A. Rosenberg, R. Tonucci, and E. Bolden, "Photonic band‐structure effects in the visible and near ultraviolet observed in solid‐state dielectric arrays," Applied Physics Letters, vol. 69, pp. 2638-2640, 1996.
[42]N. Yamamoto, S. Noda, and A. Chutinan, "Development of one period of a three-dimensional photonic crystal in the 5–10 µm wavelength region by wafer fusion and laser beam diffraction pattern observation techniques," Japanese Journal of Applied Physics, vol. 37, p. L1052, 1998.
[43]N. Yamamoto and S. Noda, "100-nm-scale alignment using laser beam diffraction pattern observation techniques and wafer fusion for realizing three-dimensional photonic crystal structure," Japanese Journal of Applied Physics, vol. 37, p. 3334, 1998.
[44]S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science, vol. 289, pp. 604-606, 2000.
[45]O. Velev, T. Jede, R. Lobo, and A. Lenhoff, "Porous silica via colloidal crystallization," Nature, vol. 389, p. 447, 1997.
[46]C.-H. Chan, C.-C. Chen, C.-K. Huang, W.-H. Weng, H.-S. Wei, H. Chen, et al., "Self-assembled free-standing colloidal crystals," Nanotechnology, vol. 16, p. 1440, 2005.
[47]A. A. Zakhidov, R. H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S. O. Dantas, et al., "Carbon structures with three-dimensional periodicity at optical wavelengths," Science, vol. 282, pp. 897-901, 1998.
[48]A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, et al., "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature, vol. 405, pp. 437-440, 2000.
[49]D. Losic and A. Santos, Nanoporous Alumina: fabrication, structure, properties and applications vol. 219: Springer, 2015.
[50]T. Kondo, S. Hirano, T. Yanagishita, N. T. Nguyen, P. Schmuki, and H. Masuda, "Two-dimensional photonic crystals based on anodic porous TiO2 with ideally ordered hole arrangement," Applied Physics Express, vol. 9, p. 102001, 2016.
[51]J. Lin, K. Liu, and X. Chen, "Synthesis of periodically structured titania nanotube films and their potential for photonic applications," Small, vol. 7, pp. 1784-1789, 2011.
[52]J. O. Estevez and V. Agarwal, "Porous Silicon Photonic Crystals," in Handbook of Porous Silicon, ed: Springer, 2014, pp. 805-814.
[53]G. D. Sulka, "Highly ordered anodic porous alumina formation by self-organized anodizing," Nanostructured Materials in Electrochemistry, vol. 1, pp. 1-116, 2008.
[54]W. Lee and S.-J. Park, "Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures," Chemical Reviews, vol. 114, pp. 7487-7556, 2014.
[55]H. Masuda, M. Ohya, H. Asoh, M. Nakao, M. Nohtomi, and T. Tamamura, "Photonic crystal using anodic porous alumina," Japanese Journal of Applied Physics, vol. 38, p. L1403, 1999.
[56]H. Masuda, M. Ohya, K. Nishio, H. Asoh, M. Nakao, M. Nohtomi, et al., "Photonic band gap in anodic porous alumina with extremely high aspect ratio formed in phosphoric acid solution," Japanese Journal of Applied Physics, vol. 39, p. L1039, 2000.
[57]H. Masuda, M. Ohya, H. Asoh, and K. Nishio, "Photonic band gap in naturally occurring ordered anodic porous alumina," Japanese Journal of Applied Physics, vol. 40, p. L1217, 2001.
[58]W. Lee and J.-C. Kim, "Highly ordered porous alumina with tailor-made pore structures fabricated by pulse anodization," Nanotechnology, vol. 21, p. 485304, 2010.
[59]W. Lee, K. Schwirn, M. Steinhart, E. Pippel, R. Scholz, and U. Gösele, "Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium," Nature Nanotechnology, vol. 3, pp. 234-239, 2008.
[60]W. Lee, R. Scholz, and U. Gösele, "A continuous process for structurally well-defined Al2O3 nanotubes based on pulse anodization of aluminum," Nano Letters, vol. 8, pp. 2155-2160, 2008.
[61]Y. L. Lee and Y. S. Lo, "Highly Efficient Quantum‐Dot‐Sensitized Solar Cell Based on Co‐Sensitization of CdS/CdSe," Advanced Functional Materials, vol. 19, pp. 604-609, 2009.
[62]M. Pashchanka, S. Yadav, T. Cottre, and J. J. Schneider, "Porous alumina-metallic Pt/Pd, Cr or Al layered nanocoatings with fully controlled variable interference colors," Nanoscale, vol. 6, pp. 12877-12883, 2014.
[63]D. Choi, C. K. Shin, D. Yoon, D. S. Chung, Y. W. Jin, and L. P. Lee, "Plasmonic optical interference," Nano letters, vol. 14, pp. 3374-3381, 2014.
[64]J. Li, Z. Zhu, Y. Hu, J. Zheng, J. Chu, and W. Huang, "Numerical and experimental study of the structural color by widening the pore size of nanoporous anodic alumina," Journal of Nanomaterials, vol. 2014, p. 51, 2014.
[65]X. Wang, D. Zhang, H. Zhang, Y. Ma, and J. Jiang, "Tuning color by pore depth of metal-coated porous alumina," Nanotechnology, vol. 22, p. 305306, 2011.
[66]Y. Liu, Y. Chang, Z. Ling, X. Hu, and Y. Li, "Structural coloring of aluminum," Electrochemistry Communications, vol. 13, pp. 1336-1339, 2011.
[67]Y. Chen, A. Santos, Y. Wang, T. Kumeria, C. Wang, J. Li, et al., "Interferometric nanoporous anodic alumina photonic coatings for optical sensing," Nanoscale, vol. 7, pp. 7770-7779, 2015.
[68]Y. Chen, A. Santos, Y. Wang, T. Kumeria, J. Li, C. Wang, et al., "Biomimetic nanoporous anodic alumina distributed bragg reflectors in the form of films and microsized particles for sensing applications," ACS Applied Materials & Interfaces, vol. 7, pp. 19816-19824, 2015.
[69]Y. Chen, A. Santos, Y. Wang, T. Kumeria, D. Ho, J. Li, et al., "Rational design of photonic dust from nanoporous anodic alumina films: a versatile photonic nanotool for visual sensing," Scientific Reports, vol. 5, 2015.
[70]Y. Chen, A. Santos, D. Ho, Y. Wang, T. Kumeria, J. Li, et al., "On the generation of interferometric colors in high purity and technical grade aluminum: an alternative green process for metal finishing industry," Electrochimica Acta, vol. 174, pp. 672-681, 2015.
[71]Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, "On-chip natural assembly of silicon photonic bandgap crystals," Nature, vol. 414, pp. 289-293, 2001.
[72]J. Ge, Y. Hu, and Y. Yin, "Highly tunable superparamagnetic colloidal photonic crystals," Angewandte Chemie, vol. 119, pp. 7572-7575, 2007.
[73]C. I. Aguirre, E. Reguera, and A. Stein, "Tunable colors in opals and inverse opal photonic crystals," Advanced Functional Materials, vol. 20, pp. 2565-2578, 2010.
[74]S. Berthier, J. Boulenguez, and Z. Bálint, "Multiscaled polarization effects in Suneve coronata (Lepidoptera) and other insects: application to anti-counterfeiting of banknotes," Applied Physics A: Materials Science & Processing, vol. 86, pp. 123-130, 2007.
[75]T. Saison, C. Peroz, V. Chauveau, S. Berthier, E. Sondergard, and H. Arribart, "Replication of butterfly wing and natural lotus leaf structures by nanoimprint on silica sol–gel films," Bioinspiration & Biomimetics, vol. 3, p. 046004, 2008.
[76]S.-H. Kang, T.-Y. Tai, and T.-H. Fang, "Replication of butterfly wing microstructures using molding lithography," Current Applied Physics, vol. 10, pp. 625-630, 2010.
[77]J. Han, H. Su, F. Song, D. Zhang, and Z. Chen, "Controllable reflection properties of nanocomposite photonic crystals constructed by semiconductor nanocrystallites and natural periodic bio-matrices," Nanoscale, vol. 2, pp. 2203-2208, 2010.
[78]H. Hu, Q.-W. Chen, J. Tang, X.-Y. Hu, and X.-H. Zhou, "Photonic anti-counterfeiting using structural colors derived from magnetic-responsive photonic crystals with double photonic bandgap heterostructures," Journal of Materials Chemistry, vol. 22, pp. 11048-11053, 2012.
[79]H. Hu, C. Chen, and Q. Chen, "Magnetically controllable colloidal photonic crystals: unique features and intriguing applications," Journal of Materials Chemistry C, vol. 1, pp. 6013-6030, 2013.
[80]Q. Xu, H.-Y. Sun, Y.-H. Yang, L.-H. Liu, and Z.-Y. Li, "Optical properties and color generation mechanism of porous anodic alumina films," Applied Surface Science, vol. 258, pp. 1826-1830, 2011.
[81]Q. Xu, Y. Yang, J. Gu, Z. Li, and H. Sun, "Influence of Al substrate on the optical properties of porous anodic alumina films," Materials Letters, vol. 74, pp. 137-139, 2012.
[82]X. Zhao, G. Meng, Q. Xu, F. Han, and Q. Huang, "Color Fine‐Tuning of CNTs@ AAO Composite Thin Films via Isotropically Etching Porous AAO Before CNT Growth and Color Modification by Water Infusion," Advanced Materials, vol. 22, pp. 2637-2641, 2010.
[83]Y. Montelongo, J. O. Tenorio-Pearl, C. Williams, S. Zhang, W. I. Milne, and T. D. Wilkinson, "Plasmonic nanoparticle scattering for color holograms," Proceedings of the National Academy of Sciences, vol. 111, pp. 12679-12683, 2014.
[84]J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, et al., "Vivid, full-color aluminum plasmonic pixels," Proceedings of the National Academy of Sciences, vol. 111, pp. 14348-14353, 2014.
[85]S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, et al., "Plasmonic color palettes for photorealistic printing with aluminum nanostructures," Nano Letters, vol. 14, pp. 4023-4029, 2014.
[86]L. Zhu, J. Kapraun, J. Ferrara, and C. J. Chang-Hasnain, "Flexible photonic metastructures for tunable coloration," Optica, vol. 2, pp. 255-258, 2015.
[87]L. Bai, Z. Xie, W. Wang, C. Yuan, Y. Zhao, Z. Mu, et al., "Bio-inspired vapor-responsive colloidal photonic crystal patterns by inkjet printing," ACS Nano, vol. 8, pp. 11094-11100, 2014.
[88]H. Nam, K. Song, D. Ha, and T. Kim, "Inkjet printing based mono-layered photonic crystal patterning for anti-counterfeiting structural colors," Scientific Reports, vol. 6, 2016.
[89]D. Nakajima, T. Kikuchi, S. Natsui, and R. O. Suzuki, "Growth behavior of anodic oxide formed by aluminum anodizing in glutaric and its derivative acid electrolytes," Applied Surface Science, vol. 321, pp. 364-370, 2014.
[90]T. Kikuchi, O. Nishinaga, S. Natsui, and R. O. Suzuki, "Fabrication of self-ordered porous alumina via etidronic acid anodizing and structural color generation from submicrometer-scale dimple array," Electrochimica Acta, vol. 156, pp. 235-243, 2015.
[91][91]T. Kikuchi, O. Nishinaga, S. Natsui, and R. O. Suzuki, "Polymer nanoimprinting using an anodized aluminum mold for structural coloration," Applied Surface Science, vol. 341, pp. 19-27, 2015.
[92]S. Bertani, B. Jacobsson, F. Laurell, V. Pasiskevicius, and M. Stjernström, "Stretching-tunable external-cavity laser locked by an elastic silicone grating," Optics Express, vol. 14, pp. 11982-11986, 2006.
[93]Z. Han, B. Li, Z. Mu, M. Yang, S. Niu, J. Zhang, et al., "Fabrication of the replica templated from butterfly wing scales with complex light trapping structures," Applied Surface Science, vol. 355, pp. 290-297, 2015.
[94]Y. J. Lin, C. C. Chang, S. J. Cherng, J. W. Chen, and C. M. Chen, "Manipulation of light harvesting for efficient dye‐sensitized solar cell by doping an ultraviolet light‐capturing fluorophore," Progress in Photovoltaics: Research and Applications, vol. 23, pp. 106-111, 2015.
[95]Y.-C. Lai and C.-C. Chang, "Photostable BODIPY-based molecule with simultaneous type I and type II photosensitization for selective photodynamic cancer therapy," Journal of Materials Chemistry B, vol. 2, pp. 1576-1583, 2014.
[96]S. Akiya, T. Kikuchi, S. Natsui, N. Sakaguchi, and R. O. Suzuki, "Self-ordered porous alumina fabricated via phosphonic acid anodizing," Electrochimica Acta, vol. 190, pp. 471-479, 2016.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top