跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/15 00:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳俊寬
研究生(外文):Chun-Kuan Wu
論文名稱:光學式鋼球球心定位法於五軸工具機靜態誤差校正系統之可行性研究
論文名稱(外文):A feasibility of optical methods for measuring steel ball center for 5-axis machine tool calibration
指導教授:陳政雄陳政雄引用關係
指導教授(外文):Jenq-Shyong Chen
口試委員:劉建宏陳紹賢
口試日期:2017-07-27
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:51
中文關鍵詞:靜態誤差量測干涉條紋量測影像量測線上量測虛像特徵
外文關鍵詞:static error measurementinterferometerimage measurementon-line measurementvirtual image
相關次數:
  • 被引用被引用:0
  • 點閱點閱:208
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究五軸工具機之快速、線上靜態誤差量測系統設計評估,設計上以克服傳統量測系統量測上的限制為主,其中包含增加工作距離、建立三維量測系統、提升對加工環境之抗性、降低參考點成本為目標。定位刀尖點的方法為使用鋼球(master ball)之球心當作工件參考點(artifacts),鋼球由各個面方向觀察,其形狀、光反射條件皆相同,與五軸工具機各個方向加工之情境相同。量測方法以影像處理做為基礎,影像量測可以降低因為環境干擾所產生的誤差量,增加工作距離,並且同時獲得三維數據,減少量測時間。
量測球心有三種方法,如量測輪廓、表面干涉、表面特徵位移等。量測輪廓可直接使用背光光源投影;表面干涉產生數個環狀干涉,可計算圓心之位移;表面特徵則使用光源產生圖案於鋼球上,為了增加鋼球之表面特徵以便於分析準確度,加上鋼球之鏡面反射不易投影光學特徵,因此使用虛像當作其表面特徵。本文評估了四套系統,包含抗加工環境的背光式系統、反射鏡式、光場相機式;增加工作距離之干涉式、反射鏡式、光場相機式系統。背光式系統為將平行光投影至CCD上,之中放置一鋼球,量測鋼球投影之圓心位移,以兩系統組建立三維位移;干涉式以麥克森干涉儀為基本架構,使用同調光源如LED或雷射光,聚焦鋼球之透鏡為平凸透鏡,平凸透鏡之平面使用半反射式以代替參考面,接著兩道光干涉,成像於CCD上,最後量測環形干涉條紋圓心位移,再以三個分光鏡建立三維位移;反射鏡式以三個反射鏡建立相機兩個視角,以雙視角量測鋼球之位移獲得三維位移;光場相機式以微鏡頭陣列量測,可同時量測三維位移。
實驗以模擬軟體或是一維架構做為驗證,評估系統之量測數據與鋼球位移線性關係以及對環境的抗性。背光式以一維架構為實驗,將器材至於被動式光學桌上,以雷射筆、擴束鏡、鋼球、CCD架設於同一直線上,藉由影像分析量測其圓心精度在1μm內。干涉式以Zemax軟體做非序列光路模擬。反射鏡式基本架構為量測虛像特徵之位移,架設12x遠心鏡頭攝影機、環狀光源、鋼球做位移量測,所得之精度以圓形擬合和數位影像相關法分析之精度分別為3um與1um。光場相機為新產品,其價格高昂,因此使用現有規格進行評估。在環境干擾評估方面,在鋼球上滴上切削液與主軸油,量測鋼球受到干擾時之成像、精度、準度關係,由實驗得知,干涉條紋受干擾即消失,輪廓受干擾時,精度維持1μm,準度差了15μm,影像受到干擾時,精度維持1μm,準度差了35μm。
本論文提供四種靜態誤量測裝置之構想評估,包含干涉式、背光式、反射鏡式以及光場相機應用。背光式、反射鏡式與光場相機式增加了環境抗性,干涉式、反射鏡式與光場相機式皆可拉開工作距離,以達到方便架設與減少碰撞機會;參考點使用鋼球則減少了成本,光學特徵以球面鏡之虛像方式設計,不需要對鋼球再作削光處理。
This study is about the feasibility of the newly designed static error measurement system for five-axis machine tool to measure geometry errors. The function requirements are to overcome the limitation of the measurement systems developed before, including increasing the working distance, applying three-dimension measurement, enhance the ability to use under the processing environment, lower the price of the reference point. The tool center point (TCP) was represent by a steel ball, named artifacts by researchers. The steel ball feature is having the same shape observed from all direction, giving that all the reflection from all direction behave as the same. This feature meets the requirements for five-axis machine tool error measuring system due to the TCP coming from all direction as well. Image processing is applied to the system to reach the function requirements.
To measure the center of the steel ball, there are three method mentioned in this thesis, involving contour measuring, sphere face interfering, surface character. Backlight projection is used in contour measuring, the circle center capture by the interferometer estimate the ball displacement, surface character is produced by character light which applied virtual image generated by steel ball. The thesis describes four measurement systems, including backlight method, interferometers method, mirror reflection method, light field camera method. Back light system contains two parallel light, a steel ball, two sensors to build up a three-dimension measuring system. Interferometer system is based on Michelson interferometer by putting a steel ball as the sample and the reference surface is set on the plan side of plan-convex plan with half reflection coating. Mirror reflection system contains four mirror sides giving two capturing angle. Light field camera capture three-dimension picture by micro lens array.
One-dimension experiment is used to evaluate the correlation between steel ball displacements and image displacements, and to verify the anti-processing-environment capability. Back light system reach the precision within 1μm with the system as shown and the precision still remain after adding cutting fluid while the accuracy move 15μm. Interferometer system can’t be used after adding cutting fluid. Mirror system reach the precision within 3μm and 1μm with circle fitting and image correlation while the accuracy move 35μm.
Mirror reflection reach the function requirements. Virtual image is used to generate optical character successfully. Light field camera is expected to be feasible to the static error system development.
摘要 i
Abstract iii
目錄 v
圖目錄 viii
表目錄 xi
第1章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.2.1 國際規範 2
1.2.2 傳統量測系統 4
1.2.3 新型三維量測系統 5
1.3 研究創新與進步性 7
1.4 論文架構 8
第2章 成像原理 9
2.1 鋼球干涉條紋原理 9
2.2 背光模組原理 13
2.3 鋼球面虛像成像原理 14
2.4 雙視角反射鏡原理 17
2.5 光場相機原理 18
2.6 影像處理 21
2.6.1 二值化 21
2.6.2 影像形態學 21
2.6.3 數位影像相關法 22
第3章 量測系統設計 23
3.1 干涉式模組 23
3.2 背光式模組 24
3.3 反射鏡式模組 24
3.4 光場相機模組 25
第4章 成像實驗與模擬 27
4.1 實驗設備 27
4.1.1 攝影機 27
4.1.2 雷射光源 27
4.1.3 遠心鏡頭 28
4.1.4 凸透鏡 28
4.1.5 擴束鏡 29
4.1.6 環狀光源 29
4.1.7 環境干擾物 30
4.2 干涉實驗與模擬 30
4.2.1 matlab模擬干涉條紋 30
4.2.2 Zemax模擬干涉條紋 31
4.2.3 鋼球移動與干涉條紋圓心相關性實驗 32
4.2.1 環境干擾實驗 33
4.3 背光實驗 34
4.3.1 鋼球移動與投影輪廓圓心相關性實驗 34
4.3.1 環境干擾與重現性實驗 36
4.4 虛像實驗與模擬 37
4.4.1 Matlab模擬橫向放大率與縱向放大率變化量 37
4.4.2 鋼球移動與虛像圓形特徵關係實驗 41
4.4.1 環境干擾物與重現性實驗 44
4.5 規格比較 45
第5章 結論與未來展望 46
5.1 研究結論 46
5.2 未來展望 47
參考文獻 48
[1] Ramesh, R., M. A. Mannan, and A. N. Poo. "Error compensation in machine tools—a review: part I: geometric, cutting-force induced and fixture-dependent errors." International Journal of Machine Tools and Manufacture 40.9 (2000): 1235-1256.
[2] Nakazawa, Hiromu. Principles of precision engineering. Oxford University Press, USA, 1994.
[3] ISO/FDIS 230-1, “Test code for machine tools – Part 1: Geometric
accuracy of machines operating under no-load or quasi-static conditions,”
2011.
[4] ISO, DIN. "230-2: 2011-11: Test code for machine tools-Part 2: Determination of accuracy and repeatability of positioning numerically controlled axes (ISO 230-2: 2006)." (2011).
[5] Yang, Minyang, and Jaejong Lee. "Measurement and prediction of thermal errors of a CNC machining center using two spherical balls." Journal of Materials Processing Technology 75.1 (1998): 180-189.
[6] Lee, Jae-Jong, and Min-Yang Yang. "Measurement of the volumetric thermal errors for CNC machining center using the star-type-styluses touch probe." International Journal of Precision Engineering and Manufacturing 1.1 (2000): 111-117.
[7] Erkan, Tibet, JR René Mayer, and Yannick Dupont. "Volumetric distortion assessment of a five-axis machine by probing a 3D reconfigurable uncalibrated master ball artefact." Precision Engineering 35.1 (2011): 116-125.
[8] Ibaraki, Soichi, and Yusuke Ota. "Error calibration for five-axis machine tools by on-the-machine measurement using a touch-trigger probe." International Journal of Automation Technology 8.1 (2014): 20-27.
[9] Calibrating 5-axis machines to improve part accuracy <http://www.npl.co.uk/upload/pdf/saunders_3.pdf>
[10] J.B. Bryan, A simple method for testing measuring machines and machine tools, part I: principle and applications, Precision Engineering 4 (2) (1982) 61–69.
[11] Y. Kakino, Y. Ihara, Y. Nakatsu, The measurement of motion errors of NC machine tools and diagnosis of their origins by using telescoping magnetic ball bar method, Annals of the CIRP 36 (1987) 337–380.
[12] Jywe, Wenyuh, et al. "The development of a triple ball bar system for calibration of CNC machine tools." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 220.5 (2006): 759-766.
[13] Pahk, Heui Jae, Young Sam Kim, and Joon Hee Moon. "A new technique for volumetric error assessment of CNC machine tools incorporating ball bar measurement and 3D volumetric error model." International Journal of Machine Tools and Manufacture 37.11 (1997): 1583-1596.
[14] Lee, Kwang-Il, and Seung-Han Yang. "Measurement and verification of position-independent geometric errors of a five-axis machine tool using a double ball-bar." International Journal of Machine Tools and Manufacture 70 (2013): 45-52.
[15] Jiang, Xiaogeng, and Robert J. Cripps. "A method of testing position independent geometric errors in rotary axes of a five-axis machine tool using a double ball bar." International Journal of Machine Tools and Manufacture 89 (2015): 151-158.
[16] Zhong, Lei, Qingzhen Bi, and Yuhan Wang. "Volumetric accuracy evaluation for five-axis machine tools by modeling spherical deviation based on double ball-bar kinematic test." International Journal of Machine Tools and Manufacture (2017).
[17] Wei-Tai, L. E. I. "Double ball-bar measuring system and errors compensation method thereof." U.S. Patent Application No. 15/365,898.
[18] Muralikrishnan, Bala, Steve Phillips, and Daniel Sawyer. "Laser trackers for large-scale dimensional metrology: a review." Precision Engineering 44 (2016): 13-28.
[19] Lau, Kam, Robert Hocken, and Leonard Haynes. "Robot performance measurements using automatic laser tracking techniques." Robotics and Computer-Integrated Manufacturing 2.3-4 (1985): 227-236.
[20] Hughes, E. B., A. Wilson, and G. N. Peggs. "Design of a high-accuracy CMM based on multi-lateration techniques." CIRP Annals-Manufacturing Technology 49.1 (2000): 391-394.
[21] Zhang, Hongtao, et al. "Measurement and compensation for volumetric positioning errors of CNC machine tools considering thermal effect." The International Journal of Advanced Manufacturing Technology 55.1 (2011): 275-283.
[22] Wang, Jindong, et al. "The technical method of geometric error measurement for multi-axis NC machine tool by laser tracker." Measurement science and technology 23.4 (2012): 045003.
[23] Ibaraki, Soichi, Goh Sato, and Kunitaka Takeuchi. "‘Open-loop’tracking interferometer for machine tool volumetric error measurement—Two-dimensional case." Precision Engineering 38.3 (2014): 666-672.
[24] Lee, Hau-Wei, et al. "Relationship between ISO 230-2/-6 Test Results and Positioning Accuracy of Machine Tools Using LaserTRACER." Applied Sciences 6.4 (2016): 105.
[25] Estimation of three-dimensional volumetric errors of machining centers by a tracking interferometer
[26]Bringmann, B., and W. Knapp. "Model-based ‘chase-the-ball’calibration of a 5-axes machining center." CIRP Annals-Manufacturing Technology 55.1 (2006): 531-534.
[27] http://ibspe.com/category/machine-tool-inspection-and-analyzer-solutions/rotary-analyzer.htm
[28] Florussen, G. H. J., and H. A. M. Spaan. "Dynamic R-test for rotary tables on 5-axes machine tools." Procedia CIRP 1 (2012): 536-539.
[29] Hong, Cefu, and Soichi Ibaraki. "Non-contact R-test with laser displacement sensors for error calibration of five-axis machine tools." Precision Engineering 37.1 (2013): 159-171.
[30] Jywe, Wenyuh, Tung-Hui Hsu, and C-H. Liu. "Non-bar, an optical calibration system for five-axis CNC machine tools." International Journal of Machine Tools and Manufacture 59 (2012): 16-23.
[31] Lin, Ming-Tzong, and Shih-Kai Wu. "Modeling and analysis of servo dynamics errors on measuring paths of five-axis machine tools." International Journal of Machine Tools and Manufacture 66 (2013): 1-14.
[32] 顏子翔. "五軸工具機第四軸組裝誤差量測系統." 中興大學機械工程學系所學位論文 (2013): 1-72.
[33] Ng, T. W. "Optical inspection of ball bearing defects." Measurement Science and Technology 18.9 (2007): N73.
[34] Pankow, Mark, Brian Justusson, and Anthony M. Waas. "Three-dimensional digital image correlation technique using single high-speed camera for measuring large out-of-plane displacements at high framing rates." Applied optics 49.17 (2010): 3418-3427.
[35] M.A. Sutton, J.H. Yan, V. Tiwari, H.W. Schreier, J.J. Orteu., 2008, “The effect of out-of-plane motion on 2D and 3D digital image correlation measurements”, Optics and Lasers in Engineering, vol.46, pp.746-757
[36] Ng, Ren, et al. "Light field photography with a hand-held plenoptic camera." Computer Science Technical Report CSTR 2.11 (2005): 1-11.
[37] Harris, Mark. "Focusing on everything." IEEE Spectrum 49.5 (2012).
[38] Adelson, Edward H., and John YA Wang. "Single lens stereo with a plenoptic camera." IEEE transactions on pattern analysis and machine intelligence 14.2 (1992): 99-106.
[39] Sutton, Michael A., Jean Jose Orteu, and Hubert Schreier. Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. Springer Science & Business Media, 2009.
[40] Lee, Hau-Wei, and Chien-Hung Liu. "Development of a steel ball center alignment device based on Michelson interference concept." Review of Scientific Instruments 85.9 (2014): 095115.
[41] https://www.raytrix.de/technologie/
[42] Steger, Carsten, Markus Ulrich, and Christian Wiedemann. "Machine vision algorithms and applications." Illumination 5.2.1 (2008): 1.
[43] Digital Image Processing, 3ed. Rafael C. Gonzales, Richard E. Woods
[44] http://surevision.com.tw/productaa01001.htm
[45] Geary, Joseph M. Introduction to lens design: with practical ZEMAX examples. Richmond: Willmann-Bell, 2002.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top