跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/24 20:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪至里
研究生(外文):Chih-Li Hung
論文名稱:超音波振動輔助切削驅動器之可視化人機介面之研製
論文名稱(外文):The Development of a User Interface for Ultrasonic Vibration Assisted Cutting System
指導教授:陳政雄陳政雄引用關係
指導教授(外文):Jenq-Shyong Chen
口試委員:劉建宏陳紹賢
口試委員(外文):Chien-Hung LiuShao-Shien Chen
口試日期:2017-07-27
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:72
中文關鍵詞:超音波振動輔助切削超音波振動輔助切削驅動器人機介面
外文關鍵詞:Ultrasonic vibration assisted cuttingUltrasonic vibration assisted cutting SystemUser Interface
相關次數:
  • 被引用被引用:0
  • 點閱點閱:229
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來隨著科技進步,各種複合材料或難切削材料,如鎳基合金等,被大量使用在汽車、航太等地方,而新材料需要新的加工方式,所以超音波振動輔助加工對於精密加工極為重要,並已經證實可以改善傳統加工方式的技術,具有效降低切削力、減少材料毛邊現象、增加加工效率、提升加工表面品質與刀具磨耗減少等優點。
超音波振動輔助切削驅動器,利用掃頻功能,找出不同刀具之最佳共振頻率,並在加工過程中持續追蹤,並利用最佳共振頻率加工,以提高加工的精確度與穩定度。本實驗室所開發之超音波振動輔助切削驅動器對不同的變幅桿或刀具有不同的共振頻率。因此,當每次更換不同變幅桿或刀把時,掃頻範圍皆不盡相同。當更換不同變幅桿或刀把時,必須要重新掃頻、分析阻抗落點位置、拆卸超音波振動輔助切削驅動器之外殼、燒入新的設置之頻率範圍單晶片資料、測試超音波振動輔助切削驅動器等等步驟與不同儀器操作之。由此可知,此操作是非常繁瑣與不方便。
為了改善此介面,讓使用者容易理解與方便使用而進行此研究,本論文旨為了提升介面之使用性,以人性化人機介面為出發點,讓使用者容易理解並上手,因此開發此系統,以協助使用者方便控制超音波振動輔助切削驅動器。另外,在資料分析上,能利用藍芽掃頻裝置,自動產生出頻率相位之圖檔,讓使用者能方便簡單找出頻率共振點之位置,並有效提升使用者工作效率與精準度。
在實驗中分析兩組刀具,因超音波振動頻率會根據加工刀具的形狀幾何不同而變動共振之頻率,由實驗結果得知,本實驗室所開發之人機介面超音波振動輔助切削驅動器與阻抗分析儀對刀把之掃頻功能,兩者掃頻數據是具有一致性的。且超音波刀把振幅能藉由人機介面調整大小,其最大振幅為4μm,最小振幅為1μm。本研究幫助使用者跳過繁雜操作流程,操作人機介面流程步驟操作,即可精準且有效率的控制超音波振動輔助切削驅動器。
In recent years, a lot of composites are used in many fields, including car or aerospace. New composite materials need new processing methods, thus ultrasonic vibration assisted machining is extremely important for precision machining. The advantage of ultrasonic vibration assisted cutting (UVAC) is effectively reduction the cutting force, reduction of burrs, increase processing efficiency, surface quality improvement and significant improvement tool life. UVAC can improve the traditional processing methods.
Ultrasonic vibration assisted cutting System (UVACS) can use frequency sweep to find the best resonant frequency for different horn or ultrasonic vibration assisted tool. UVACS has continuous-phase frequency tracking to find the best resonant frequency during machining, it improve the accuracy and stability of processing. However, when users change the horn or ultrasonic vibration assisted tool, they need to change the best resonant frequency. All of the pipeline is to restart frequency sweep, analyze the impedance position, remove the UVACS shell, set the frequency range for single-chip microcomputer data, test UVACS and others apparatus.
Thus, we developed of a user interface to help users operation UVACS, including five functions: user interface switch, Bluetooth distal frequency sweep, HMI change UVACS resonant frequency output range, automatic generation the frequency-phase figure and user interface adjustment the UVACS output amplitude. Our UVACS HMI improved the user working efficiency and accuracy. In addition, we developed visualized-software in computer, and the software could carried to other systems.
In this study, we analyzed the frequency sweep result of UVACS and precision impedance analyzer using two tools, we found that the two frequency sweep results are consistent. The ultrasonic vibration assisted tool adjusted amplitude by user interface, The maximum amplitude is 4μm and the minimum amplitude is 1μm. This study will help users easily and quickly to operate precision machining process.
中文摘要 ................................................. i
Abstract ............................................... iii
目錄 ..................................................... v
圖目錄 ................................................. vii
表目錄 ................................................. xii
第1章 緒論 ............................................... 1
1.1前言 .................................................. 1
1.1.1研究目的與動機 ...................................... 2
1.2文獻回顧 .............................................. 3
1.2.1現今超音波工具機與控制器發展技術 .................... 4
1.2.2超音波振動輔助加工技術與應用 ........................ 7
1.2.3人機介面之應用技術 ................................. 11
1.3本研究的傳承與應用 ................................... 16
1.4專利文獻探索 ......................................... 17
1.4.1專利分析 ........................................... 17
1.4.2國內專利檢索 ....................................... 21
1.5論文架構 ............................................. 23
第2章 超音波輔助加工理論 ................................ 24
2.1超音波輔助加工應用 ................................... 24
2.1.1超音波振動輔助鑽削 ................................. 24
2.1.2超音波振動輔助車削 ................................. 25
2.1.3超音波振動輔助銑削 ................................. 25
2.1.4超音波振動輔助磨削 ................................. 26
2.2超音波振動輔助之驅動原理 ............................ .27
2.2.1壓電材料特性 ....................................... 27
2.2.2蘭杰文(Langevin) ................................... 28
2.2.3超音波變幅桿設計原理與分析 ......................... 29
2.3超音波輔助加工特點 ................................... 31
第3章 系統架構與規劃實驗內容 ............................ 32
3.1人機介面軟體語言與硬體設備 ........................... 34
3.2傳輸通訊介面 ......................................... 41
3.2.1並列與序列通訊簡介 ................................. 41
3.2.2序列資料傳輸協定… ......................... 42
3.3實驗規劃與步驟 ....................................... 43
3.3.1人機開關 ........................................... 44
3.3.2藍芽遠端傳輸 ....................................... 45
3.3.3人機設定頻率輸出範圍 ............................... 46
3.3.4自動繪製頻率相位圖 ................................. 47
3.3.5人機調整振幅大小 ................................... 48
第4章 系統設計與實驗結果與討論 ...................... 51
4.1超音波振動輔助切削驅動器人機介面動作設計 ............. 51
4.2超音波振動輔助切削驅動器之人機介面頁面系統 ........... 53
4.3阻抗分析儀與超音波人機介面掃頻實驗 ................... 58
4.3.1刀片測試 ........................................... 59
4.3.2螺絲測試 ........................................... 64
第5章 結論與未來展望 ................ 67
5.1結論 ................................................. 67
5.2未來展望 ............................... 68
參考文獻 ................................................ 69
[1] 隈部淳一郎,“精密加工振動切削基礎的應用”,實教出版株式會社,1979。
[2] 機械工業雜誌 第334期,100年,1月。
[3] DMG MORI Official website. http://en.dmgmori.com/
[4] SIEMENS Taiwan Official website. https://www.siemens.com/tw/zh/home.html
[5] Lambda Precision Official website. http://www.lambdaprecision.co.jp/ryoga/
[6] FANUCT Taiwan Official website. http://www.fanuctaiwan.com.tw/
[7] PROSINIC Official website. http://www.prosonic.co.jp/
[8] Chen, Y. C. and Y. S. Liao (2003). "Study on wear mechanisms in drilling of Inconel 718 superalloy." Journal of Materials Processing Technology140(1-3): 269-273.
[9] Makhdum, F., et al. (2012). "Cutting forces in ultrasonically assisted drilling of carbon fibre-reinforced plastics." Journal of Physics: Conference Series382: 012019.
[10] Liao, Y. S., et al. (2007). "Feasibility study of the ultrasonic vibration assisted drilling of Inconel superalloy." International Journal of Machine Tools and Manufacture47(12-13): 1988-1996.
[11] Tsuboi, R., et al. (2012). "Ultrasonic Vibration and Cavitation-aided Micromachining of Hard and Brittle Materials." Procedia CIRP1: 342-346.
[12] Azarhoushang, B. and J. Akbari (2007). "Ultrasonic-assisted drilling of Inconel 738-LC." International Journal of Machine Tools and Manufacture47(7-8): 1027-1033.
[13] Dorninger, B., et al. (2014). "Automated reengineering of industrial HMI screens by static analysis."In Emerging Technology and Factory Automation (ETFA), 2014 IEEE (pp. 1-4). IEEE.
[14] Kumar, P., et al. (2012). "Hand data glove: a wearable real-time device for human-computer interaction." International Journal of Advanced Science and Technology, 43.
[15] Yang, X., et al. (2009). "Human-computer interaction design in product design." In Education Technology and Computer Science, 2009. ETCS'09. First International Workshop on (Vol. 2, pp. 437-439). IEEE.
[16] Thirunavukkarasu, G. S., et al. (2016). "A smart HMI for driving safety using emotion prediction of EEG signals." In Systems, Man, and Cybernetics (SMC), 2016 IEEE International Conference on (pp. 004148-004153). IEEE.
[17] Kopinski, T., et al. (2014). "A real-time applicable 3d gesture recognition system for automobile hmi." In Intelligent Transportation Systems (ITSC), 2014 IEEE
17th International Conference on (pp. 2616-2622). IEEE.
[18] San-Pablo-Juárez, M. A., et al. (2016). "Design of an HMI electrical impedance tomography system based on off-the-shelf components." In Electronics, Communications and Computers (CONIELECOMP), 2016 International Conference on (pp. 101-105). IEEE.
[19] Atarashi, Y., et al. (2016). "HMI Development of Derived Products by Model-Driven Prototyping Tool for In-Vehicle System." In Advanced Applied Informatics (IIAI-AAI), 2016 5th IIAI International Congress on (pp. 1072-1077). IEEE.
[20] 陳冠領,2013,超音波加工機的刀具監控裝置,中華民國專利。
[21] Yin, S., and Shinmura, T. (2004). "Vertical vibration-assisted magnetic abrasive finishing and deburring for magnesium alloy." International Journal of Machine Tools and Manufacture, 44(12), 1297-1303.
[22] Kim, J. D., and Choi, I. H. (1997). "Micro surface phenomenon of ductile cutting in the ultrasonic vibration cutting of optical plastics." Journal of materials processing technology, 68(1), 89-98.
[23] Suzuki, H., et al. (2014). "Surface Texturing by Vibration Assisted Machining with Piezoelectric Actuator." Society of Tribologists and Lubrication Engineers Annual Meeting and Exhibition: 778-780.
[24] Xu, S., et al. (2014). "Fabrication of hybrid micro/nano-textured surfaces using rotary ultrasonic machining with one-point diamond tool." International Journal of Machine Tools and Manufacture86: 12-17.
[25] Moriwaki, T., et al. (1992). "Ultraprecision ductile cutting of glass by applying ultrasonic vibration." CIRP Annals-Manufacturing Technology, 41(1), 141-144.
[26] Noma, K., et al. (2014). "High-precision and high-efficiency micromachining of chemically strengthened glass using ultrasonic vibration." Procedia CIRP, 14, 389-394.
[27] Gan, J., et al. (2003). "Ultraprecision diamond turning of glass with ultrasonic vibration." The International Journal of Advanced Manufacturing Technology, 21(12), 952-955.
[28] Lin, T.-R. (2002). "Cutting behavior of a TiN-coated carbide drill with curved cutting edges during the high-speed machining of stainless steel." Journal of Materials Processing Technology127: 8-16.
[29] Lin, T.-R. and R.-F. Shyu (2000). "Improvement of Tool Life and Exit Burr using Variable Feeds when Drilling Stainless Steel with Coated Drills." International Journal of Advanced Manufacturing Technology16: 308-313.
[30] Feucht, F., et al. (2014). "Latest Machining Technologies of Hard-to-cut Materials by Ultrasonic Machine Tool." Procedia CIRP14: 148-152.
[31] Ishida, T., et al. (2014). "Helical milling of carbon fiber reinforced plastics using ultrasonic vibration and liquid nitrogen." Procedia CIRP, 24, 13-18.
[32] Nath, C., et al. (2007). "A study on ultrasonic vibration cutting of low alloy steel." Journal of Materials Processing Technology, 192, 159-165.
[33] Zhaojun, Y., et al. (1998). "Study for increasing micro-drill reliability by vibrating drilling." Reliability Engineering & System Safety61(3): 229-233.
[34] 賴耿陽(2001),“超音波工學理論實務”,復漢出版社有限公司。
[35] 傅光華等(1997),“切削刀具學”,高立圖書有限公司。
[36] 賴耿陽(2005),“超音波工學”,復文書局。
[37] 曹祖聖、蔡文龍(2010),”Visual C# 2010 程式設計經典”,碁峰資訊股份有限公司。
[38] 資訊教育研究室(2009),“Visual C# 2008從零開始”,博碩文化股份有限公司。
[39] Bouter, S., et al. (2008). "Development of an HMI based on the OPC standard." In EAEEIE Annual Conference, 2008 19th (pp. 163-167). IEEE.
[40] Ragunathan, K., et al. (2015). "Statistical KPIs in HMI panels." In Green Computing and Internet of Things (ICGCIoT), 2015 International Conference on (pp. 838-843). IEEE.
[41] Arduino Official website. https://www.arduino.cc/
[42] Arduino software. https://www.arduino.cc/en/Main/Software?setlang=en
[43] Pontes, R. G., et al. (2016). "Development of Mapping autonomous robot for static environments with HMI on Android." In Biennial Congress of Argentina (ARGENCON), 2016 IEEE (pp. 1-6). IEEE.
[44] Python Official website. http://www.python.org/
[45] MPLAB Official website. http://www.microchip.com/mplab/mplab-x-ide
[46] 曾百由(2005),”DSPIC數位訊號控制器原理與應用”,宏友圖書。
[47] 台灣基恩斯股份有限公司官方網站http://www.keyence.com.tw/index.jsp。
[48] 張若愚(2016),”Python科學計算”,清華大學出版社。
[49] 葉難(2015) ,”Python程式設計入門”,博碩文化股份有限公司。
[50] 趙英傑(2017),“超圖解Arduino互動設計”,旗標科技股份有限公司。
[51] Altium Official website. http://www.altium.com/
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top