跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/15 10:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳國榕
研究生(外文):Guo-Rong Chen
論文名稱:電晶體式光感測器之設計與製作
論文名稱(外文):Design and Fabrication of Photodetector based on transistor
指導教授:戴慶良
口試委員:莊婉君許正治吳乾埼
口試日期:2017-07-25
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:76
中文關鍵詞:光感測器光電晶體雙極性電晶體CMOS
外文關鍵詞:PhotodetectorPhototransistorBJTCMOS
相關次數:
  • 被引用被引用:1
  • 點閱點閱:485
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用CMOS-MEMS 0.18 um標準製程製作光感測器,成功地製作電晶體結構的光感測器,透過標準製程所提供的P型與N型摻雜型態,製作摻雜層為P+ / n-wll / P-substrate的光電晶體結構,運作原理相同於雙極性接面電晶體,同樣是依靠電子電洞的擴散與複合效應,為了使標準型式的電晶體結構能夠應用於光感測器領域,經由增加電晶體的基極面積,達到有足夠光電流驅動元件作動,在設計上依據半導體物理觀念為設計基礎,透過計算載子擴散距離,作為基極尺寸設計考量,並搭配理論進行感測器的性能評估。光感測器的性能量測,將針對以矽半導體材料所能感測的波段進行量測,其截止波長約為1100 nm,實驗設備可產生可見光至紅外光波段(400-1000 nm),對該波段範圍進行完整的感測性能分析,其操作偏壓於1 V即有最大輸出電流,元件的崩潰電壓可承受到15 V,因此元件可操作在低偏壓,更可以提升應用層面;在光響應量測方面,以矽半導體材料作為光感測器的主要材料,本實驗量測波段為可見光至紅外光(400-1000 nm),量測結果皆有反應,並於入射光波長為800 - 900 nm區段間有最佳光響應度,光響應度為R=5.87 A/W;另一方面,光感測器在未照光情況下,元件內部也會產生電流,其通稱為暗電流雜訊,在暗電流量測部份,有著非常低且穩定的結果,加大偏壓後,暗電流維持在奈米安培,這是由於電晶體結構的光感測器需要藉由光電流來驅動,因此在無法使電晶體作動下,暗電流將維持著非常低且穩定的結果。
This study designs and implements a photodetector of transistor type in the standard 0.18 μm complementary metal oxide semiconductor (CMOS) micro electro mechanical system (MEMS) process. The P-type and N-type doping patterns provided by the standard CMOS-MEMS process are adopted as the doped layer P+ / n-well / P-substrate of the phototransistor. The principle of phototransistor is based on the traditional bipolar transistor. The traditional transistor needs a large base area in order to get enough photocurrent to drive transistor. The design of phototransistor is completely according to the semiconductor physic. The dimensions of base of the photodetector are designed by calculating the carrier diffusion length, and the performances of the photodetector are predicted.
A light generator, a power supply, a light power meter and a digital meter are employed to measure the performances of the phototransistor. The light generator provides a light source with wavelength range of 400-1000 nm to the phototransistor. The light power meter uses to detect the light source power provided by the light generator. The power supply provides a bias voltage to the phototransistor, and the digital meter records the output current of the phototransistor. The experimental results show that the phototransistor has a maximum output current at the bias voltage of 1 V, the breakdown voltage of the phototransistor are 15 V. The phototransistor at the light wavelength of 800-900 nm has the best responsivity. The maximum responsivity of the phototransistor is 5.87 A/W at the light wavelength of 800 nm. The dark current of the phototransistor is maintained at the nanometer amperes, and it is very low and stable.
中文摘要 i
Abstract ii
目錄 iii
表目錄 v
圖目錄 vi
第一章 緒論 1
1.1前言 1
1.2光感測器種類 2
1.3文獻回顧 3
1.4研究動機 7
第二章 光感測器設計與分析 8
2.1光伏特效應 8
2.2光電晶體原理 10
2.3光感測器設計 19
2.4光感測器性能估算 21
第三章 光感測器製作 26
3.1感測器晶片佈局 26
3.2感測器製程 27
3.3後製程處理 28
3.4感測器封裝 31
第四章 實驗量測結果 32
4.1量測系統 32
4.1.1量測系統架構 32
4.1.2光源量測 34
4.2量測結果與討論 35
4.2.1光頻譜響應量測 37
4.2.2光功率變化量測 42
4.2.3暗電流量測 49
4.3量測整理與性能模擬比較 51
第五章 結論與未來展望 56
附錄A 八角形光感測器 57
A.1感測器設計 57
A.2感測器性能計算 59
A.3感測器晶片佈局 62
A.4感測器製程 63
A.5量測系統與光源量測 64
A.6晶片量測 65
A.7性能計算與量測驗證 69
A.8結果與討論 74
參考文獻 75
[1] http://urclazz.blogspot.tw/2015/09/ppg photoplethysmography.html
[2] http://www.digitimes.com.tw/iot/article.asp?cat=130&id=0000476199_gsv2qks18ugivmllvnxxe
[3] A. Ghazi, H. Zimmermann and P. Seegebrecht, “CMOS photodiode with enhanced responsivity for the UV/Blue spectral range,” IEEE Transactions on Electron Devices, vol 49, pp. 1124-1127, 2002.
[4] A. Rochas, A. R. Pauchard, D. Pantic, Z. Prijic and R. S. Popovic, “Low-noise silicon avalanche photodiodes fabricated in conventional CMOS technologies,” IEEE Transactions on Electro Divices, vol 49, pp. 387-392, 2002.
[5] N. Faramarzpour, M. J. Deen, S. Shirani and Q. Fang, “Fully integrated single photon avalanche diode detector in standard CMOS 0.18 µm technology,” IEEE Transactions on Electron Devices, vol 55, pp. 760-767, 2008.
[6] P. Kostov, K. S. Hornstein and H. Zimmermann, “Phototransistors for CMOS optoelectronic integrated circuits,” Sensors and Actuators A: Physical, vol 172, p. 140-147, 2011.
[7] P. Kostov, W. Gaberl and H. Zimmermann, “High-speed bipolar phototransistors in a 180 nm CMOS process,” Optics&LaserTechnology, vol 46, pp. 6-13, 2013.
[8] M. Atef, A. Polzer and H. Zimmermann, “Avalanche double photodiode in 40-nm standard CMOS technology,” IEEE Journal of Quantum Electronics, vol 49, pp. 350-356, 2013.
[9] F. D. S. Campos, N. Faramarzpour, O. Marinov, M. J. Deen and J. W. Swart, “Photodetection with gate-controlled lateral BJTs from standard CMOS technology,” IEEE Sensors Journal, vol 13, pp. 1554-1563, 2013.
[10] H. Wang , L. X. Jin , P. C. Chen, F. M. Tian and H. K. Zhu, “A novel integrated ultraviolet photodetector based on standard CMOS process,” Chin. Phys. B, vol 24, pp. 038501.1- 038501.5, 2015.
[11] K. Y. J. Hsu, K. S. H. Shen and Y. S. Chang, “Enhancing the photoresponsivity of bipolar phototransistors for near-infrared detection,” Applied Physics Letters, vol 108, pp. 031112.1-031112.5, 2016.
[12] A. Haddadi, S. Adhikary, A. Dehzangi and M. Razeghi, “Mid-wavelength infrared heterojunction phototransistors based on type-II InAs/AlSb/GaSb superlattices,” Applied Physics Letters, vol 109, pp. 021107.1-4, 2016.
[13] H. Li, L. Ye and J. Xu, “High-performance broadband floating-base bipolar phototransistor based on WSe2-BP-MoS2 heterostructure,” ACS Photonics, vol 4, pp. 823-829, 2017.
[14] Y. Maeda, M. Sekine and T. Tamura, “The advantages of wearable green reflected photoplethysmography,” Journal of medical systems, vol 35, pp. 829-834, 2011.
[15]http://baike.baidu.com/item/%E5%85%89%E4%BC%8F%E6%95%88%E5%BA%94
[16] G. Z. A. P. Bruscaglioni, “Deviation from the Lambert-Beer law in the transmittance of a light beam through diffusing media:experimental results,” Journal of Modern Optics, vol 35, pp. 229-242, 1988.
[17] E. D.Palik, Handbook of optical constants of solids, 1985.
[18] D. Wood, Optoelectromic semiconductor devices, 1994.
[19] D. A. Neaen, Semiconductor physics and devices : basic principles, 2012.
[20] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd Edition, 2007.
[21] G. G. Fossum and D. S. Lee, “A physical model for the dependence of carrirer lifetime on doping density in nondegenerate silicon,” Solid-State Electronics, pp. 741-747, 1982.
[22] P. C. Chen , F. M. Tian, Y. Z. Jiang , L. X. Jin and J. Luo, “Improved two-dimensional responsivity physical model of a CMOS UV and blue-extended photodiode,” Journal of Semiconductors, vol 35, pp. 094009.1-094009.7, 2014.
[23] Y. Zhao, X. Zhou, X. Jin and K. Zhu, “A novel responsivity model for stripe-shaped ultraviolet photodiode,” Circuits and Systems, vol 3, pp. 348-352, 2012.
[24] https://www.laser2000.se/out/media/Omni150.pdf
[25] 蔡朝洋,電工實習,全華科技圖書股份有限公司,1986.
[26] 黃俊達,鄔文杰,電子學,全威圖書有限公司,2007.
[27] C. Chen, H. Wang, Z. Jiang, X. Jin and J. Luo, “Design, fabrication, and measurement of two silicon-based ultraviolet and blue-extended photodiodes,” Photonic Sensors, vol 4, pp. 373-378, 2014.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊