跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/19 01:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曲晨皓
研究生(外文):Chen-Hao Chu
論文名稱:利用電化學阻抗分析自我組裝單分子層之特性與應用於過敏性物質檢測
論文名稱(外文):Self-Assembled Monolayer Characteristics Evaluation and Allergic Detection by Electrochemical Impedance Spectroscopy
指導教授:吳嘉哲
指導教授(外文):Chia-Che Wu
口試委員:王國禎鍾官榮黃正昇
口試委員(外文):Gou-Jen WangKuan-Jung ChungCheng-Sheng Huang
口試日期:2017-07-22
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:67
中文關鍵詞:生醫感測晶片自我組裝單分子層電化學阻抗分析組織胺Tryptase
外文關鍵詞:self -assembled monolayerElectrochemical impedance spectroscopy(EIS)HistamineTryptase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:230
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,由於晶片技術的成熟發展,生醫感測晶片應用於臨床醫學檢測疾病上的地位也越來越重要。然而在製作生醫感測晶片過程中,利用自我組裝單分子層來固定蛋白質已經是目前蛋白質固定技術的主流之一。儘管不斷的努力,自我組裝單分子層(self assembled monolayer, SAM)緻密程度與金電極表面的潔淨度、均勻度皆會導致蛋白質無法均勻固定於金電極上,使得生醫感測晶片的靈敏度大幅下降,因此本研究以11-mercaptoundecanoic acid (MUA)與金電極表面進行自我組裝單分子層之特性評估,並以電化學阻抗分析法(electrochemical impedance spectroscopy, EIS)和循環伏安法(cyclic voltammetry, CV)、親疏水角量測儀(contact angle goniometry)進行分析,研究結果顯示最佳修飾條件在奈米晶片濺鍍金以功率80W 電流 20mA 濺鍍時間120 秒可在奈米聚碳酸脂(Polycarbonate)產生均勻的奈米金顆粒薄膜;自我組裝單分子層利用浸泡法(immerse method)並利用電化學阻抗分析法找出MUA濃度500M 3小時即可達到緻密的自我組裝單分子層,並使生醫感測晶片遮蔽層(Blocking)阻抗重複性之變異值<10%,並應用於過敏性物質組織胺(Histamine)量測濃度範圍1ng/ml ~ 1000ng/ml之線性度可達 0.9851,與Tryptase量測濃度範圍0.1ng/mL ~ 50 ng/mL之線性度可達 0.9828。
Despite considerable efforts, the fabrication of protein chips using a self-assembled
monolayer (SAM) with a long chain length remains a challenge, due to its substrate cleanliness and evenness. Therefore, the protein can not be stably fixed on the substrate, resulting in a significant drop in the sensitivity of the bio-sensors. This study improved the repeatability of self-assembled monolayer on chip. We use self-assembled monolayer (SAM) with functional groups to modify a substrate. Thus the surface of the substrate is suitable for specific bio-detection. The two characteristics of this study, one characterize is that the physical properties of substrate with SAM modification, the other is that applied a layer of SAM coated with protein on sensing electrode as a bio-probe to quantify the formation of avidin-biotin complex by impedance response in electrical impedance analysis.It was less than 10% of the repeatability of resistances 〖 R〗_bsa in Histamine and Tryptase, after Protein incubate on sensors. ΔR is the definition of R_protein minus〖 R〗_bsa. The Histamine is measured by EIS concentration measurement which resulted a linear equation of Y=4107ln(X) +5681.6 with error R^2 = 0.985 in impedance change. The Tryptase is measured by EIS concentration measurement which resulted a linear equation of Y=702.91ln(X) +17332 with error R^2 = 0.9828 in impedance change.
誌謝 i
摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章、 前言 1
1.1. 研究動機 1
1.2. 研究目標 9
1.3. 論文架構 9
第二章、 相關理論與技術 10
2. 1 電化學 10
2.1.1 電化學質傳與電子交換現象 10
2.1.2 電極程序之動力學 12
2.1.3 界面現象與電極雙層模型 13
2. 2循環伏安法 15
2. 3 電化學阻抗分析法 18
2.3.1 電化學阻抗分析等效電路 18
2.3.2電化學阻抗分析動態化學過程 19
2.3.3 電化學阻抗分析阻抗參數 21
2. 4抗體抗原免疫分析 23
2.4.1抗體 23
2. 5微奈米轉印技術 24
2. 6表面分析技術 24
2.6.1接觸角(Contact Angle) 24
2.6.2掃描式電子顯微鏡(Scanning Electron Microscope,縮寫為SEM) 25
2.6.3原子力顯微鏡(Atomic force microscope,AFM) 25
第三章、 實驗材料與方法 26
3. 1 調配自我組裝單分子層溶液 26
3. 2奈米陣列檢測晶片 26
3.2.1 3D奈米結構 28
3.2.2米3D半球結構AAO模型製作 30
3.2.3熱壓奈米半球PC試片 30
3.2.4鍍金電極 32
3.2.5奈米陣列檢測晶片封裝 33
3.3 自我組裝單分子層(self-assembly monolayers) 34
3.4 電化學阻抗量測 36
3.5 實驗藥品、設備 37
第四章、 結果與討論 38
4.1 奈米半球結構AAO模具 38
4.2 奈米半球結構PC試片 39
4.3 奈米半球結構PC鍍金 40
4.4 電化學治具 41
4.5 金電極確認 43
4.6 自我組裝單分子層 44
4.6.1 濃度對自我組裝薄影響 44
4.6.2 時間對自我組裝單分子層影響 47
4.6.3 MUA drop method V.S. immerse method 47
4.6.4 MUA自我組裝單分子層接觸角 49
4.6.5 藉由EDC/NHS活化自我組裝單分子層 50
4.7 等效電路模型建立 53
4.8 自我組裝單分子層應用於Histamine 阻抗分析 53
4.8.1檢測晶片抗體最佳接附量 54
4.8.2 Histamine標準曲線 56
4.9 自我組裝單分子層應用於Tryptase 阻抗分析 59
4.9.1 Tryptase標準曲線 59
第五章、 結論與未來展望 63
5.1 結論 63
5.2 未來展望 64
參考文獻 65
[1] G.S. Nunes, I.A. Toscano, D. Barceló, Analysis of pesticides in food and environmental samples by enzyme-linked immunosorbent assays, TrAC Trends in Analytical Chemistry, 17 (1998) 79-87.
[2] M.N. Velasco-Garcia, T. Mottram, Biosensor technology addressing agricultural problems, Biosystems engineering, 84 (2003) 1-12.
[3] J. Wang, Nanomaterial-based electrochemical biosensors, Analyst, 130 (2005) 421-426.
[4] D. Grieshaber, R. MacKenzie, J. Voeroes, E. Reimhult, Electrochemical biosensors-sensor principles and architectures, Sensors, 8 (2008) 1400-1458.
[5] G. Shruthi, C. Amitha, B.B. Mathew, Biosensors: A modern day achievement, Journal of Instrumentation Technology, 2 (2014) 26-39.
[6] B. Lu, E.I. Iwuoha, M.R. Smyth, R. O'Kennedy, Development of an “electrically wired” amperometric immunosensor for the determination of biotin based on a non-diffusional redox osmium polymer film containing an antibody to the enzyme label horseradish peroxidase, Analytica chimica acta, 345 (1997) 59-66.
[7] J. Wang, B. Tian, K.R. Rogers, Thick-film electrochemical immunosensor based on stripping potentiometric detection of a metal ion label, Analytical chemistry, 70 (1998) 1682-1685.
[8] J. Wang, P.V. Pamidi, K.R. Rogers, Sol− gel-derived thick-film amperometric immunosensors, Analytical chemistry, 70 (1998) 1171-1175.
[9] D. Barceló, M. Hennion, Techniques and instrumentation in analytical chemistry, Techniques and instrumentation in analytical chemistry, 19 (1997).
[10] C.R. Lowe, Nanobiotechnology: the fabrication and applications of chemical and biological nanostructures, Current opinion in structural biology, 10 (2000) 428-434.
[11] J.J. Gooding, D.B. Hibbert, The application of alkanethiol self-assembled monolayers to enzyme electrodes, TrAC Trends in Analytical Chemistry, 18 (1999) 525-533.
[12] W. Bigelow, D. Pickett, W. Zisman, Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids, Journal of Colloid Science, 1 (1946) 513-538.
[13] J. Sagiv, Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces, Journal of the American Chemical Society, 102 (1980) 92-98.
[14] R.G. Nuzzo, D.L. Allara, Adsorption of bifunctional organic disulfides on gold surfaces, Journal of the American Chemical Society, 105 (1983) 4481-4483.
[15] D.A. Stern, L. Laguren-Davidson, D.G. Frank, J.Y. Gui, C.H. Lin, F. Lu, G.N. Salaita, N. Walton, D.C. Zapien, A.T. Hubbard, Potential-dependent surface chemistry of 3-pyridinecarboxylic acid (niacin) and related compounds at platinum (111) electrodes, Journal of the American Chemical Society, 111 (1989) 877-891.
[16] P. Wagner, M. Hegner, H.-J. Guentherodt, G. Semenza, Formation and in situ modification of monolayers chemisorbed on ultraflat template-stripped gold surfaces, Langmuir, 11 (1995) 3867-3875.
[17] R.G. Nuzzo, F.A. Fusco, D.L. Allara, Spontaneously organized molecular assemblies. 3. Preparation and properties of solution adsorbed monolayers of organic disulfides on gold surfaces, Journal of the American Chemical Society, 109 (1987) 2358-2368.
[18] A. Ulman, Formation and structure of self-assembled monolayers, Chemical reviews, 96 (1996) 1533-1554.
[19] W. Fitts, J. White, G. Poirier, Thermodynamics of decanethiol adsorption on Au (111): Extension to 0 C, Langmuir, 18 (2002) 2096-2102.
[20] 劉增豐, 張家靖, 鎳離子螯合去氧核醣核酸之電性研究及其應用, 2009.
[21] K.W. Kolasinski, Surface science: foundations of catalysis and nanoscience, John Wiley & Sons2012.
[22] H. Wu, K. Sotthewes, A. Kumar, G.J. Vancso, P.M. Schön, H.J. Zandvliet, Dynamics of decanethiol self-Assembled monolayers on Au (111) studied by time-Resolved Scanning Tunneling Microscopy, Langmuir, 29 (2013) 2250-2257.
[23] J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Self-assembled monolayers of thiolates on metals as a form of nanotechnology, Chemical reviews, 105 (2005) 1103-1170.
[24] S.K. Lower, Electrochemistry Chemical reactions at an electrode, galvanic and electrolytic cells A Chem1 Reference Text1989.
[25] J. Wang, Analytical electrochemistry,, John Wiley & Sons, ( 2006).
[26] D. Noren, M. Hoffman, Clarifying the Butler–Volmer equation and related approximations for calculating activation losses in solid oxide fuel cell models, Journal of Power Sources, 152 (2005) 175-181.
[27] 胡啟章, 電化學原理與方法, 五南圖書出版股份有限公司2002.
[28] 黃進益, 電化學的原理及應用:, 高立出版1998.
[29] L.L. Zhang, X. Zhao, Carbon-based materials as supercapacitor electrodes, Chemical Society Reviews, 38 (2009) 2520-2531.
[30] P.T. Kissinger, W.R. Heineman, Cyclic voltammetry, J. Chem. Educ, 60 (1983) 702.
[31] R.S. Nicholson, Theory and Application of Cyclic Voltammetry for Measurement of Electrode Reaction Kinetics, Analytical chemistry, 37 (1965) 1351-1355.
[32] A.J. Bard, L.R. Faulkner, Fundamentals and applications, Electrochemical Methods, 2 (2001).
[33] M.E. Orazem, B. Tribollet, Electrochemical impedance spectroscopy, John Wiley & Sons2011.
[34] A. Bogomolova, E. Komarova, K. Reber, T. Gerasimov, O. Yavuz, S. Bhatt, M. Aldissi, Challenges of electrochemical impedance spectroscopy in protein biosensing, Analytical chemistry, 81 (2009) 3944-3949.
[35] C.-C. Wu, B.-C. Ku, C.-H. Ko, C.-C. Chiu, G.-J. Wang, Y.-H. Yang, S.-J. Wu, Electrochemical impedance spectroscopy analysis of A-beta (1-42) peptide using a nanostructured biochip, Electrochimica Acta, 134 (2014) 249-257.
[36] 粘銘輝, 利用接觸角量測儀評估銅在玻璃表面上的濺鍍分佈, 中興大學機械工程學系所學位論文, (2007) 1-61.
[37] 張銘仁, 晶體光纖側向濺鍍 TiO2 薄膜之製程與特性研究, 中原大學電子工程研究所學位論文, (2010) 1-69.
[38] 陳政諴, 自組裝單分子層應用在原子力顯微鏡探針的磨耗行為研究, 成功大學材料科學及工程學系學位論文, (2010) 1-135.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top