|
[1] G.S. Nunes, I.A. Toscano, D. Barceló, Analysis of pesticides in food and environmental samples by enzyme-linked immunosorbent assays, TrAC Trends in Analytical Chemistry, 17 (1998) 79-87. [2] M.N. Velasco-Garcia, T. Mottram, Biosensor technology addressing agricultural problems, Biosystems engineering, 84 (2003) 1-12. [3] J. Wang, Nanomaterial-based electrochemical biosensors, Analyst, 130 (2005) 421-426. [4] D. Grieshaber, R. MacKenzie, J. Voeroes, E. Reimhult, Electrochemical biosensors-sensor principles and architectures, Sensors, 8 (2008) 1400-1458. [5] G. Shruthi, C. Amitha, B.B. Mathew, Biosensors: A modern day achievement, Journal of Instrumentation Technology, 2 (2014) 26-39. [6] B. Lu, E.I. Iwuoha, M.R. Smyth, R. O'Kennedy, Development of an “electrically wired” amperometric immunosensor for the determination of biotin based on a non-diffusional redox osmium polymer film containing an antibody to the enzyme label horseradish peroxidase, Analytica chimica acta, 345 (1997) 59-66. [7] J. Wang, B. Tian, K.R. Rogers, Thick-film electrochemical immunosensor based on stripping potentiometric detection of a metal ion label, Analytical chemistry, 70 (1998) 1682-1685. [8] J. Wang, P.V. Pamidi, K.R. Rogers, Sol− gel-derived thick-film amperometric immunosensors, Analytical chemistry, 70 (1998) 1171-1175. [9] D. Barceló, M. Hennion, Techniques and instrumentation in analytical chemistry, Techniques and instrumentation in analytical chemistry, 19 (1997). [10] C.R. Lowe, Nanobiotechnology: the fabrication and applications of chemical and biological nanostructures, Current opinion in structural biology, 10 (2000) 428-434. [11] J.J. Gooding, D.B. Hibbert, The application of alkanethiol self-assembled monolayers to enzyme electrodes, TrAC Trends in Analytical Chemistry, 18 (1999) 525-533. [12] W. Bigelow, D. Pickett, W. Zisman, Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids, Journal of Colloid Science, 1 (1946) 513-538. [13] J. Sagiv, Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces, Journal of the American Chemical Society, 102 (1980) 92-98. [14] R.G. Nuzzo, D.L. Allara, Adsorption of bifunctional organic disulfides on gold surfaces, Journal of the American Chemical Society, 105 (1983) 4481-4483. [15] D.A. Stern, L. Laguren-Davidson, D.G. Frank, J.Y. Gui, C.H. Lin, F. Lu, G.N. Salaita, N. Walton, D.C. Zapien, A.T. Hubbard, Potential-dependent surface chemistry of 3-pyridinecarboxylic acid (niacin) and related compounds at platinum (111) electrodes, Journal of the American Chemical Society, 111 (1989) 877-891. [16] P. Wagner, M. Hegner, H.-J. Guentherodt, G. Semenza, Formation and in situ modification of monolayers chemisorbed on ultraflat template-stripped gold surfaces, Langmuir, 11 (1995) 3867-3875. [17] R.G. Nuzzo, F.A. Fusco, D.L. Allara, Spontaneously organized molecular assemblies. 3. Preparation and properties of solution adsorbed monolayers of organic disulfides on gold surfaces, Journal of the American Chemical Society, 109 (1987) 2358-2368. [18] A. Ulman, Formation and structure of self-assembled monolayers, Chemical reviews, 96 (1996) 1533-1554. [19] W. Fitts, J. White, G. Poirier, Thermodynamics of decanethiol adsorption on Au (111): Extension to 0 C, Langmuir, 18 (2002) 2096-2102. [20] 劉增豐, 張家靖, 鎳離子螯合去氧核醣核酸之電性研究及其應用, 2009. [21] K.W. Kolasinski, Surface science: foundations of catalysis and nanoscience, John Wiley & Sons2012. [22] H. Wu, K. Sotthewes, A. Kumar, G.J. Vancso, P.M. Schön, H.J. Zandvliet, Dynamics of decanethiol self-Assembled monolayers on Au (111) studied by time-Resolved Scanning Tunneling Microscopy, Langmuir, 29 (2013) 2250-2257. [23] J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Self-assembled monolayers of thiolates on metals as a form of nanotechnology, Chemical reviews, 105 (2005) 1103-1170. [24] S.K. Lower, Electrochemistry Chemical reactions at an electrode, galvanic and electrolytic cells A Chem1 Reference Text1989. [25] J. Wang, Analytical electrochemistry,, John Wiley & Sons, ( 2006). [26] D. Noren, M. Hoffman, Clarifying the Butler–Volmer equation and related approximations for calculating activation losses in solid oxide fuel cell models, Journal of Power Sources, 152 (2005) 175-181. [27] 胡啟章, 電化學原理與方法, 五南圖書出版股份有限公司2002. [28] 黃進益, 電化學的原理及應用:, 高立出版1998. [29] L.L. Zhang, X. Zhao, Carbon-based materials as supercapacitor electrodes, Chemical Society Reviews, 38 (2009) 2520-2531. [30] P.T. Kissinger, W.R. Heineman, Cyclic voltammetry, J. Chem. Educ, 60 (1983) 702. [31] R.S. Nicholson, Theory and Application of Cyclic Voltammetry for Measurement of Electrode Reaction Kinetics, Analytical chemistry, 37 (1965) 1351-1355. [32] A.J. Bard, L.R. Faulkner, Fundamentals and applications, Electrochemical Methods, 2 (2001). [33] M.E. Orazem, B. Tribollet, Electrochemical impedance spectroscopy, John Wiley & Sons2011. [34] A. Bogomolova, E. Komarova, K. Reber, T. Gerasimov, O. Yavuz, S. Bhatt, M. Aldissi, Challenges of electrochemical impedance spectroscopy in protein biosensing, Analytical chemistry, 81 (2009) 3944-3949. [35] C.-C. Wu, B.-C. Ku, C.-H. Ko, C.-C. Chiu, G.-J. Wang, Y.-H. Yang, S.-J. Wu, Electrochemical impedance spectroscopy analysis of A-beta (1-42) peptide using a nanostructured biochip, Electrochimica Acta, 134 (2014) 249-257. [36] 粘銘輝, 利用接觸角量測儀評估銅在玻璃表面上的濺鍍分佈, 中興大學機械工程學系所學位論文, (2007) 1-61. [37] 張銘仁, 晶體光纖側向濺鍍 TiO2 薄膜之製程與特性研究, 中原大學電子工程研究所學位論文, (2010) 1-69. [38] 陳政諴, 自組裝單分子層應用在原子力顯微鏡探針的磨耗行為研究, 成功大學材料科學及工程學系學位論文, (2010) 1-135.
|