跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/06 01:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴昭如
研究生(外文):Chao-Ju Lai
論文名稱:具紋理之滑動面潤滑摩擦模型建構與分析
論文名稱(外文):Construction and Analysis of Lubrication and Friction Model for Sliding Surface with Textures
指導教授:蔡志成蔡志成引用關係陳志敏陳志敏引用關係
指導教授(外文):Jhy-Cherng TsaiJerry M. Chen
口試委員:林士傑
口試委員(外文):Shih-Chieh Lin
口試日期:2017-07-24
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:50
中文關鍵詞:表面紋理潤滑摩擦模型油膜厚度滑動攻角
外文關鍵詞:surface texturelubrication and friction modelthickness of lubricant filmsliding angle of attack
相關次數:
  • 被引用被引用:3
  • 點閱點閱:285
  • 評分評分:
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:0
機械導軌的主要功能在於承載負荷及導向,尤其高負載移動的機械需採用面與面接觸滑動的硬式導軌,此類面接觸的導軌需潤滑以降低摩擦,文獻上雖有依據經驗於表面加工紋理再經由實驗評估其運動摩擦性能,但缺乏理論分析,亟需探討具紋理之滑動面運動時的潤滑與摩擦模型。
本研究利用CAE軟體建構滑動面之運動摩擦模型,首先以半模型類比處理空蝕課題的Half-Sommerfeld邊界條件,構築以油袋產生的承載力與負荷重量達到平衡時的等效油膜厚度之計算模型,分析其於平衡狀態時之摩擦力,並藉由量測數據比較,顯示該理論模型與量測結果具有相關性,但二者仍有明顯差距。研究進一步考量摩擦面滑動時產生的傾斜角,將滑動攻角導入摩擦模型中,亦即負荷由油袋以及滑動面之承載力共同承受,研究結果顯示在面壓4.141KPa條件下,滑動攻角在14×10^-6rad以及面壓9.886KPa條件下,滑動攻角在8×10^-6rad時所造成的液動壓力與量測結果相近,得到較水平滑動時更為合理的結果。本研究之主要貢獻在於建構一具紋理之滑動面的潤滑摩擦模型,解決長期以來難以處理摩擦面油膜極小深寬比的課題,並經量測比較其合理性。
The function of the guideway is to carry the load and guide the direction of motion. The hard rail, a surface-to-surface contact guideway, is particularly employed in the situation of motion at high loading. In such a guideway, lubrication between contacted surfaces is important. Although literatures showed texture patterns, serving as lubricant reservoir, are design and fabricated based on empirical methods, it is necessary to develop a theoretical model for analyzing lubrication and friction characteristics of sliding surface with textures.
In this paper, CAE software is employed to construct the lubrication and friction model for sliding surface with simple texture. First, the half-Sommerfeld boundary condition is used to simulate the cavitation effect. The effective thickness of lubricant and the corresponding friction are then computed based on the load and the bearing capacity of the oil pocket. Experiments to measure the friction forces are then conducted for comparisons. It showed that there exists an offset between theoretical results and experimental data, though both results showed the same tendency. Considering the lubricant induces an angle of attack during sliding, the friction model with an attack angle is constructed for exploring the loading capacity, which means the load is supported by both oil pocket and sliding surface. Results showed that the hydrodynamic pressure caused by the angle of attack at 1.4×10^-5 rad under 4.141 KPa surface pressure and at 8×10^-6 rad under 9.886 KPa surface pressure are close to experimental results. This research work provided a method to solve the problem in analyzing the loading and friction of sliding surfaces with textures due to tiny aspect ratio of lubricant film. The friction model for sliding surface with textures is constructed and verified its reasonability through experiments.
誌謝 i
摘要 ii
Abstract iii
目錄 iv
表目錄 vi
圖目錄 vii
符號表 x
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 研究方法與流程 6
1.4 本文架構 7
第二章 滑動面摩擦特性分析 9
2.1 滑動面摩擦特性分類 9
2.2 滑動摩擦之機制分析 11
2.2.1 平行板滑動面液動潤滑模型 11
2.2.2 非均勻膜厚所造成的液動壓力模型 13
2.3 具紋理之滑動摩擦之機構分析 15
2.3.1 統御方程式及假設條件 15
2.3.2 空穴效應 16
第三章 滑動面運動摩擦模型建構 18
3.1 潤滑油模型建構 18
3.1.1 探討對象 18
3.1.2 網格類型與網格數差異之探討 20
3.1.3 邊界條件 22
3.2 平板模型之比較 23
3.3 具滑動攻角模型之比較 25
3.4 單紋理模型之建構 26
第四章 滑動面摩擦量測與模型之比較 30
4.1 滑塊運動摩擦量測 30
4.1.1 量測設備與架設 30
4.1.2 量測數據 31
4.2 量測數據與數值分析之比對 33
4.2.1 水平模型 33
4.2.2 具滑動攻角模型 37
第五章 結論與未來展望 44
5.1 結論 44
5.2 未來展望 44
參考文獻 45
附錄:量測設備與材料規格 48
[1] 佐ぼ木信也,“表面ЪヱЗХцэ⑦ヲズプペЬьユп①Жみ特性ソ向上”,表面技術,No. 12, pp. 568-572, 2014.
[2] 蘇侃,混合潤滑模型之建立,國科會研究報告,2001。
[3] U. Pettersson and S. Jacobson, "Textured Surfaces for Improved Lubrication at High Pressure and Low Sliding Speed of Roller/Piston in Hydraulic Motors," Tribology International, No. 40, pp. 355-359, 2007.
[4] M. Nakano, A. Korenaga, K. Miyake, T. Murakami, Y. Ando, H. Usami and S. Sasaki,“Applying Micro-Texture to Cast Iron Surfaces to Reduce the Friction Coefficient Under Lubricated Conditions,” Tribology Letter, pp. 131–137, 2007.
[5] H. L. Costa and I. M. Hutchings, “Hydrodynamic Lubrication of Textured Steel Surfaces under Reciprocating Sliding Conditions,”Tribology International, No. 40, pp. 1227-1238, 2007.
[6] Y. Wan and D.-S. Xiong, “The Effect of Laser Surface Texturing on Frictional Performance of Face Seal,”Journal of Materials Processing Technology, No. 197, pp. 96–100, 2008.
[7] X. Wang, W. Liu, F. Zhou and D. Zhu,“Preliminary Investigation of the Effect of Dimple Size on Friction in Line Contacts,”Tribology International, pp. 1118–1123, 2009.
[8] 陳正達,滑動面表面紋理之摩擦特性探討,國立中興大學機械工程系碩士論文,2011。
[9] A. Golchin, G. F. Simmons and S. B. Glavatskih, Break-Away Friction of PTFE Materials in Lubricated Conditions,”Tribology International, No. 48, pp. 54–62, 2012.
[10] 林明賢,具混合型紋理滑動面之進給系統摩擦特性探討,國立興大學機械工程系碩士論文,2013。
[11] 彭昭琳,創新型無鏟花工具機硬軌之研發,國立興大學機械工程系碩士論文,2014。
[12] 童冠敏,加工紋理應用於具機硬軌之探討,國立興大學機械工程系碩士論文,2015。
[13] D. B. Hamilton, J. A. Walowit and C. M. Allen,“A Theory of Lubrication by Micro-Irregularities,”Journal of Basic Engineering, No. 41, pp. 177-185, 1966.
[14] W. Tang, Y. Zhou, H. Zhu and H. Yang,“The Effect of Surface Texturing on Reducing the Friction and Wear of Steel under Lubricated Sliding Contact,”Applied Surface Science, pp. 199–204, 2013.
[15] K. Gertzos, P. Nikolakopoulos and C. Papadopoul,“CFD Analysis of Journal Bearing Hydrodynamic Lubrication by Bingham Lubricant,” Tribology International, pp. 1190-1204, 2008.
[16] 王信誌與蔡志成,“具微型油溝滑塊之滑動摩擦分析”,第十六屆全國機構與機器設計學術研討會論文集,台灣新竹,2013。
[17] Y. Zhang, X. Zhang and G. Matsoukasb, “Numerical Study of Surface Texturing for Improving Tribological Properties of Ultra-High Molecular Weight Polyethylene,” Biosurface and Biotribology, pp. 270-277, 2015.
[18] A. T. Cross, F. Sadeghi, L. Cao, R. Rateick JR and S. Rowan,“Flow Visualization in a Pocketed Thrust Washer,”Tribology Transactions, pp. 571-581, 2012.
[19] 黃品綸,應用加工紋理之滑塊摩擦特性分析,國立興大學機械工程系碩士論文,2016。
[20] Bruker Nano Surfaces,“Generating a Stribeck Curve in a Reciprocating Test,”http://www.azom.com/article.aspx?ArticleID=12810.
[21] A. S. Akhmatov,“Molecular Physics of Boundary Friction,”Israel Programme for scientific Translation, pp. 310-311, 1966.
[22] “Reynolds Number,” Wikipedia. https://zh.wikipedia.org/zh-tw/%E9%9B% B7%E8%AF%BA%E6%95%B0.
[23] M. Bryant, Hydrodynamic Lubrication, UT Mechanical Engineering, 2005.
[24] D. Gropper, L. Wang and T. J. Harvey, “Hydrodynamic Lubrication of Textured Surfaces: A Review of Modeling Techniques and Key Findings,” Tribology International, No. 94, pp. 509-529, 2016.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top