跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:45cf:c86b:e393:b18b) 您好!臺灣時間:2025/01/13 08:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張哲維
研究生(外文):Che-Wei Chang
論文名稱:利用微流體電極裝置探討單一嗜鹼性細胞過敏反應之阻抗變化
論文名稱(外文):Impedance Measurements of Single Basophils Having Allergic Reaction in Microelectrode Device
指導教授:陳志敏陳志敏引用關係吳嘉哲
口試委員:黃正昇沈靜慧
口試日期:2017-07-22
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:61
中文關鍵詞:微流道單一細胞嗜鹼性細胞阻抗被動傳輸過敏
外文關鍵詞:MicrofluidicSingle cellBasophilImpedancePassive transferAllergy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於逐年增加的過敏疾病患者,讓過敏疾病成為重大公共衛生問題。為了節省醫療資源,準確且快速的過敏篩檢為防治的重要課題。本研究探討單一嗜鹼性細胞經被動傳輸與免疫球蛋白IgE接合以及對特定過敏原產生活化作用的機制與電性變化關係。以被動傳輸方式接合免疫球蛋白於嗜鹼性細胞膜表面的蛋白質受體,相較於使用化學物質(例如鈣離子載體)或細胞因子(Cytokine)刺激活化嗜鹼性細胞,則更接近人體過敏機制。
本實驗利用陣列流道配合液動力過濾捕捉單一嗜鹼性細胞。利用液動力過濾捕捉單一細胞的優勢以及特性,包含快速捕捉細胞,提供個別細胞一致性的培養與活化環境。我們製作微陣列電極於捕捉槽,對細胞脫顆粒現象與釋放組織胺機制,進行無標記與非侵入式觀察與阻抗量測分析。實驗發現處於致敏階段的嗜鹼性細胞經塵蟎過敏原(Der p 2)刺激後阻抗大小在高頻(>60 kHz)下降約30%,而相位則是下降約20%。在頻率40 Hz 到100 kHz的量測範圍內可依阻抗值判斷細胞是否活化與產生脫顆粒現象。
Allergic diseases become a major public health threat today as a rapid growth of the patients with such diseases. Fast and accurate detection of allergy plays an important role in prevention and treatment. In this study, basophils were bounded to specific Der p 2 IgE through passive transfer. Then specific antigen was used to stimulate the basophils for observation of the degranulation phenomenon and measurements of impedance response.
The hydrodynamic filtration technique was employed to separate and trap single cells in the microchannels. Advantage and characteristics of the hydrodynamic filtration technique leads to rapid trapping of single cells and consistency of environment for cell culturing. Microelectrodes were fabricated in trapping chambers to measure the impedance of trapped single cells. The impedance measurement offers a label-free and noninvasive means for analysis of cell degranulation and histamine releasing. It is found that a significant downward trend in impedance while sensitized basophils were stimulated by specific antigen. The impedance magnitude and phase of the single basophil decreases approximately 30% and 20, respectively, after the antigen stimulation in the frequency range of 40 to 100 kHz.
致謝 i
摘要 ii
Abstract iii
圖目錄 vi
表目錄 vii
第一章 緒論 1
1.1研究背景與動機 1
1.2 文獻回顧 2
1.2.1經由嗜鹼性細胞所引起的過敏反應 2
1.2.2被動傳輸及其引發的過敏反應 3
1.2.3微流道捕捉單一細胞 7
1.2.4單一細胞阻抗量測 9
1.3研究目標 9
第二章 研究理論與方法 10
2.1 KU812介紹 10
2.2被動傳輸的原理及實驗配置 11
2.3抗體抗原配置 12
2.4細胞培養 14
2.4.1 RPMI培養液配置 14
2.4.2細胞解凍 15
2.4.3細胞繼代 15
2.4.4細胞凍存 16
2.4.5細胞計數 17
第三章 微流體電極晶片設計與製作方法 18
3.1微流道與電極設計 18
3.1.1流道捕捉原理 18
3.1.2分支流量推導 20
3.1.3分支流阻推導 21
3.1.4流道分支長度 22
3.1.5流道結構尺寸 23
3.1.6電極設計 25
3.2微流道與電極裝置製程 26
3.2.1微流道母模微影製程與參數 26
3.2.2軟微影技術 28
3.2.3微電極母模微影製程及參數 29
3.2.4微電極金屬蒸鍍與Lift-off技術 30
3.2.5微流道與微電極對準接合 32
第四章 實驗結果討論 33
4.1細胞阻抗量測示意圖 33
4.2電阻抗量測儀器校正 34
4.3等效電路模型建立與擬合 35
4.4背景溶液量測 38
4.5細胞在不同頻率下響應 41
4.6投入不同濃度過敏原對KU812之影響 41
4.7不同過敏狀態的KU812阻抗變化 47
第五章 結論與建議 50
5.1結論 50
5.2建議 51
六、參考文獻 52
附錄 56
實驗設備與材料 56
不同過敏狀況KU812之等效電路元件擬合參數 61
[1]Adamo, A., and Jensen, K. F., “Microfluidic based single cell microinjection,” Lab on a Chip, vol. 8, no. 8, pp. 1258-1261, 2008.
[2]Almlöf, I., Nilsson, K., Johansson, V., Åkerblom, E., Slotte, H., Ahlstedt, S., and Matsson, P., “Induction of basophilic differentiation in the human basophilic cell line KU812,” Scandinavian Journal of Immunology, vol. 28, no. 3, pp. 293-300, 1988.
[3]Arnold, D. M., Blajchman, M. A., DiTomasso, J., Kulczycki, M., and Keith, P. K., “Passive transfer of peanut hypersensitivity by fresh frozen plasma,” Archives of Internal Medicine, vol. 167, no. 8, pp. 853-854, 2007.
[4]Babahosseini, H., Strobl, J. S., and Agah, M., “Microfluidic iterative mechanical characteristics (iMECH) analyzer for single-cell metastatic identification,” Analytical Methods, vol. 9, no. 5, pp. 847-855, 2017.
[5]Bell, L., Seshia, A., Lando, D., Laue, E., Palayret, M., Lee, S. F., and Klenerman, D., “A microfluidic device for the hydrodynamic immobilisation of living fission yeast cells for super-resolution imaging,” Sensors and Actuators B: Chemical, vol. 192, pp. 36-41, 2014.
[6]Bhattacharya, S., Chao, T.-C., Ariyasinghe, N., Ruiz, Y., Lake, D., Ros, R., and Ros, A., “Selective trapping of single mammalian breast cancer cells by insulator-based dielectrophoresis,” Analytical and Bioanalytical Chemistry, vol. 406, no. 7, pp. 1855-1865, 2014.
[7]Cinque, L., Yamada, A., Ghomchi, Y., Baigl, D., and Chen, Y., “Cell trapping, DNA extraction and molecular combing in a microfluidic device for high throughput genetic analysis of human DNA,” Microelectronic Engineering, vol. 88, no. 8, pp. 1733-1736, 2011.
[8]Córdoba-Torres, P., Mesquita, T. J., and Nogueira, R. P., “Relationship between the origin of constant-phase element behavior in electrochemical impedance spectroscopy and electrode surface structure,” The Journal of Physical Chemistry C, vol. 119, no. 8, pp. 4136-4147, 2015.
[9]Davis, J. M., Animal cell culture: essential methods. John Wiley & Sons, 2011. Davis J., Animal Cell Culture: Essential Methods, John Wiley & Sons, New Jersey, 2011, Chapter 4.
[10]Di Carlo, D. and Lee, L. P., “Dynamic single-cell analysis for quantitative biology,” Analytical Chemistry, vol. 78, pp. 7918-7925, 2006.
[11]Eriksson, E., Sott, K., Lundqvist, F., Sveningsson, M., Scrimgeour, J., Hanstorp, D., Goksör, M., and Granéli, A., “A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning,” Lab on a Chip, vol. 10, no. 5, pp. 617-625, 2010.
[12]Hosseini, S. A., Zanganeh, S., Akbarnejad, E., Salehi, F., and Abdolahad, M., “Microfluidic device for label-free quantitation and distinction of bladder cancer cells from the blood cells using micro machined silicon based electrical approach; suitable in urinalysis assays,” Journal of Pharmaceutical and Biomedical Analysis, vol. 134, pp. 36-42, 2017.
[13]Jensen, B. M., Hansen, J. B., Dissing, S., Gerwien, J., Skov, P., and Poulsen, L., “Monomeric immunoglobulin E stabilizes FcεRIα from the human basophil cell line KU812 by protecting it from natural turnover,” Clinical & Experimental Allergy, vol. 33, no. 5, pp. 655-662, 2003.
[14]Kishi, K., “A new leukemia cell line with Philadelphia chromosome characterized as basophil precursors,” Leukemia Research, vol. 9, no. 3, pp. 381-390, 1985.
[15]Lu, C. S., Hung, A., Lin, C. J., Chen, J. B., Chen, C., Shiung, Y. Y., Tsai, C. Y., and Chang, T., “Generating allergen‐specific human IgEs for immunoassays by employing human ε gene knockin mice,” Allergy, vol. 70, no. 4, pp. 384-390, 2015.
[16]MacGlashan, D., McKenzie-White, J., Chichester, K., Bochner, B. S., Davis, F. M., Schroeder, J. T., and Lichtenstein, L. M., “In vitro regulation of FcεRIα expression on human basophils by IgE antibody,” Blood, vol. 91, no. 5, pp. 1633-1643, 1998.
[17]Mernier, G., Hasenkamp, W., Piacentini, N., and Renaud, P., "Multiple-frequency impedance measurements in continuous flow for automated evaluation of yeast cell lysis," Sensors and Actuators B: Chemical, vol. 170, pp. 2-6, 2012.
[18]Mouthuy, J., Detry, B., Sohy, C., Pirson, F., and Pilette, C., “Presence in sputum of functional dust mite–specific IgE antibodies in intrinsic asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 184, no. 2, pp. 206-214, 2011.
[19]Nguyen, T. A., Tiberius, B., Pliquett, U., and Urban, G. A., “An impedance biosensor for monitoring cancer cell attachment, spreading and drug-induced apoptosis,” Sensors and Actuators A: Physical, vol. 241, pp. 231-237, 2016.
[20]Nguyen, T. A., Yin, T.-I., Reyes, D., and Urban, G. A., “Microfluidic chip with integrated electrical cell-impedance sensing for monitoring single cancer cell migration in three-dimensional matrixes,” Analytical Chemistry, vol. 85, no. 22, pp. 11068-11076, 2013.
[21]Nolte, H., Poulsen, M., Schi?stz, P., and Skov, P. S., “Passive sensitization and histamine release of basophils,” Allergy, vol. 45, no. 6, pp. 427-435, 1990.
[22]Oshiba, A., Hamelmann, E., Takeda, K., Bradley, K. L., Loader, J. E., Larsen, G. L., and Gelfand, E. W., “Passive transfer of immediate hypersensitivity and airway hyperresponsiveness by allergen-specific immunoglobulin (Ig) E and IgG1 in mice,” Journal of Clinical Investigation, vol. 97, no. 6, p. 1398, 1996.
[23]Papadopoulos, N. G., Agache, I., Bavbek, S., Bilo, B. M., Braido, F., Cardona, V., Custovic, A., Demoly, P., Eigenmann, P., Gayraud, J., et al., “Research needs in allergy: an EAACI position paper, in collaboration with EFA,” Clinical and Translational Allergy, vol. 2, no. 1, p. 21, 2012.
[24]Park, H., Kim, D., and Yun, K.-S., “Single-cell manipulation on microfluidic chip by dielectrophoretic actuation and impedance detection,” Sensors and Actuators B: Chemical, vol. 150, no. 1, pp. 167-173, 2010.
[25]Philipse, E., Sabato, V., Bridts, C., De Clerck, L., and Ebo, D., “Basophil activation in the diagnosis of life-threatening hypersensitivity reaction to iodinated contrast media: a case report,” Acta Clinica Belgica, vol. 68, no. 2, pp. 140-142, 2013.
[26]Pradhan, R., Mandal, M., Mitra, A., and Das, S., “Monitoring cellular activities of cancer cells using impedance sensing devices,” Sensors and Actuators B: Chemical, vol. 193, pp. 478-483, 2014.
[27]Ramos, T. V., Mathew, A. J., Thompson, M. L., and Ehrhardt, R. O., “Standardized cryopreservation of human primary cells,” Current Protocols in Cell Biology, pp. A. 3I. 1-A. 3I. 8, 2014.
[28]Reunala, T., Brummer-Korvenkontio, H., Räsänen, L., François, G., and Palosuo, T., “Passive transfer of cutaneous mosquito-bite hypersensitivity by IgE anti-saliva antibodies,” Journal of Allergy and Clinical Immunology, vol. 94, no. 5, pp. 902-906, 1994.
[29]Sanz, M. L., Gamboa, P. M., and De Weck, A., “In vitro tests: basophil activation tests,” in Drug hypersensitivity: Karger Publishers, 2007, pp. 391-402.
[30]Shah, P., Zhu, X., Chen, C., Hu, Y., and Li, C.-Z., “Lab-on-chip device for single cell trapping and analysis,” Biomedical Microdevices, vol. 16, no. 1, pp. 35-41, 2014.
[31]Spiller, D. G., Wood, C. D., Rand, D. A., and White, M. R., “Measurement of single-cell dynamics,” Nature, vol. 465, no. 7299, pp. 736-745, 2010.
[32]Stone, K. D., Prussin, C., and Metcalfe, D. D., “IgE, mast cells, basophils, and eosinophils,” Journal of Allergy and Clinical Immunology, vol. 125, no. 2, pp. S73-S80, 2010.
[33]Tran, T. B., Cho, S., and Min, J., “Hydrogel-based diffusion chip with electric cell-substrate impedance sensing (ECIS) integration for cell viability assay and drug toxicity screening,” Biosensors and Bioelectronics, vol. 50, pp. 453-459, 2013.
[34]Tripathi, A., Riddell, J., and Chronis, N., “A biochip with a 3D microfluidic architecture for trapping white blood cells,” Sensors and Actuators B: Chemical, vol. 186, pp. 244-251, 2013.
[35]Valizadeh, A. and Khosroushahi, A. Y., “Single-cell analysis based on lab on a chip fluidic system,” Analytical Methods, vol. 7, no. 20, pp. 8524-8533, 2015.
[36]Wheeler, A. R., Throndset, W. R., Whelan, R. J., Leach, A. M., Zare, R. N., Liao, Y. H., Farrell, K., Manger, I. D., and Daridon, A., “Microfluidic device for single-cell analysis,” Analytical Chemistry, vol. 75, no. 14, pp. 3581-3586, 2003.
[37]White F. M., Vicous Fluid Flow, McGraw-Hill, New York, 1974, pp. 123–124.
[38]Yamada, M., Kano, K., Tsuda, Y., Kobayashi, J., Yamato, M., Seki, M., and Okano, T., “Microfluidic devices for size-dependent separation of liver cells,” Biomedical Microdevices, vol. 9, no. 5, pp. 637-645, 2007.
[39]Zhang, K., Zhao, L.-B., Guo, S.-S., Shi, B.-X., Lam, T.-L., Leung, Y.-C., Chen, Y., Zhao, X.-Z., Chan, H. L., and Wang, Y., “A microfluidic system with surface modified piezoelectric sensor for trapping and detection of cancer cells,” Biosensors and Bioelectronics, vol. 26, no. 2, pp. 935-939, 2010.
[40]Zhou, Y., Basu, S., Laue, E., and Seshia, A. A., “Single cell studies of mouse embryonic stem cell (mESC) differentiation by electrical impedance measurements in a microfluidic device,” Biosensors and Bioelectronics, vol. 81, pp. 249-258, 2016.
[41]Zhou, Y., Basu, S., Wohlfahrt, K. J., Lee, S. F., Klenerman, D., Laue, E. D., and Seshia, A. A., “A microfluidic platform for trapping, releasing and super-resolution imaging of single cells,” Sensors and Actuators B: Chemical, vol. 232, pp. 680-691, 2016.
[42]蔡惟亘,利用梳狀微流道分離捕捉單一顆粒之實驗研究,台中市,國立中興大學碩士論文,2013.
[43]洪國瀚,於微流道捕捉單一細胞及阻抗量測之實驗研究,台中市,國立中興大學碩士論文,2014.
[44]彭煥唐,應用微電極裝置進行單一嗜鹼性細胞捕捉與阻抗量測觀察,台中市,國立中興大學碩士論文,2015.
[45]謝明庭,利用微流體電極裝置探討細胞因子對單一嗜鹼性細胞之阻抗反應影響,台中市,國立中興大學碩士論文,2016.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊