[1]Adamo, A., and Jensen, K. F., “Microfluidic based single cell microinjection,” Lab on a Chip, vol. 8, no. 8, pp. 1258-1261, 2008.
[2]Almlöf, I., Nilsson, K., Johansson, V., Åkerblom, E., Slotte, H., Ahlstedt, S., and Matsson, P., “Induction of basophilic differentiation in the human basophilic cell line KU812,” Scandinavian Journal of Immunology, vol. 28, no. 3, pp. 293-300, 1988.
[3]Arnold, D. M., Blajchman, M. A., DiTomasso, J., Kulczycki, M., and Keith, P. K., “Passive transfer of peanut hypersensitivity by fresh frozen plasma,” Archives of Internal Medicine, vol. 167, no. 8, pp. 853-854, 2007.
[4]Babahosseini, H., Strobl, J. S., and Agah, M., “Microfluidic iterative mechanical characteristics (iMECH) analyzer for single-cell metastatic identification,” Analytical Methods, vol. 9, no. 5, pp. 847-855, 2017.
[5]Bell, L., Seshia, A., Lando, D., Laue, E., Palayret, M., Lee, S. F., and Klenerman, D., “A microfluidic device for the hydrodynamic immobilisation of living fission yeast cells for super-resolution imaging,” Sensors and Actuators B: Chemical, vol. 192, pp. 36-41, 2014.
[6]Bhattacharya, S., Chao, T.-C., Ariyasinghe, N., Ruiz, Y., Lake, D., Ros, R., and Ros, A., “Selective trapping of single mammalian breast cancer cells by insulator-based dielectrophoresis,” Analytical and Bioanalytical Chemistry, vol. 406, no. 7, pp. 1855-1865, 2014.
[7]Cinque, L., Yamada, A., Ghomchi, Y., Baigl, D., and Chen, Y., “Cell trapping, DNA extraction and molecular combing in a microfluidic device for high throughput genetic analysis of human DNA,” Microelectronic Engineering, vol. 88, no. 8, pp. 1733-1736, 2011.
[8]Córdoba-Torres, P., Mesquita, T. J., and Nogueira, R. P., “Relationship between the origin of constant-phase element behavior in electrochemical impedance spectroscopy and electrode surface structure,” The Journal of Physical Chemistry C, vol. 119, no. 8, pp. 4136-4147, 2015.
[9]Davis, J. M., Animal cell culture: essential methods. John Wiley & Sons, 2011. Davis J., Animal Cell Culture: Essential Methods, John Wiley & Sons, New Jersey, 2011, Chapter 4.
[10]Di Carlo, D. and Lee, L. P., “Dynamic single-cell analysis for quantitative biology,” Analytical Chemistry, vol. 78, pp. 7918-7925, 2006.
[11]Eriksson, E., Sott, K., Lundqvist, F., Sveningsson, M., Scrimgeour, J., Hanstorp, D., Goksör, M., and Granéli, A., “A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning,” Lab on a Chip, vol. 10, no. 5, pp. 617-625, 2010.
[12]Hosseini, S. A., Zanganeh, S., Akbarnejad, E., Salehi, F., and Abdolahad, M., “Microfluidic device for label-free quantitation and distinction of bladder cancer cells from the blood cells using micro machined silicon based electrical approach; suitable in urinalysis assays,” Journal of Pharmaceutical and Biomedical Analysis, vol. 134, pp. 36-42, 2017.
[13]Jensen, B. M., Hansen, J. B., Dissing, S., Gerwien, J., Skov, P., and Poulsen, L., “Monomeric immunoglobulin E stabilizes FcεRIα from the human basophil cell line KU812 by protecting it from natural turnover,” Clinical & Experimental Allergy, vol. 33, no. 5, pp. 655-662, 2003.
[14]Kishi, K., “A new leukemia cell line with Philadelphia chromosome characterized as basophil precursors,” Leukemia Research, vol. 9, no. 3, pp. 381-390, 1985.
[15]Lu, C. S., Hung, A., Lin, C. J., Chen, J. B., Chen, C., Shiung, Y. Y., Tsai, C. Y., and Chang, T., “Generating allergen‐specific human IgEs for immunoassays by employing human ε gene knockin mice,” Allergy, vol. 70, no. 4, pp. 384-390, 2015.
[16]MacGlashan, D., McKenzie-White, J., Chichester, K., Bochner, B. S., Davis, F. M., Schroeder, J. T., and Lichtenstein, L. M., “In vitro regulation of FcεRIα expression on human basophils by IgE antibody,” Blood, vol. 91, no. 5, pp. 1633-1643, 1998.
[17]Mernier, G., Hasenkamp, W., Piacentini, N., and Renaud, P., "Multiple-frequency impedance measurements in continuous flow for automated evaluation of yeast cell lysis," Sensors and Actuators B: Chemical, vol. 170, pp. 2-6, 2012.
[18]Mouthuy, J., Detry, B., Sohy, C., Pirson, F., and Pilette, C., “Presence in sputum of functional dust mite–specific IgE antibodies in intrinsic asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 184, no. 2, pp. 206-214, 2011.
[19]Nguyen, T. A., Tiberius, B., Pliquett, U., and Urban, G. A., “An impedance biosensor for monitoring cancer cell attachment, spreading and drug-induced apoptosis,” Sensors and Actuators A: Physical, vol. 241, pp. 231-237, 2016.
[20]Nguyen, T. A., Yin, T.-I., Reyes, D., and Urban, G. A., “Microfluidic chip with integrated electrical cell-impedance sensing for monitoring single cancer cell migration in three-dimensional matrixes,” Analytical Chemistry, vol. 85, no. 22, pp. 11068-11076, 2013.
[21]Nolte, H., Poulsen, M., Schi?stz, P., and Skov, P. S., “Passive sensitization and histamine release of basophils,” Allergy, vol. 45, no. 6, pp. 427-435, 1990.
[22]Oshiba, A., Hamelmann, E., Takeda, K., Bradley, K. L., Loader, J. E., Larsen, G. L., and Gelfand, E. W., “Passive transfer of immediate hypersensitivity and airway hyperresponsiveness by allergen-specific immunoglobulin (Ig) E and IgG1 in mice,” Journal of Clinical Investigation, vol. 97, no. 6, p. 1398, 1996.
[23]Papadopoulos, N. G., Agache, I., Bavbek, S., Bilo, B. M., Braido, F., Cardona, V., Custovic, A., Demoly, P., Eigenmann, P., Gayraud, J., et al., “Research needs in allergy: an EAACI position paper, in collaboration with EFA,” Clinical and Translational Allergy, vol. 2, no. 1, p. 21, 2012.
[24]Park, H., Kim, D., and Yun, K.-S., “Single-cell manipulation on microfluidic chip by dielectrophoretic actuation and impedance detection,” Sensors and Actuators B: Chemical, vol. 150, no. 1, pp. 167-173, 2010.
[25]Philipse, E., Sabato, V., Bridts, C., De Clerck, L., and Ebo, D., “Basophil activation in the diagnosis of life-threatening hypersensitivity reaction to iodinated contrast media: a case report,” Acta Clinica Belgica, vol. 68, no. 2, pp. 140-142, 2013.
[26]Pradhan, R., Mandal, M., Mitra, A., and Das, S., “Monitoring cellular activities of cancer cells using impedance sensing devices,” Sensors and Actuators B: Chemical, vol. 193, pp. 478-483, 2014.
[27]Ramos, T. V., Mathew, A. J., Thompson, M. L., and Ehrhardt, R. O., “Standardized cryopreservation of human primary cells,” Current Protocols in Cell Biology, pp. A. 3I. 1-A. 3I. 8, 2014.
[28]Reunala, T., Brummer-Korvenkontio, H., Räsänen, L., François, G., and Palosuo, T., “Passive transfer of cutaneous mosquito-bite hypersensitivity by IgE anti-saliva antibodies,” Journal of Allergy and Clinical Immunology, vol. 94, no. 5, pp. 902-906, 1994.
[29]Sanz, M. L., Gamboa, P. M., and De Weck, A., “In vitro tests: basophil activation tests,” in Drug hypersensitivity: Karger Publishers, 2007, pp. 391-402.
[30]Shah, P., Zhu, X., Chen, C., Hu, Y., and Li, C.-Z., “Lab-on-chip device for single cell trapping and analysis,” Biomedical Microdevices, vol. 16, no. 1, pp. 35-41, 2014.
[31]Spiller, D. G., Wood, C. D., Rand, D. A., and White, M. R., “Measurement of single-cell dynamics,” Nature, vol. 465, no. 7299, pp. 736-745, 2010.
[32]Stone, K. D., Prussin, C., and Metcalfe, D. D., “IgE, mast cells, basophils, and eosinophils,” Journal of Allergy and Clinical Immunology, vol. 125, no. 2, pp. S73-S80, 2010.
[33]Tran, T. B., Cho, S., and Min, J., “Hydrogel-based diffusion chip with electric cell-substrate impedance sensing (ECIS) integration for cell viability assay and drug toxicity screening,” Biosensors and Bioelectronics, vol. 50, pp. 453-459, 2013.
[34]Tripathi, A., Riddell, J., and Chronis, N., “A biochip with a 3D microfluidic architecture for trapping white blood cells,” Sensors and Actuators B: Chemical, vol. 186, pp. 244-251, 2013.
[35]Valizadeh, A. and Khosroushahi, A. Y., “Single-cell analysis based on lab on a chip fluidic system,” Analytical Methods, vol. 7, no. 20, pp. 8524-8533, 2015.
[36]Wheeler, A. R., Throndset, W. R., Whelan, R. J., Leach, A. M., Zare, R. N., Liao, Y. H., Farrell, K., Manger, I. D., and Daridon, A., “Microfluidic device for single-cell analysis,” Analytical Chemistry, vol. 75, no. 14, pp. 3581-3586, 2003.
[37]White F. M., Vicous Fluid Flow, McGraw-Hill, New York, 1974, pp. 123–124.
[38]Yamada, M., Kano, K., Tsuda, Y., Kobayashi, J., Yamato, M., Seki, M., and Okano, T., “Microfluidic devices for size-dependent separation of liver cells,” Biomedical Microdevices, vol. 9, no. 5, pp. 637-645, 2007.
[39]Zhang, K., Zhao, L.-B., Guo, S.-S., Shi, B.-X., Lam, T.-L., Leung, Y.-C., Chen, Y., Zhao, X.-Z., Chan, H. L., and Wang, Y., “A microfluidic system with surface modified piezoelectric sensor for trapping and detection of cancer cells,” Biosensors and Bioelectronics, vol. 26, no. 2, pp. 935-939, 2010.
[40]Zhou, Y., Basu, S., Laue, E., and Seshia, A. A., “Single cell studies of mouse embryonic stem cell (mESC) differentiation by electrical impedance measurements in a microfluidic device,” Biosensors and Bioelectronics, vol. 81, pp. 249-258, 2016.
[41]Zhou, Y., Basu, S., Wohlfahrt, K. J., Lee, S. F., Klenerman, D., Laue, E. D., and Seshia, A. A., “A microfluidic platform for trapping, releasing and super-resolution imaging of single cells,” Sensors and Actuators B: Chemical, vol. 232, pp. 680-691, 2016.
[42]蔡惟亘,利用梳狀微流道分離捕捉單一顆粒之實驗研究,台中市,國立中興大學碩士論文,2013.[43]洪國瀚,於微流道捕捉單一細胞及阻抗量測之實驗研究,台中市,國立中興大學碩士論文,2014.[44]彭煥唐,應用微電極裝置進行單一嗜鹼性細胞捕捉與阻抗量測觀察,台中市,國立中興大學碩士論文,2015.[45]謝明庭,利用微流體電極裝置探討細胞因子對單一嗜鹼性細胞之阻抗反應影響,台中市,國立中興大學碩士論文,2016.