|
[1] Basharin, G. P. (1959). On a statistical estimate for the entropy of a sequence of independent random variables. Theory of Probability & Its Applications, 4(3), 333- 336. [2] Burnham, K. P., & Overton, W. S. (1978). Estimation of the size of a closed population when capture probabilities vary among animals. Biometrika, 65(3), 625-633. [3] Chao, A., Ma, K. H., Hsieh, T. C., & Chiu, C. H. (2015). The online program SpadeR: Species-richness prediction and diversity estimation in R. Program and User’s Guide. [4] Chao, A., & Shen, T. J. (2003). Nonparametric estimation of Shannon’s index of diversity when there are unseen species in sample. Environmental and ecological statistics, 10(4), 429-443. [5] Fraser, D. A. S. (1956). Nonparametric methods in statistics. [6] Genz, A., Bretz, F., Miwa, T., Mi, X., Leisch, F., Scheipl, F., ... & Hothorn, T. (2012). mvtnorm: Multivariate normal and t distributions (2011). R package version 0.9-9991. [7] Gray, H. L., & Schucany, W. R. (1972). The generalized jackknife statistic (Vol. 1). M. Dekker. [8] Miller, G. A., & Madow, W. G. (1963). On the maximum likelihood estimate of the Shannon-Wiener measure of information. Readings in mathematical psychology, 1, 448-469. [9] Pollock, K. H., Nichols, J. D., Brownie, C., & Hines, J. E. (1990). Statistical inference for capture-recapture experiments. Wildlife monographs, 3-97. [10] Quenouille, M. H. (1949). Problems in plane sampling. The Annals of Mathematical Statistics, 355-375. [11] Schucany, W. R., Gray, H. L., & Owen, D. B. (1971). On bias reduction in estimation. Journal of the American Statistical Association, 66(335), 524-533. [12] Sharot, T. (1976). Sharpening the jackknife. Biometrika, 63(2), 315-321. [13] Tukey, J. W. (1958). Bias and confidence in not-quite large samples. Ann. Math. Statist., 29, 614. [14] 李星熠. (2012). 物種出現頻率平滑後在物種數估計上的應用. 中興大學應用數學系所學位論文, 1-51. [15] 黃玉冰. (2012). 瓜實蠅之族群統計分析, Jackknife 與 Bootstrap 方法之比較, 及子代性比率隨雌蟲年齡變化之生命表理論. 中興大學昆蟲學系所學位論文, 1-86. [16] 馬惠茹. (2013). 以折刀法減少估計式偏誤: 方法與財務應用. 臺灣大學財務金融學研究所學位論文, 1-44. [17] 李秀玲. (2013). 有限母體下 Shannon 指標的摺刀估計量. 中興大學應用數學系所學位論文, 1-66.
|