跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/10 16:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳姿妏
研究生(外文):Tzu-Wen Chen
論文名稱:纖維素奈米纖維的製備及其在紙張上的應用
論文名稱(外文):Preparation of cellulose nanofibers and their application on papers
指導教授:蘇裕昌蘇裕昌引用關係
指導教授(外文):Yu-Chang Su
口試委員:王升陽何振隆張上鎮葉汀峰
口試委員(外文):Sheng-Yang WangChen-Lung HoShang-Chen ChangTing-Feng Yeh
口試日期:2017-07-26
學位類別:碩士
校院名稱:國立中興大學
系所名稱:森林學系所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:93
中文關鍵詞:TEMPO氧化纖維素奈米纖維聚合度保水值透氣抵抗性紙張強度
外文關鍵詞:TEMPO oxidationCellulose nanofibersDegree of polymerizationWater-retention valueResistance of air permeabilityPaper strength
相關次數:
  • 被引用被引用:1
  • 點閱點閱:800
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究以2,2,6,6-四甲基哌啶-1-氧基(2,2,6,6-Tetramethylpiperidine-1-oxyl;TEMPO)媒介氧化反應將羧基導入天然纖維表面,後續以均質機和超音波振盪機處理氧化後的纖維,製得纖維素奈米纖維(Cellulose nanofibers;CNF)。依據反應時的氧化系統的反應環境、氧化劑添加量、反應時間、緩衝溶液使用種類對製得CNF的性質有所不同。所製得之CNF進行羧基含量、聚合度、光透射率和保水值等性質評估。隨後以CNF作為造紙添加劑的應用評估,將不同的製備條件得到性質有所差異的CNF添加入紙漿中,選擇4種不同聚合度的CNF作為紙張性質的改良劑,探討所添加CNF不同聚合度對於紙張性質的影響,測試添加10%CNF後之手抄紙的密度、平滑度、透氣度、不透明度、光散射係數、抗張強度、破裂強度、撕裂強度和耐折強度等的影響。
以TEMPO法在鹼性環境(TEMPO/NaBr/NaClO)下製備CNF,當氧化劑添加量為0、1.5、3.0、5.0和6.0 mmol/g時,所得之CNF的羧基含量依序為0.16、0.79、1.07、1.30和1.42 mmol/g,聚合度為962、176、144、130和124。氧化劑添加量較高的樣品,其光透射率也會越高,氧化劑添加3 mmol/g以上的樣品,其光透射率皆可達80%或以上。在中性環境(TEMPO/ NaClO /NaClO2)下,反應時間從0-60 hr時,CNF的羧基量會從0.16增加至0.83 mmol/g,聚合度會從962降低至345。在相同反應時間下,氧化劑添加量會影響CNF的羧基量和聚合度,CNF的羧基量和聚合度隨著氧化劑的添加量增加而增加。中性環境製備的CNF,其光透射率則較低,但由於其氧化程度較低,即使在相同的機械處理下,尚有較多未被完全分散的部分。
以TEMPO氧化法製備的CNF以FTIR測定時在1600 cm-1位置皆有C=O的吸收峰,顯示CNF具有COONa的官能基。隨氧化程度之進行,羧基含量增加,1600 cm-1位置的吸收峰有增大的趨勢。
在紙漿中添加入10%不同聚合度的CNF分散液作為添加助劑,抄成紙張後測試紙張的性質。添加聚合度較低(DPv = 124)的CNF可以使紙張的密度增加5.5%、透氣抵抗增加(70→962)、光散射係數降低31.5%。添加聚合度較高(DPv = 540)的CNF可以使紙張的抗張強度、破裂強度和耐折強度分別增加28.4%、27.7%和59.4%。
推論CNF可以提升紙張性質的機制大致有四點:(1)CNF表面的羥基可以與纖維上的羥基產生氫鍵結合,增加纖維與纖維之間的結合面積和結合強度;(2)CNF奈米等級的尺寸可以在濾水過程中與纖維產生毛細管作用;(3)奈米尺寸的CNF容易填補於纖維與纖維之間的孔隙中,產生網狀構造;(4)長徑比越大的CNF具有更高的強度以增加補強強度。
In this study, 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO) was used to introduce carboxyl groups into the natural fiber surface, and obtained cellulose nanofibers (CNF) by treating the oxidized fibers with a homogenizer and an ultrasonicator. The reaction environment, amount of oxidant added, reaction time and the type of buffer solution of the oxidation system will have effect on the properties of CNF. Determine the carboxyl groups content, polymerization degree, light transmittance and water retention value of CNF. The use of CNF as a papermaking additive was subsequently evaluated. 10%CNF was added into the pulp with different preparation conditions. Four kinds of CNFs with different degrees of polymerization were selected as the improvers of paper properties. The effects of the degree of polymerization of CNF on the properties of paper were investigated. The density, smoothness, air permeability, opacity, light scattering coefficient, tensile strength, burst strength, tear strength and folding strength of the paper were measured.
In the alkaline environment (TEMPO/NaBr/NaClO), When the amount of oxidant added was 0, 1.5, 3.0, 5.0 and 6.0 mmol / g, the carboxyl content of CNF was 0.16, 0.79, 1.07, 1.30 and 1.42 mmol / g, the degree of polymerization was 962, 176, 144, 130 and 124. The more oxidant addition, the higher the light transmittance of the sample. The oxidant added 3 mmol/g above the sample of its light transmittance are more than 80%. In the neutral environment(TEMPO/ NaClO /NaClO2), CNF prepared by TEMPO oxidation will be affected by the reaction time and the addition of oxidant. When the reaction time ranged from 0 to 60 hr, the amount of carboxyl group of CNF increased from 0.16 to 0.83 mmol/g, and the degree of polymerization decreased from 962 to 345. The amount of carboxyl group and the degree of polymerization of CNF were affected by the addition of oxidant at the same reaction time. The amount of carboxyl group and the degree of polymerization of CNF increased with the addition of oxidant. CNF prepared by neutral environment has a low light transmittance, and because of its low degree of oxidation. Even under the same mechanical treatment, there are many parts that are not completely dispersed.
CNF prepared by TEMPO oxidation method has an absorption peak of C=O at 1600 cm-1 when measured by FTIR, showing that CNF has COONa functional groups. With the increase of oxidation degree, the content of carboxyl group increased, and the absorption peak at 1600 cm-1 increased.
10% different degree of polymerization of CNF dispersion was added to the pulp as an additive and then test the property of the paper. The addition of a CNF with a low degree of polymerization (DPv = 124) increases the density of the paper by 5.5%, the increase in air resistance (70 → 962), and the light scattering coefficient by 31.5%. The addition of CNF with high polymerization degree (DPv = 540) can increase the tensile strength, breaking strength and folding strength of the paper by 28.4%, 27.7% and 59.4%, respectively.
There are four points that the mechanism of improvement of properties of paper by adding the CNF : (1) The hydrogen bond is formed by the -OH groups on the CNF surface and the -OH groups of cellulose, and increase the bonding area and bond strength between the fiber and the fiber. (2) CNF nano-level size will occur capillary action with the fibers when water filtering. (3) Nano-sized CNF is easy to fill in the pores between the fiber and fiber, resulting in network structure. (4) The larger the aspect ratio of the CNF has a higher strength to increase the reinforcing strength.
摘要 i
Abstract iii
目次 v
表目次 x
圖目次 xi
壹、前言 1
貳、文獻回顧 4
一、纖維素奈米材料的纖維來源 4
(一)木材纖維 4
(二)非木纖維 5
(三)動物纖維 5
(四)細菌纖維素(Bacterial cellulose;BC) 7
二、木材 7
(一)木材的化學組成 8
(二)纖維素 9
(三)微纖毛(Microfibril) 10
三、纖維素奈米材料 12
(一)纖維素奈米結晶(Cellulose nanocrystals;CNCs) 13
(二)微纖毛化纖維素 16
(三)纖維素奈米纖維 18
四、TEMPO氧化反應 21
(一)TEMPO藥劑 21
(二)TEMPO/NaBr/NaClO系統下的氧化反應 22
(三)TEMPO / NaClO / NaClO2系統下的氧化反應 24
(四)TEMPO電介導反應 26
(五)TEMPO氧化製備CNF的性質 27
五、纖維素奈米纖維之應用 29
(一)CNF在造紙上的應用 29
1. 對紙張濾水性的影響 29
2. CNF的添加對紙張性質的影響 30
(1)密度 30
(2)透氣度(Air permeability) 30
(3)光學性質 31
(4)強度 31
(二)表面塗布 32
(三)CNF/高分子複合材料 32
(四)CNF的表面疏水變性 33
(五)CNF作為吸附性材料 34
(六)CNF作為濾材 35
(七)光電應用 36
參、材料與方法 37
一、試驗材料 37
(一)纖維 37
(二)2,2,6,6-四甲基哌啶-1-氧基 37
(三)次氯酸鈉 37
(四)其他試驗用藥品 37
二、纖維素奈米纖維之製備 38
(一) TEMPO氧化纖維製備 38
1. 鹼性製備法 38
2. 中性製備法 38
三、羧基含量測定 39
四、TEMPO氧化纖維機械處理 40
(一)鹼性法 40
(二)中性法 41
五、纖維素奈米纖維性質的測定 41
(一)黏度測定及聚合度 41
1. 黏度測定 41
2. 纖維素奈米纖維之聚合度 42
(二)纖維素奈米纖維的透射率 42
(三)掃描電子顯微鏡(Scanning Electron Microscope;SEM)影像觀察 42
(四)原始纖維形態觀察 43
(五)傅立葉轉換紅外光譜(Fourier Transform Infrared Spectrometer;FT-IR) 43
(六)保水值(Water-retention value;WRV) 43
六、CNF添加於紙漿對抄製手抄紙性質的影響 43
(一)紙漿材料 43
(二)手抄紙的抄製 44
七、手抄紙物理性質測定 44
(一)厚度、密度 44
(二)不透明度 44
(三)光散射係數的測定 45
(四)平滑度 45
(五)透氣度 45
八、手抄紙機械性質測定 46
(一)抗張強度 46
(二)破裂強度 46
(三)撕裂強度 46
(四)耐折強度 47
九、統計分析 47
肆、結果與討論 48
一、TEMPO氧化在鹼性環境下製備纖維素奈米纖維 48
(一)氧化劑添加量對纖維素奈米纖維羧基含量和聚合度的影響 48
二、TEMPO氧化在中性環境下製備纖維素奈米纖維 49
(一)反應時間、氧化劑添加量對於羧基含量的影響 49
(二)反應時間、氧化劑添加量對於纖維素奈米纖維聚合度的影響 51
(三)中性TEMPO氧化反應的緩衝液的種類對CNF羧基含量的影響 53
三、TEMPO氧化纖維的保水值 54
四、纖維素奈米纖維的性質測定 56
(一)原始纖維和纖維素奈米纖維之形態比較 56
(二)CNF的光透射程度 56
(三) CNF的傅立葉轉換紅外光譜 59
五、添加不同聚合度的CNF對於紙張性質的影響 60
(一) CNF的種類 60
(二)一般性質 61
1. 紙張密度 61
2. 平滑度 62
3. 透氣抵抗 63
(三)光學性質 64
1. 不透明度 64
2. 光散射係數 65
(四)紙樣顯微影像觀察 66
(五)CNF的添加對手抄紙機械性質的影響 68
1. 抗張強度 68
2. 破裂強度 70
3. 撕裂強度 71
4. 耐折強度 72
伍、結論 75
陸、參考文獻 77
陳文斌(2008)回收對瓦楞紙板纖維性質的影響及再生纖維的改質。國立中興大學森林研究所碩士論文。
潘朝班(1988)影響紙張不透明度之因子。國立中興大學森林研究所碩士論文。
蘇裕昌、孫德貴(1995)廢紙脫墨之研究(第一報)回收新聞紙脫墨法之確立及脫墨紙漿性質的改良。林業試驗所研究報告季刊 10(3):293-307。
蘇裕昌(2014)硫酸鹽紙漿漂白的基礎及漂白流程的變遷。漿紙技術18(3):1-26。
河崎雅行、石塚一彥、川崎賢太郎(2017)TEMPO酸化CNFソ紙製品лソ適用。紙е技協誌 71(4):394-398。
Abe, K. and H. Yano (2009) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16: 1017-1023.
Adam, W., C. R. Saha-Möller and P. A. Ganeshpure (2001) Synthetic applications of nonmetal catalysts for homogeneous oxidations. Chemical Reviews 101: 3499-3548.
Ahola, S., M. Österberg and J. Laine (2008) Cellulose nanofibrils—adsorption with poly(amideamine) epichlorohydrin studied by QCM-D and application as a paper strength additive. Cellulose 15: 303-314.
Alemdar, A. and M. Sain (2008) Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties. Composites Science and Technology 68: 557-565.
Alila, S., I. Besbes, M. R. Vilar, P. Mutjé and S. Boufi (2013) Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): A comparative study. Industrial Crops and Products 41: 250-259.
Anglès, M. N., and A. Dufresne (2000) Plasticized starch/tunicin whiskers nanocomposites. 1. structural analysis. Macromolecules 33: 8344-8353.
Aulin, C., S. Ahola, P. Josefsson, T. Nishino, Y. Hirose, M. Österberg and L. Wågberg (2009) Nanoscale cellulose films with different crystallinities and mesostructures;their surface properties and interaction with water. Langmuir 25(13): 7675-7685.
Baraki, H. (2013) Structure-control of amphoteric polyacrylamide and its performance as dry strength resin. Japan Tappi Journal 67(5):544–549.
Barud, H. S., C. Barrios, T. Regiani, R. F. C. Marques, M. Verelst, J. Dexpert-Ghys, Y. Messaddeq and S. J. L. Ribeiro (2008) Selfsupported silver nanoparticles containing bacterial cellulose membranes. Materials Science and Engineering 28: 515-518.
Belgsir, E. M. and H. J. Schäfer (2001) Selective oxidation of carbohydrates on Nafion—TEMPO-modified graphite felt electrodes. Electrochem Commun 3: 32-35.
Bhatnagar, A. and M. Sain (2005) Processing of cellulose nanofiber-reinforced composites. Journal of Reinfore Plastics and Composites 24(12): 1259-1268.
Bhattacharya, D., L. T. Germinario and W. T. Winter (2008) Isolation, preparation and characterization of cellulose microfibers obtained from bagasse. Carbohydrate Polymers 73: 371-377.
Bideau, B., J. Bras, S. Saini, C. Daneault and E. Loranger (2016) Mechanical and antibacterial properties of a nanocellulose-polypyrrole multilayer composite. Materials Science and Engineering C 69: 977-984.
Brodin, F. W., Ø. W. Gregersen and K. Syverud (2014) Cellulose nanofibrils: Challenges and possibilities as a paper additive or coating material-A review. Nordic Pulp and Paper Research Journal 29(1): 156-166.
Brown, E. E. and M. P. G. Laborie (2007) Bloengineering bacterial cellulose/poly(ethylene oxide) nanocomposites. Biomacromolecules 8: 3074-3081.
Bruce, D. M., R. N. Hobson, J. W. Farrent and D. G. Hepworth (2005) High-performance composites from low-cost plant primary cell walls. Composites Part A: Applied Science and Manufacturing 36(11):1486–1493.
Campbell, W. (1947) The physics of water removal. Pulp and Paper Magazine of Canada 48(3):13-16.
Czaja, W., D. Romanovicz and R. M. Brown (2004) Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11: 403-411.
Delgado-Aguilar, M., I. González, M. A. Pèlach, E. D. L. Fuente, C. Negro and P. Mutjé (2015) Improvement of deinked old newspaper/old magazine pulp suspensions by means of nanofibrillated cellulose addition. Cellulose 22: 789-802.
de Nooy, A. E. J., A. C. Besemer and H. van Bekkum (1995) Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans. Carbohydrate Research 269: 89-98.
de Nooy, A. E. J., A. C. Besemer and H. van Bekkum (1996) On the use of stable organic nitroxyl radicals for the oxidation of primary and secondary alcohols. Synthesis 1996(10): 1153-1176.
Dinand, E., H. Chanzy and M.R. Vignon (1996) Parenchymal cell cellulose from sugar beet pulp. Cellulose 3:183–188.
Dinand, E, H. Chanzy and M.R. Vignon (1999) Suspensions of cellulose microfibrils from sugar beet pulp. Food Hydrocoll 13:275–283.
Dufresne, A., D. Dupeyre and M. R. Vignon (2000) Cellulose microfibrils from potato tuber cells:processing and characterization of starch–cellulose microfibril composites. Journal of Applied Polymer Science 76: 2080-2092.
El-Saied, H., A. H. Basta and R. H. Gobran (2004) Research progress in friendly environmental technology for the production of cellulose products (bacterial cellulose and its application). Polymer-Plastics Technology and Engineering 43(3): 797-820.
Elazzouzi-Hafraoui, S., Y. Nishiyama, J.-L. Putaux, L. Heux, F. Dubreuil and C. Rochas (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9: 57-65.
Engström, A. C., M. Ek and G. Henriksson (2006) Improved accessibility and reactivity of dissolving pulp for the viscose process: pretreatment with monocomponent endoglucanase. Biomacromolecules 7: 2027-2031.
Eriksen, Ø., K. Syverud and Ø. Gregersen (2008) The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper. Nordic Pulp & Paper Research Journal 23(3): 299-304.
Espinosa, S. C., T. Kuhnt, E. J. Foster and C. Weder (2013) Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromolecules 14: 1223-1230.
Fengel, D. and G. Wegener (1984) Wood—chemistry, ultrastructure, reactions. Berlin and New York : Walter de Gruyter.
Filpponen, I. and D. S. Argyropoulos (2010) Regular linking of cellulose nanocrystals via click chemistry: synthesis and formation of cellulose nanoplatelet gels. Biomacromolecules 11: 1060-1066.
Fujisawa, S., Y. Okita, H. Fukuzumi, T. Saito and A. Isogai (2011) Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups. Carbohydrate Polymers 84: 579-583.
Fukuzumi, H., T. Saito, T. Iwata, Y. Kumamoto and A. Isogai (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10: 162-165.
Fukuzumi, H., T. Saito and A. Isogai (2013) Influence of TEMPO-oxidized cellulose nanofibril length on film properties. Carbohydrate Polymers 93: 172-177.
Gardner, K. H. and J. Blackwell (1974) The hydrogen bondind in native cellulose. Biochimica et Biophysica Acta 343: 232-237.
Gebald, C., J. A. Wurzbacher, P. Tingaut, T. Zimmermann and A. Steinfeld (2011) Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air. Environmental Science & Technology 45: 9101-9108.
González, I., S. Boufi, M. A. Pèlach, M. Alcalà, F. Vilaseca and P. Mutjéa (2012) Nanofibrillated cellulose as paper additive in eucalyptus pulps. BioResources 7(4): 5167-5180.
Goussé, C., H. Chanzy, M. L. Cerrada and E. Fleury (2004) Surface silylation of cellulose microfibrils: preparation and rheological properties. Polymer 45: 1569-1575.
Grande, C. J., F. G. Torres, C. M. Gomez, O. P. Troncoso, J. Canet-Ferrer and J. Martinez-Pastor (2008) Morphological characterisation of bacterial cellulose-starch nanocomposites. Polymers & Polymer Composites 16: 181-185.
Guhados, G., W. K. Wan and J. L. Hutter (2005) Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21: 6642-6646.
Guimond, R., B. Chabot, K. N. Law and C. Daneauld (2010) The use of cellulose nanofibres in papermaking. Journal of Pulp and Paper Science 36(1-2): 55-61.
Habibi, Y., A. L. Goffin, N. Schiltz, E. Duquesne, P. Dubois and A. Dufresne (2008) Bionanocomposites based on poly(3-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. Journal of Materials Chemistry 18: 5002-5010.
Habibi, Y. and M. R. Vignon (2008) Optimization of cellouronic acid synthesis by TEMPO-mediated oxidation of cellulose III from sugar beet pulp. Cellulose 15: 177-185.
Hamad, W. (2006) On the development and applications of cellulosic nanofibrillar and nanocrystalline materials. The Canadian journal of chemical engineering 84: 513-519.
Hassan, E. A., M. L. Hassan and K. Oksman (2011) Improving bagasse pulp paper sheet properties with microfiberillated cellulose isolated from xylanase-treated bagasse. Wood and Fiber Science 43(1): 76-82.
Helbert, W., Y. Nishiyama, T. Okano and J. Sugiyama (1998) Molecular imaging of halocynthia papillosa cellulose. Journal of Structural Biology 124: 42-50.
Henriksson, M., G. Henriksson, L. A. Berglund and T. Lindström (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. European Polymer Journal 43: 3434-3441.
Herrick, F. W., R. L. Casebier, J. K. Hamilton and K. R. Sandberg (1983) Microfibrillated cellulose: morphology and accessibility. Journal of Applied Polymer Science 37: 797-813.
Hii, C., Ø. W. Gregersen, G. Chinga-Carrasco and Ø. Eriksen (2012) The effect of MFC on the pressability and paper properties of TMP and GCC based sheets. Nordic Pulp and Paper Research Journal 27(2): 388-396.
Hu, L., G. Zheng, J. Yao, N. Liu, B. Weil, M. Eskilsson, E. Karabulut, Z. Ruan, S. Fan, J. T. Bloking, M. D. McGehee, L. Wågberg and Y. Cui (2013) Transparent and conductive paper from nanocellulose fibers. Energy & Environmental Science 6: 513-518.
Huang, Y., C. Zhu, J. Yang, Y. Nie, C. Chen and D. Sun (2014) Recent advances in bacterial cellulose. Cellulose 21: 1-30.
Hubbe, M. A., O. J. Rojas, L. A. Lucia and M. Sain (2008) Cellulosic nanocomposites: A review. BioResources 3(3): 929-980.
Iguchi, M., S. Yamanaka and A. Budhiono (2000) Bacterial cellulose - a masterpiece of nature's arts. Journal of Materials Science 35: 261-270.
Imai, T., J. L. Putaux and J. Sugiyam (2003) Geometric phase analysis of lattice images from algal cellulose microfibrils. Polymer 44: 1871-1879.
Isogai, A. and Y. Kato (1998) Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation. Cellulose 5: 153-164.
Isogai, A., T. Saito and H. Fukuzumi (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3: 71-85.
Isogai, T., T. Saito and A. Isogai (2011) Wood cellulose nanofibrils prepared by TEMPO electro-mediated oxidation. Cellulose 18: 421-431.
Iwamoto, S., A. N. nakagaito, H. Yano and M. Nogi (2005) Optically transparent composites reinforced with plant fiber-based nanofibers. Applied Physics A 81: 1109-1112.
Iwamoto, S., A. N. Nakagaito and H. Yano (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Applied Physics A 89: 461-466.
Iwamoto, S., W. Kai, A. Isogai and T. Iwata (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10: 2571-2576.

Jorfi, M. and J. Foster (2015) Recent advances in nanocellulose for biomedical applications. Journal of Applied Polymer Science 132: 41719-41737.
Kalia, S., S. Boufi, A. Celli and S. Kango (2014) Nanofibrillated cellulose: surface modification and potential applications. Colloid and Polymer Science 292: 5-31.
Keshk, S., W. Suwinarti and K. Sameshima (2006) Physicochemical characterization of different treatment sequences on kenaf bast fiber. Carbohydrate Polymers 65: 202-206.
Kimura, S. and T. Itoh (1996) New cellulose synthesizing complexes (terminal complexes) involved in animal cellulose bio, synthesis in the tunicate Metandrocarpa uedai. Protoplasma 194: 151-163.
Klemm, D., D. Schumann, F. Kramer, N. Hessler, M. Hornung, H. P. Schmauder and S. Marsch (2006) Nanocelluloses as innovative polymers in research and application. Polysaccharides 205: 49-96.
Kolpak, F. J., M. Weih and J. Blackwell (1978) Mercerization of cellulose: 1. Determination of the structure of Mercerized cotton. Polymer 19: 123-131.
Kumar, V., A. Elfving, H. Koivula, D. Bousfield and M. Toivakka (2016) Roll-to-roll processed cellulose nanofiber coatings. Industrial & Engineering Chemistry Research 55(12): 3603-3613.
Kurihara, T. and A. Isogai (2014) Properties of poly(acrylamide)/TEMPO-oxidized cellulose nanofibril composite films. Cellulose 21: 291-299.
Lavoine, N., I. Desloges, A. Dufresne and J. Bras (2012) Microfibrillated cellulose – Its barrier properties and applications in cellulosic materials: A review. Carbohydrate Polymers 90: 735-764.
Lavoine, N., J. Bras and I. Desloges (2014) Mechanical and barrier properties of cardboard and 3D packaging coated with microfibrillated cellulose. Journal of Applied Polymer Science 131:40106.
Lee, S. Y., D. J. Mohan, I. A. Kang, G. H. Doh, S. Lee and S. O. Han (2009) Nanocellulose reinforced PVA composite films: Effects of acid treatment and filler loading. Fibers and Polymers 10(1): 77-82.
Leitner, J., B. Hinterstoisser, M. Wastyn, J. Keckes and W. Gindl (2007) Sugar beet cellulose nanofibril-reinforced composites. Cellulose 14: 419-425.
Liaigre, D., T. Breton and E. M. Belgsir (2005) Kinetic and selectivity control of TEMPO electro-mediated oxidation of alcohols. Electrochemistry Communications 7: 312-316.
Lin, N., J. Huangb and A. Dufresne (2012) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4: 3274-3294.
Liu, D., T. Zhong, P. R. Chang, K. Li and Q. Wu (2010) Starch composites reinforced by bamboo cellulosic crystals. Bioresource Technology 101: 2529-2536.
Mörseburg, K. and G. Chinga-Carrasco (2009) Assessing the combined benefits of clay and nanofibrillated cellulose in layered TMP-based sheets. Cellulose 16: 795-806.
Madani, A., J. A. Olson, H. Kiiskinen and D. M. Martinez (2011) Fractionation of microfibrillated cellulose and its effects on tensile index and elongation of paper. Nordic Pulp & Paper Research Journal 26(3): 306-311.
Malainine, M. E., M. Mahrouz and A. Dufresne (2005) Thermoplastic nanocomposites based on cellulose microfibrils from Opuntia ficus-indica parenchyma cell. Composites Science and Technology 65: 1520-1526.
Manninen, M., I. Kajanto, J. Happonen and J. Paltakari (2011) The effect of microfibrillated cellulose addition on drying shrinkange and dimensional stability of wood-free paper. Nordic Pulp & Paper Research Journal 26(3): 297-305.
Martins, N. C. T., C. S. R. Freire, R. J. B. Pinto, S. C. M. Fernandes, C. P. Neto, A. J. D. Silvestre, J. Causio, G. Baldi, P. Sadocco and T. Trindade (2012) Electrostatic assembly of Ag nanoparticles onto nanofibrillated cellulose for antibacterial paper products. Cellulose 19: 1425-1436.
Martins, N. C. T., C. S. R. Freire, C. P. Neto, A. J. D. Silvestre, J. Causio, G. Baldi, P. Sadocco and T. Trindade (2013) Antibacterial paper based on composite coatings of nanofibrillated cellulose and ZnO. Colloids and Surfaces A: Physicochemical and Engineering Aspects 417: 111-119.
Mishra, S. P., A.-S. Manent, B. Chabot and C. Daneault (2012) Prodiction of nanocelloulose from native cellulose-various options utilizing ultrasound. BioResources 7(1): 422-436.
Missoum, K., M. N. Belgacem and J. Bras (2013) Nanofibrillated cellulose surface modification: A Review. Materials 6: 1745-1766.
Monica, E. K. (2009) Paper products physics and technology. Germany : Walter de Gruyter.
Moon, R. J., A. Martini, J. Nairn, J. Simonsenf and J. Youngblood (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews 40: 3941-3994.
Morán, J. I., V. A. Alvarez, V. P. Cyras and A. Vázquez (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15: 149-159.
Nakagaito, A. N. and H. Yano (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano order-unit web-like network structure. Applied Physics A: Materials Science & Processing 80: 155-159.
Nemoto, J., T. Soyama, T. Saito and A. Isogai (2016) Improvement of Air Filters by Nanocelluloses. Japan Tappi Journal 70(10): 1072-1078.
Nogi, M., K. Handa, A. N. Nakagaito and H. Yano (2005) Optically transparent bionanofiber composites with low sensitivity to refractive index of the polymer matrix. Applied Physics Letters 87(24): 1-3.
Nogi, M., S. Iwamoto, A. N. Nakagaito and H. Yano (2009) Optically transparent nanofiber paper. Advanced Materials 21: 1595-1598.
Okahisa, Y., A. Yoshida, S. Miyaguchi and H. Yano (2009) Optically transparent wood–cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays. Composites Science and Technology 69: 1958-1961.
Okita, Y., T. Saito and A. Isogai (2010) Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules 11: 1696-1700.
Osorio, M. A., D. Restrepo, J. A. Velásquez-Cock, R. O. Zuluaga, U. Montoya, O. Rojas, P. F. Gañán, D. Marin and C. I. Castro (2014) Synthesis of thermoplastic starch-bacterial cellulose nanocomposites via in situ fermentation. Journal of the Brazilian Chemical Society 25(9): 1607-1613.
Pääkkö, M., M. Ankerfors, H. Kosonen, A. Nykänen, S. Ahola, M. Österberg, J. Ruokolainen, J. Laine, P. T. Larsson, O. Ikkala and T. Lindström (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8: 1934-1941.
Parpot, P., K. Servat, A. P. Bettencourt, H. Huser and K. B. Kokoh (2010) TEMPO mediated oxidation of carbohydrates using electrochemical methods. Cellulose 17: 815-824.
Petroudy, S. R. D., K. Syverud, G. Chinga-Carrasco, A. Ghasemain and H. Resalati (2014) Effects of bagasse microfibrillated cellulose and cationic polyacrylamide on key properties of bagasse paper. Carbohydrate Polymers 99: 311-318.
Postek, M. T., A. Vladár, J. Dagata, N. Farkas, B. Ming, R. Wagner, A. Raman, R. J. Moon, R. Sabo, T. H. Wegner and J. Beecher (2011) Development of the metrology and imaging of cellulose nanocrystals. Measurement Science and Technology 22: 1-10.
Puangsin, B., Q. Yang, T. Saito and A. Isogai (2013) Comparative characterization of TEMPO-oxidized cellulose nanofibril films prepared from non-wood resources. International Journal of Biological Macromolecules 59: 208-213.
Quinzi, M. and G. Di Francesco (2005) Nanocompositech. http://www.nanocompositech.com/glossary-nanocomposite-nanotechnology.htm
Reddy, N. and Y. Yang (2005) Biofibers from agricultural byproducts for industrial applications. Trends in Biotechnology 23: 22-27.
Ridgway, C. and P. Gane (2012) Constructing NFC-pigment composite surface treatment for enhanced paper stiffness and surface properties. Cellulose 19(2): 547-560.
Rodionova, G., T. Saito, M. Lenes, Ø. Eriksen, Ø. Gregersen, H. Fukuzumi and A. Isogai (2012) Mechanical and oxygen barrier properties of films prepared from fibrillated dispersions of TEMPO-oxidized Norway spruce and eucalyptus pulps. Cellulose 19: 705-711.
Rodionova, G., T. Saito, M. Lenes, Ø. Eriksen, Ø. Gregersen, R. Kuramae and A. Isogai (2013) TEMPO-mediated oxidation of Norway spruce and eucalyptus pulps: Preparation and characterization of nanofibers and nanofiber Dispersions. Journal of Polymers and the Environment 21: 207-214.
Roman, M. and W. T. Winter (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5: 1671-1677.
Saito, T. and A. Isogai (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5: 1983-1989.
Saito, T., I. Shibata, A. Isogai, N. Suguri and N. Sumikawa (2005) Distribution of carboxylate groups introduced into cotton linters by the TEMPO-mediated oxidation. Carbohydrate Polymers 61: 414-419.
Saito, T. and A. Isogai (2006) Introduction of aldehyde groups on surfaces of native cellulose fibers by TEMPO-mediated oxidation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 289: 219-225.
Saito, T., Y. Nishiyama, J.-L. Putaux, M. Vignon and A. Isogai (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7(6): 1687-1691.
Saito, T. and A. Isogai (2007) Wet strength improvement of TEMPO-oxidized cellulose sheets prepared with cationic polymers. Industrial & Engineering Chemistry Research 46: 773-780.
Saito, T., S. Kimura, Y. Nishiyama and A. Isogai (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8: 2485-2491.
Saito, T., M. Hirota, N. Tamura, S. Kimura, H. Fukuzumi, L. Heux and A. Isogai (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules 10: 1992-1996.
Saito, T., M. Hirota, N. Tamura and A. Isogai (2010) Oxidation of bleached wood pulp by TEMPO/NaClO/NaClO2 system: Effect of the oxidation conditions on carboxylate content and degree of polymerization. Journal of Wood Science 56: 227-232.
Schnatbaum, K. and H. J. Schäfer (1999) Electroorganic synthesis 66:1 selective anodic oxidation of carbohydrates mediated by TEMPO. Synthesis 5: 864-872.
Sehaqui, H., Q. Zhou and L. Berglund (2013) Nanofibrillated cellulose for enhancement of strength in highdensity paper structures. Nordic Pulp & Paper Research Journal 28(2): 182-189.
Shinoda, R., T. Saito, Y. Okita and A. Isogai (2012) Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules 13: 842-849.
Sihtola, H., B. Kyrklund, L. Laamanen and I. Palenius (1963) Comparison and conversion of viscosity and DP-values determined by different. MethodsPaperi ja puu 45:225.
Siqueira, G., H. Abdillahi, J. Bras and A. Dufresne (2010) High reinforcing capability cellulose nanocrystals extracted from Syngonanthus nitens (Capim Dourado). Cellulose 17: 289-298.
Siró, I. and D. Plackett (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17: 459–494.
Smook, G. A. (1992) Handbook for pulp & paper technologists. Canada : Angus Wilde Publications.
Stenstad, P., M. Andresen, B. S. Tanem and P. Stenius (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15: 35-45.
Stephen, M., N. Catherine, M. Brenda, K. Andrew, P. Leslie and G. Corrine (2011) Oxolane-2,5-dione modified electrospun cellulose nanofibers for heavy metals adsorption. Journal of Hazardous Materials 192: 922-927.
Su, Y., C. Burger, H. Ma, B. Chu and B. S. Hsiao (2015) Morphological and property investigations of carboxylated cellulose nanofibers extracted from different biological species. Cellulose 22: 3127-3135.
Sun, X., Q. Wu, S. Ren and T. Lei (2015) Comparison of highly transparent all-cellulose nanopaper prepared using sulfuric acid and TEMPO-mediated oxidation methods. Cellulose 22: 1123-1133.
Syverud, K. and P. Stenius (2009) Strength and barrier properties of MFC films. Cellulose 16(1): 75-85.
Tahiri, C. and M. R. Vignon (2000) TEMPO-oxidation of cellulose: Synthesis and characterisation of polyglucuronans. Cellulose 7: 177-188.
Taipale, T., M. O. sterberg, A. Nykänen, J. Ruokolainen and J. Laine (2010) Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose 17: 1005-1020.
Turbak, A. F., F. W. Snyder and K. R. Sandberg (1983) Microfibrilated cellulose, a new cellulose product: properties, uses, and commercial potential. Journal of Applied Polymer Science 37: 815-827.
Uetani, K. and H. Yano (2011) Nanofibrillation of wood pulp using a high-speed blender. Biomacromolecules 12: 348-353.
Wang, B. and M. Sain (2007) Dispersion of soybean stock-based nanofiber in a plastic matrix. Polymer International 56: 538-546.
Wang, J., M. Liang, Y. Fang, T. Qiu, J. Zhang and L. Zhi (2012) Rod-coating: Towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens. Advanced Materials 24: 2874-2878.
Wang, X., L. Zhi and K. Müllen (2008) Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Letters 8(1): 323-327.
Wang, Y., M. A. Hubbe, T. Sezaki, X. Wang, O. L. Rojas and D. S. Argyropoulos (2006) The role of polyampholyte charge density on its interactions with cellulose. Nordic Pulp & Paper Research Journal 21:638–645.
Xhanari, K., K. Syverud, G. C. Carrasco, K. Paso and P. Stenius (2011) Reduction of water wettability of nanofibrillated cellulose by adsorption of cationic surfactants. Cellulose 18: 257-270.
Zhang, D., Q. Zhang, X. Gao and G. Piao (2013) A nanocellulose polypyrrole composite based on tunicate cellulose. International Journal of Polymer Science 2013: 1-6.
Zhang, J., H. Song, L. Lin, J. Zhuang, C. Pang and S. Liu (2012) Microfibrillated cellulose from bamboo pulp and its properties. Biomass and bioenergy 39: 78-83.
Zhao, Y., C. Moser, M. E. Lindström, G. Henriksson and J. Li (2017) Cellulose nanofibers from softwood, hardwood, and tunicate: Preparation structure film performance interrelation. ACS Applied Materials & Interfaces 9: 13508-13519.
Zimmermann, T., N. Bordeanu and E. Strub (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydrate Polymers 79: 1086-1093.
Zuluaga, R., J.-L. Putaux, A. Restrepo, I. Mondragon and P. Gañán (2007) Cellulose microfibrils from banana farming residues : isolation and characterization. Cellulose 14: 585-592.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top