陳文斌(2008)回收對瓦楞紙板纖維性質的影響及再生纖維的改質。國立中興大學森林研究所碩士論文。潘朝班(1988)影響紙張不透明度之因子。國立中興大學森林研究所碩士論文。蘇裕昌、孫德貴(1995)廢紙脫墨之研究(第一報)回收新聞紙脫墨法之確立及脫墨紙漿性質的改良。林業試驗所研究報告季刊 10(3):293-307。蘇裕昌(2014)硫酸鹽紙漿漂白的基礎及漂白流程的變遷。漿紙技術18(3):1-26。河崎雅行、石塚一彥、川崎賢太郎(2017)TEMPO酸化CNFソ紙製品лソ適用。紙е技協誌 71(4):394-398。
Abe, K. and H. Yano (2009) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16: 1017-1023.
Adam, W., C. R. Saha-Möller and P. A. Ganeshpure (2001) Synthetic applications of nonmetal catalysts for homogeneous oxidations. Chemical Reviews 101: 3499-3548.
Ahola, S., M. Österberg and J. Laine (2008) Cellulose nanofibrils—adsorption with poly(amideamine) epichlorohydrin studied by QCM-D and application as a paper strength additive. Cellulose 15: 303-314.
Alemdar, A. and M. Sain (2008) Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties. Composites Science and Technology 68: 557-565.
Alila, S., I. Besbes, M. R. Vilar, P. Mutjé and S. Boufi (2013) Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): A comparative study. Industrial Crops and Products 41: 250-259.
Anglès, M. N., and A. Dufresne (2000) Plasticized starch/tunicin whiskers nanocomposites. 1. structural analysis. Macromolecules 33: 8344-8353.
Aulin, C., S. Ahola, P. Josefsson, T. Nishino, Y. Hirose, M. Österberg and L. Wågberg (2009) Nanoscale cellulose films with different crystallinities and mesostructures;their surface properties and interaction with water. Langmuir 25(13): 7675-7685.
Baraki, H. (2013) Structure-control of amphoteric polyacrylamide and its performance as dry strength resin. Japan Tappi Journal 67(5):544–549.
Barud, H. S., C. Barrios, T. Regiani, R. F. C. Marques, M. Verelst, J. Dexpert-Ghys, Y. Messaddeq and S. J. L. Ribeiro (2008) Selfsupported silver nanoparticles containing bacterial cellulose membranes. Materials Science and Engineering 28: 515-518.
Belgsir, E. M. and H. J. Schäfer (2001) Selective oxidation of carbohydrates on Nafion—TEMPO-modified graphite felt electrodes. Electrochem Commun 3: 32-35.
Bhatnagar, A. and M. Sain (2005) Processing of cellulose nanofiber-reinforced composites. Journal of Reinfore Plastics and Composites 24(12): 1259-1268.
Bhattacharya, D., L. T. Germinario and W. T. Winter (2008) Isolation, preparation and characterization of cellulose microfibers obtained from bagasse. Carbohydrate Polymers 73: 371-377.
Bideau, B., J. Bras, S. Saini, C. Daneault and E. Loranger (2016) Mechanical and antibacterial properties of a nanocellulose-polypyrrole multilayer composite. Materials Science and Engineering C 69: 977-984.
Brodin, F. W., Ø. W. Gregersen and K. Syverud (2014) Cellulose nanofibrils: Challenges and possibilities as a paper additive or coating material-A review. Nordic Pulp and Paper Research Journal 29(1): 156-166.
Brown, E. E. and M. P. G. Laborie (2007) Bloengineering bacterial cellulose/poly(ethylene oxide) nanocomposites. Biomacromolecules 8: 3074-3081.
Bruce, D. M., R. N. Hobson, J. W. Farrent and D. G. Hepworth (2005) High-performance composites from low-cost plant primary cell walls. Composites Part A: Applied Science and Manufacturing 36(11):1486–1493.
Campbell, W. (1947) The physics of water removal. Pulp and Paper Magazine of Canada 48(3):13-16.
Czaja, W., D. Romanovicz and R. M. Brown (2004) Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11: 403-411.
Delgado-Aguilar, M., I. González, M. A. Pèlach, E. D. L. Fuente, C. Negro and P. Mutjé (2015) Improvement of deinked old newspaper/old magazine pulp suspensions by means of nanofibrillated cellulose addition. Cellulose 22: 789-802.
de Nooy, A. E. J., A. C. Besemer and H. van Bekkum (1995) Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans. Carbohydrate Research 269: 89-98.
de Nooy, A. E. J., A. C. Besemer and H. van Bekkum (1996) On the use of stable organic nitroxyl radicals for the oxidation of primary and secondary alcohols. Synthesis 1996(10): 1153-1176.
Dinand, E., H. Chanzy and M.R. Vignon (1996) Parenchymal cell cellulose from sugar beet pulp. Cellulose 3:183–188.
Dinand, E, H. Chanzy and M.R. Vignon (1999) Suspensions of cellulose microfibrils from sugar beet pulp. Food Hydrocoll 13:275–283.
Dufresne, A., D. Dupeyre and M. R. Vignon (2000) Cellulose microfibrils from potato tuber cells:processing and characterization of starch–cellulose microfibril composites. Journal of Applied Polymer Science 76: 2080-2092.
El-Saied, H., A. H. Basta and R. H. Gobran (2004) Research progress in friendly environmental technology for the production of cellulose products (bacterial cellulose and its application). Polymer-Plastics Technology and Engineering 43(3): 797-820.
Elazzouzi-Hafraoui, S., Y. Nishiyama, J.-L. Putaux, L. Heux, F. Dubreuil and C. Rochas (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9: 57-65.
Engström, A. C., M. Ek and G. Henriksson (2006) Improved accessibility and reactivity of dissolving pulp for the viscose process: pretreatment with monocomponent endoglucanase. Biomacromolecules 7: 2027-2031.
Eriksen, Ø., K. Syverud and Ø. Gregersen (2008) The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper. Nordic Pulp & Paper Research Journal 23(3): 299-304.
Espinosa, S. C., T. Kuhnt, E. J. Foster and C. Weder (2013) Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromolecules 14: 1223-1230.
Fengel, D. and G. Wegener (1984) Wood—chemistry, ultrastructure, reactions. Berlin and New York : Walter de Gruyter.
Filpponen, I. and D. S. Argyropoulos (2010) Regular linking of cellulose nanocrystals via click chemistry: synthesis and formation of cellulose nanoplatelet gels. Biomacromolecules 11: 1060-1066.
Fujisawa, S., Y. Okita, H. Fukuzumi, T. Saito and A. Isogai (2011) Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups. Carbohydrate Polymers 84: 579-583.
Fukuzumi, H., T. Saito, T. Iwata, Y. Kumamoto and A. Isogai (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10: 162-165.
Fukuzumi, H., T. Saito and A. Isogai (2013) Influence of TEMPO-oxidized cellulose nanofibril length on film properties. Carbohydrate Polymers 93: 172-177.
Gardner, K. H. and J. Blackwell (1974) The hydrogen bondind in native cellulose. Biochimica et Biophysica Acta 343: 232-237.
Gebald, C., J. A. Wurzbacher, P. Tingaut, T. Zimmermann and A. Steinfeld (2011) Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air. Environmental Science & Technology 45: 9101-9108.
González, I., S. Boufi, M. A. Pèlach, M. Alcalà, F. Vilaseca and P. Mutjéa (2012) Nanofibrillated cellulose as paper additive in eucalyptus pulps. BioResources 7(4): 5167-5180.
Goussé, C., H. Chanzy, M. L. Cerrada and E. Fleury (2004) Surface silylation of cellulose microfibrils: preparation and rheological properties. Polymer 45: 1569-1575.
Grande, C. J., F. G. Torres, C. M. Gomez, O. P. Troncoso, J. Canet-Ferrer and J. Martinez-Pastor (2008) Morphological characterisation of bacterial cellulose-starch nanocomposites. Polymers & Polymer Composites 16: 181-185.
Guhados, G., W. K. Wan and J. L. Hutter (2005) Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21: 6642-6646.
Guimond, R., B. Chabot, K. N. Law and C. Daneauld (2010) The use of cellulose nanofibres in papermaking. Journal of Pulp and Paper Science 36(1-2): 55-61.
Habibi, Y., A. L. Goffin, N. Schiltz, E. Duquesne, P. Dubois and A. Dufresne (2008) Bionanocomposites based on poly(3-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. Journal of Materials Chemistry 18: 5002-5010.
Habibi, Y. and M. R. Vignon (2008) Optimization of cellouronic acid synthesis by TEMPO-mediated oxidation of cellulose III from sugar beet pulp. Cellulose 15: 177-185.
Hamad, W. (2006) On the development and applications of cellulosic nanofibrillar and nanocrystalline materials. The Canadian journal of chemical engineering 84: 513-519.
Hassan, E. A., M. L. Hassan and K. Oksman (2011) Improving bagasse pulp paper sheet properties with microfiberillated cellulose isolated from xylanase-treated bagasse. Wood and Fiber Science 43(1): 76-82.
Helbert, W., Y. Nishiyama, T. Okano and J. Sugiyama (1998) Molecular imaging of halocynthia papillosa cellulose. Journal of Structural Biology 124: 42-50.
Henriksson, M., G. Henriksson, L. A. Berglund and T. Lindström (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. European Polymer Journal 43: 3434-3441.
Herrick, F. W., R. L. Casebier, J. K. Hamilton and K. R. Sandberg (1983) Microfibrillated cellulose: morphology and accessibility. Journal of Applied Polymer Science 37: 797-813.
Hii, C., Ø. W. Gregersen, G. Chinga-Carrasco and Ø. Eriksen (2012) The effect of MFC on the pressability and paper properties of TMP and GCC based sheets. Nordic Pulp and Paper Research Journal 27(2): 388-396.
Hu, L., G. Zheng, J. Yao, N. Liu, B. Weil, M. Eskilsson, E. Karabulut, Z. Ruan, S. Fan, J. T. Bloking, M. D. McGehee, L. Wågberg and Y. Cui (2013) Transparent and conductive paper from nanocellulose fibers. Energy & Environmental Science 6: 513-518.
Huang, Y., C. Zhu, J. Yang, Y. Nie, C. Chen and D. Sun (2014) Recent advances in bacterial cellulose. Cellulose 21: 1-30.
Hubbe, M. A., O. J. Rojas, L. A. Lucia and M. Sain (2008) Cellulosic nanocomposites: A review. BioResources 3(3): 929-980.
Iguchi, M., S. Yamanaka and A. Budhiono (2000) Bacterial cellulose - a masterpiece of nature's arts. Journal of Materials Science 35: 261-270.
Imai, T., J. L. Putaux and J. Sugiyam (2003) Geometric phase analysis of lattice images from algal cellulose microfibrils. Polymer 44: 1871-1879.
Isogai, A. and Y. Kato (1998) Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation. Cellulose 5: 153-164.
Isogai, A., T. Saito and H. Fukuzumi (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3: 71-85.
Isogai, T., T. Saito and A. Isogai (2011) Wood cellulose nanofibrils prepared by TEMPO electro-mediated oxidation. Cellulose 18: 421-431.
Iwamoto, S., A. N. nakagaito, H. Yano and M. Nogi (2005) Optically transparent composites reinforced with plant fiber-based nanofibers. Applied Physics A 81: 1109-1112.
Iwamoto, S., A. N. Nakagaito and H. Yano (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Applied Physics A 89: 461-466.
Iwamoto, S., W. Kai, A. Isogai and T. Iwata (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10: 2571-2576.
Jorfi, M. and J. Foster (2015) Recent advances in nanocellulose for biomedical applications. Journal of Applied Polymer Science 132: 41719-41737.
Kalia, S., S. Boufi, A. Celli and S. Kango (2014) Nanofibrillated cellulose: surface modification and potential applications. Colloid and Polymer Science 292: 5-31.
Keshk, S., W. Suwinarti and K. Sameshima (2006) Physicochemical characterization of different treatment sequences on kenaf bast fiber. Carbohydrate Polymers 65: 202-206.
Kimura, S. and T. Itoh (1996) New cellulose synthesizing complexes (terminal complexes) involved in animal cellulose bio, synthesis in the tunicate Metandrocarpa uedai. Protoplasma 194: 151-163.
Klemm, D., D. Schumann, F. Kramer, N. Hessler, M. Hornung, H. P. Schmauder and S. Marsch (2006) Nanocelluloses as innovative polymers in research and application. Polysaccharides 205: 49-96.
Kolpak, F. J., M. Weih and J. Blackwell (1978) Mercerization of cellulose: 1. Determination of the structure of Mercerized cotton. Polymer 19: 123-131.
Kumar, V., A. Elfving, H. Koivula, D. Bousfield and M. Toivakka (2016) Roll-to-roll processed cellulose nanofiber coatings. Industrial & Engineering Chemistry Research 55(12): 3603-3613.
Kurihara, T. and A. Isogai (2014) Properties of poly(acrylamide)/TEMPO-oxidized cellulose nanofibril composite films. Cellulose 21: 291-299.
Lavoine, N., I. Desloges, A. Dufresne and J. Bras (2012) Microfibrillated cellulose – Its barrier properties and applications in cellulosic materials: A review. Carbohydrate Polymers 90: 735-764.
Lavoine, N., J. Bras and I. Desloges (2014) Mechanical and barrier properties of cardboard and 3D packaging coated with microfibrillated cellulose. Journal of Applied Polymer Science 131:40106.
Lee, S. Y., D. J. Mohan, I. A. Kang, G. H. Doh, S. Lee and S. O. Han (2009) Nanocellulose reinforced PVA composite films: Effects of acid treatment and filler loading. Fibers and Polymers 10(1): 77-82.
Leitner, J., B. Hinterstoisser, M. Wastyn, J. Keckes and W. Gindl (2007) Sugar beet cellulose nanofibril-reinforced composites. Cellulose 14: 419-425.
Liaigre, D., T. Breton and E. M. Belgsir (2005) Kinetic and selectivity control of TEMPO electro-mediated oxidation of alcohols. Electrochemistry Communications 7: 312-316.
Lin, N., J. Huangb and A. Dufresne (2012) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4: 3274-3294.
Liu, D., T. Zhong, P. R. Chang, K. Li and Q. Wu (2010) Starch composites reinforced by bamboo cellulosic crystals. Bioresource Technology 101: 2529-2536.
Mörseburg, K. and G. Chinga-Carrasco (2009) Assessing the combined benefits of clay and nanofibrillated cellulose in layered TMP-based sheets. Cellulose 16: 795-806.
Madani, A., J. A. Olson, H. Kiiskinen and D. M. Martinez (2011) Fractionation of microfibrillated cellulose and its effects on tensile index and elongation of paper. Nordic Pulp & Paper Research Journal 26(3): 306-311.
Malainine, M. E., M. Mahrouz and A. Dufresne (2005) Thermoplastic nanocomposites based on cellulose microfibrils from Opuntia ficus-indica parenchyma cell. Composites Science and Technology 65: 1520-1526.
Manninen, M., I. Kajanto, J. Happonen and J. Paltakari (2011) The effect of microfibrillated cellulose addition on drying shrinkange and dimensional stability of wood-free paper. Nordic Pulp & Paper Research Journal 26(3): 297-305.
Martins, N. C. T., C. S. R. Freire, R. J. B. Pinto, S. C. M. Fernandes, C. P. Neto, A. J. D. Silvestre, J. Causio, G. Baldi, P. Sadocco and T. Trindade (2012) Electrostatic assembly of Ag nanoparticles onto nanofibrillated cellulose for antibacterial paper products. Cellulose 19: 1425-1436.
Martins, N. C. T., C. S. R. Freire, C. P. Neto, A. J. D. Silvestre, J. Causio, G. Baldi, P. Sadocco and T. Trindade (2013) Antibacterial paper based on composite coatings of nanofibrillated cellulose and ZnO. Colloids and Surfaces A: Physicochemical and Engineering Aspects 417: 111-119.
Mishra, S. P., A.-S. Manent, B. Chabot and C. Daneault (2012) Prodiction of nanocelloulose from native cellulose-various options utilizing ultrasound. BioResources 7(1): 422-436.
Missoum, K., M. N. Belgacem and J. Bras (2013) Nanofibrillated cellulose surface modification: A Review. Materials 6: 1745-1766.
Monica, E. K. (2009) Paper products physics and technology. Germany : Walter de Gruyter.
Moon, R. J., A. Martini, J. Nairn, J. Simonsenf and J. Youngblood (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews 40: 3941-3994.
Morán, J. I., V. A. Alvarez, V. P. Cyras and A. Vázquez (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15: 149-159.
Nakagaito, A. N. and H. Yano (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano order-unit web-like network structure. Applied Physics A: Materials Science & Processing 80: 155-159.
Nemoto, J., T. Soyama, T. Saito and A. Isogai (2016) Improvement of Air Filters by Nanocelluloses. Japan Tappi Journal 70(10): 1072-1078.
Nogi, M., K. Handa, A. N. Nakagaito and H. Yano (2005) Optically transparent bionanofiber composites with low sensitivity to refractive index of the polymer matrix. Applied Physics Letters 87(24): 1-3.
Nogi, M., S. Iwamoto, A. N. Nakagaito and H. Yano (2009) Optically transparent nanofiber paper. Advanced Materials 21: 1595-1598.
Okahisa, Y., A. Yoshida, S. Miyaguchi and H. Yano (2009) Optically transparent wood–cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays. Composites Science and Technology 69: 1958-1961.
Okita, Y., T. Saito and A. Isogai (2010) Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules 11: 1696-1700.
Osorio, M. A., D. Restrepo, J. A. Velásquez-Cock, R. O. Zuluaga, U. Montoya, O. Rojas, P. F. Gañán, D. Marin and C. I. Castro (2014) Synthesis of thermoplastic starch-bacterial cellulose nanocomposites via in situ fermentation. Journal of the Brazilian Chemical Society 25(9): 1607-1613.
Pääkkö, M., M. Ankerfors, H. Kosonen, A. Nykänen, S. Ahola, M. Österberg, J. Ruokolainen, J. Laine, P. T. Larsson, O. Ikkala and T. Lindström (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8: 1934-1941.
Parpot, P., K. Servat, A. P. Bettencourt, H. Huser and K. B. Kokoh (2010) TEMPO mediated oxidation of carbohydrates using electrochemical methods. Cellulose 17: 815-824.
Petroudy, S. R. D., K. Syverud, G. Chinga-Carrasco, A. Ghasemain and H. Resalati (2014) Effects of bagasse microfibrillated cellulose and cationic polyacrylamide on key properties of bagasse paper. Carbohydrate Polymers 99: 311-318.
Postek, M. T., A. Vladár, J. Dagata, N. Farkas, B. Ming, R. Wagner, A. Raman, R. J. Moon, R. Sabo, T. H. Wegner and J. Beecher (2011) Development of the metrology and imaging of cellulose nanocrystals. Measurement Science and Technology 22: 1-10.
Puangsin, B., Q. Yang, T. Saito and A. Isogai (2013) Comparative characterization of TEMPO-oxidized cellulose nanofibril films prepared from non-wood resources. International Journal of Biological Macromolecules 59: 208-213.
Quinzi, M. and G. Di Francesco (2005) Nanocompositech. http://www.nanocompositech.com/glossary-nanocomposite-nanotechnology.htm
Reddy, N. and Y. Yang (2005) Biofibers from agricultural byproducts for industrial applications. Trends in Biotechnology 23: 22-27.
Ridgway, C. and P. Gane (2012) Constructing NFC-pigment composite surface treatment for enhanced paper stiffness and surface properties. Cellulose 19(2): 547-560.
Rodionova, G., T. Saito, M. Lenes, Ø. Eriksen, Ø. Gregersen, H. Fukuzumi and A. Isogai (2012) Mechanical and oxygen barrier properties of films prepared from fibrillated dispersions of TEMPO-oxidized Norway spruce and eucalyptus pulps. Cellulose 19: 705-711.
Rodionova, G., T. Saito, M. Lenes, Ø. Eriksen, Ø. Gregersen, R. Kuramae and A. Isogai (2013) TEMPO-mediated oxidation of Norway spruce and eucalyptus pulps: Preparation and characterization of nanofibers and nanofiber Dispersions. Journal of Polymers and the Environment 21: 207-214.
Roman, M. and W. T. Winter (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5: 1671-1677.
Saito, T. and A. Isogai (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5: 1983-1989.
Saito, T., I. Shibata, A. Isogai, N. Suguri and N. Sumikawa (2005) Distribution of carboxylate groups introduced into cotton linters by the TEMPO-mediated oxidation. Carbohydrate Polymers 61: 414-419.
Saito, T. and A. Isogai (2006) Introduction of aldehyde groups on surfaces of native cellulose fibers by TEMPO-mediated oxidation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 289: 219-225.
Saito, T., Y. Nishiyama, J.-L. Putaux, M. Vignon and A. Isogai (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7(6): 1687-1691.
Saito, T. and A. Isogai (2007) Wet strength improvement of TEMPO-oxidized cellulose sheets prepared with cationic polymers. Industrial & Engineering Chemistry Research 46: 773-780.
Saito, T., S. Kimura, Y. Nishiyama and A. Isogai (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8: 2485-2491.
Saito, T., M. Hirota, N. Tamura, S. Kimura, H. Fukuzumi, L. Heux and A. Isogai (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules 10: 1992-1996.
Saito, T., M. Hirota, N. Tamura and A. Isogai (2010) Oxidation of bleached wood pulp by TEMPO/NaClO/NaClO2 system: Effect of the oxidation conditions on carboxylate content and degree of polymerization. Journal of Wood Science 56: 227-232.
Schnatbaum, K. and H. J. Schäfer (1999) Electroorganic synthesis 66:1 selective anodic oxidation of carbohydrates mediated by TEMPO. Synthesis 5: 864-872.
Sehaqui, H., Q. Zhou and L. Berglund (2013) Nanofibrillated cellulose for enhancement of strength in highdensity paper structures. Nordic Pulp & Paper Research Journal 28(2): 182-189.
Shinoda, R., T. Saito, Y. Okita and A. Isogai (2012) Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules 13: 842-849.
Sihtola, H., B. Kyrklund, L. Laamanen and I. Palenius (1963) Comparison and conversion of viscosity and DP-values determined by different. MethodsPaperi ja puu 45:225.
Siqueira, G., H. Abdillahi, J. Bras and A. Dufresne (2010) High reinforcing capability cellulose nanocrystals extracted from Syngonanthus nitens (Capim Dourado). Cellulose 17: 289-298.
Siró, I. and D. Plackett (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17: 459–494.
Smook, G. A. (1992) Handbook for pulp & paper technologists. Canada : Angus Wilde Publications.
Stenstad, P., M. Andresen, B. S. Tanem and P. Stenius (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15: 35-45.
Stephen, M., N. Catherine, M. Brenda, K. Andrew, P. Leslie and G. Corrine (2011) Oxolane-2,5-dione modified electrospun cellulose nanofibers for heavy metals adsorption. Journal of Hazardous Materials 192: 922-927.
Su, Y., C. Burger, H. Ma, B. Chu and B. S. Hsiao (2015) Morphological and property investigations of carboxylated cellulose nanofibers extracted from different biological species. Cellulose 22: 3127-3135.
Sun, X., Q. Wu, S. Ren and T. Lei (2015) Comparison of highly transparent all-cellulose nanopaper prepared using sulfuric acid and TEMPO-mediated oxidation methods. Cellulose 22: 1123-1133.
Syverud, K. and P. Stenius (2009) Strength and barrier properties of MFC films. Cellulose 16(1): 75-85.
Tahiri, C. and M. R. Vignon (2000) TEMPO-oxidation of cellulose: Synthesis and characterisation of polyglucuronans. Cellulose 7: 177-188.
Taipale, T., M. O. sterberg, A. Nykänen, J. Ruokolainen and J. Laine (2010) Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose 17: 1005-1020.
Turbak, A. F., F. W. Snyder and K. R. Sandberg (1983) Microfibrilated cellulose, a new cellulose product: properties, uses, and commercial potential. Journal of Applied Polymer Science 37: 815-827.
Uetani, K. and H. Yano (2011) Nanofibrillation of wood pulp using a high-speed blender. Biomacromolecules 12: 348-353.
Wang, B. and M. Sain (2007) Dispersion of soybean stock-based nanofiber in a plastic matrix. Polymer International 56: 538-546.
Wang, J., M. Liang, Y. Fang, T. Qiu, J. Zhang and L. Zhi (2012) Rod-coating: Towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens. Advanced Materials 24: 2874-2878.
Wang, X., L. Zhi and K. Müllen (2008) Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Letters 8(1): 323-327.
Wang, Y., M. A. Hubbe, T. Sezaki, X. Wang, O. L. Rojas and D. S. Argyropoulos (2006) The role of polyampholyte charge density on its interactions with cellulose. Nordic Pulp & Paper Research Journal 21:638–645.
Xhanari, K., K. Syverud, G. C. Carrasco, K. Paso and P. Stenius (2011) Reduction of water wettability of nanofibrillated cellulose by adsorption of cationic surfactants. Cellulose 18: 257-270.
Zhang, D., Q. Zhang, X. Gao and G. Piao (2013) A nanocellulose polypyrrole composite based on tunicate cellulose. International Journal of Polymer Science 2013: 1-6.
Zhang, J., H. Song, L. Lin, J. Zhuang, C. Pang and S. Liu (2012) Microfibrillated cellulose from bamboo pulp and its properties. Biomass and bioenergy 39: 78-83.
Zhao, Y., C. Moser, M. E. Lindström, G. Henriksson and J. Li (2017) Cellulose nanofibers from softwood, hardwood, and tunicate: Preparation structure film performance interrelation. ACS Applied Materials & Interfaces 9: 13508-13519.
Zimmermann, T., N. Bordeanu and E. Strub (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydrate Polymers 79: 1086-1093.
Zuluaga, R., J.-L. Putaux, A. Restrepo, I. Mondragon and P. Gañán (2007) Cellulose microfibrils from banana farming residues : isolation and characterization. Cellulose 14: 585-592.