跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/11 14:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂昱賢
研究生(外文):Yu-Shian Lyu
論文名稱:紙廠污泥與木質材料混合焙燒之研究
論文名稱(外文):Co-torrefaction of Paper Mill Sludge and Woody Materials
指導教授:吳耿東
口試委員:朱敬平萬皓鵬盧崑宗錢建嵩
口試日期:2017-07-31
學位類別:碩士
校院名稱:國立中興大學
系所名稱:森林學系所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:112
中文關鍵詞:紙廠污泥日本柳杉生質物焙燒熱值
外文關鍵詞:Paper mill sludgeCryptomeria japonicaBiomassTorrefactionHeating value
相關次數:
  • 被引用被引用:2
  • 點閱點閱:124
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究選用紙廠污泥及日本柳杉進行混合焙燒,焙燒溫度為250、300、350以及400℃;持溫時間為20、40、60 min。經焙燒處理之產物包括固態、液態和氣態,在固態產物部分,進行近似分析、元素分析、質量收率分析、熱值分析、哈氏可磨性指數分析,以及重金屬分析;另外,液態和氣態產物皆分別收集,並進行組成分分析。
研究結果所示,隨著焙燒溫度與持溫時間的增加,污泥與日本柳杉混合焙燒物之熱值、固定碳、灰份含量皆有明顯增加,而含水率、揮發分以及氮、氫、氧、硫元素含量有隨之減少的趨勢。另外,兩種原料混合焙燒後,其哈氏可磨性指數皆會大幅提升(提升約6.3倍),並且根據范克雷維倫圖,可以發現污泥及日本柳杉混合焙燒物之性質更趨近於煤炭,適合作為粉煤鍋爐之燃料。
焙燒液態及氣態產物部分,其產物收率皆隨著焙燒溫度與持溫時間的上升而增加;液態成分中推測酸性物質,日本柳杉焙燒液以醋酸為主,污泥焙燒液則另含有脂肪酸;酚類物質中,日本柳杉焙燒液以鄰甲氧基酚及4-乙基-2-甲氧基酚為主,污泥焙燒液則僅有鄰甲氧基酚。焙燒氣態產物組成主要有CO、CO2、CH4以及CnHm等,隨著焙燒溫度與持溫時間的上升,CO、CO2、CH4皆有增加的趨勢。此外,觀察污泥與日本柳杉混合比例50:50的焙燒氣態組成結果,可發現當焙燒溫度高於300℃,CnHm比例有增加的趨勢,推測在污泥灰分中的金屬成分催化下,產生C2以上的化合物分子。
Co-torrefaction of paper mill sludge and Cryptomeria japonica was conducted in this study. The operating conditions for the torrefaction temperature and residence time were set as 250, 300, 350 and 400℃, and 20, 40 and 60 minutes, respectively. Torrefaction products can be classified into solid, liquid and gas. The characteristics of solid torrefied biomass such as ultimate, proximate, mass yield, heating value, energy yield, Hardgrove Grindability Index (HGI) and heavy metal analyses were investigated. In addition, the yield and composition of torrefied liquid and gas were also analyzed.
The results show that the heating value, fixed carbon and ash content of torrefied biomass of mixed paper mill sludge and Cryptomeria japonica increased with increasing the torrefaction temperature and residence time, but the moisture, volatile matter, nitrogen, hydrogen, oxygen and sulfur contents shows the contrary results. In addition, the HGI of mixed paper mill sludge and Cryptomeria japonica was greatly improved by about 6.3 times after torrefaction. According to the van Krevelen’s diagram, the characteristics of torrefied biomass of mixed paper mill sludge and Cryptomeria japonica is similar to coal. It is more suitable as the fuel for the PC boiler.
Moreover, the yield of torrefied liquid and gaseous products increased with increasing the torrefaction temperature. For acid-based substances, acetic acid was from torrefaction of Cryptomeria japonica, and other fatty acid was from torrefaction of sludge. For phenolic substances, torrefied liquid from Cryptomeria japonica contains o-methoxyphenol and 4-ethyl-2-methoxyphenol mainly, and that from paper mill sludge contains o-methoxyphenol only. On other hard, the composition of the torrefied gaseous is CO, CO2, CH4 and CnHm. CO, CO2 and CH4 increased with increasing the torrefaction temperature and residence time. In addition, Observe the torrefied gas composition of sludge and cedar mixture ratio 50:50. It can be found that, when the torrefaction temperature is higher than 300℃, the CnHm content increased from co-torrefaction of paper mill sludge and Cryptomeria japonica with mixed ratio of 50%. It is suggested that the metal content of the paper mill sludge could act as the catalyst to produce the more than C2 compound molecules.
目錄
摘 要 i
SUMMARY ii
圖目次 vi
表目次 viii
第一章 前言 1
第二章 文獻回顧 3
2.1 生質能源 3
2.2 焙燒 16
第三章 材料與方法 24
3.1原料 24
3.2 造粒試驗 33
3.3焙燒試驗 33
3.4焙燒固態產物分析 38
3.5 液態產物分析 43
3.6 氣態產物分析 43
第四章 結果與討論 44
4.1 固態產物 44
4.2 焙燒試驗之產物分佈 90
4.3 液態產物 93
4.4 氣態產物 97
第五章 結論與建議 101
5.1 結論 101
5.2 建議 104
參考文獻 105
作者自述 112


圖目次
圖2.1 二零一四年全球初級能源供應比例 4
圖2.2 生質物熱化學轉換之中間能量載體與能量產物 6
圖2.3 行政院環境環保署統計之重點事業廢棄物產出量 12
圖2.4 污泥種類與代碼 13
圖2.5 典型都市暨工業廢水的污泥處理流程圖 14
圖2.6 焙燒系統之熱整合選項基礎概念 17
圖2.7 木質纖維素三大組成分於不同溫度範圍下之主要物化現象 20
圖2.8 焙燒過程形成之產物 21
圖2.9 生質物加熱轉換所需之能量 22
圖3.1 台南某A紙業廢水處理之污泥產出流程 26
圖3.2 平模造粒機 34
圖3.3 焙燒系統之自製示意圖 35
圖3.4 焙燒反應器實體圖 37
圖3.5 哈氏可磨性指數測定儀 41
圖3.6 哈氏可磨性指數校正曲線圖 42
圖4.1 不同焙燒溫度及持溫時間處理條件之生質物外觀 46
圖4.2 生質物於無氧升溫模式之TGA、DTG曲線(升溫速率: 20 ℃/min) 51
圖4.3不同污泥與日本柳杉混合比例與持溫時間對質量收率之影響 52
圖4.4 不同污泥與日本柳杉混合比例與持溫時間對含水率之影響 57
圖4.5 不同污泥與日本柳杉混合比例與持溫時間對灰分含量之影響 59
圖4.6 不同污泥與日本柳杉混合比例與持溫時間對揮發分含量之影響 61
圖4.7 不同污泥與日本柳杉混合比例與持溫時間對固定碳含量之影響 63
圖4.8 不同污泥與日本柳杉混合比例與持溫時間對碳含量之影響 68
圖4.9 不同污泥與日本柳杉混合比例與持溫時間對氫含量之影響 70
圖4.10 不同污泥與日本柳杉混合比例與持溫時間對氧含量之影響 72
圖4.11 不同污泥與日本柳杉混合比例與持溫時間對氮含量之影響 74
圖4.12 不同污泥與日本柳杉混合比例與持溫時間對硫含量之影響 76
圖4.13 生質物原料與焙燒物之范克雷維倫圖 77
圖4.14 不同污泥與日本柳杉混合比例與持溫時間對哈氏可磨性指數之影響 81
圖4.15 不同污泥與日本柳杉混合比例與持溫時間對熱值之影響 85
圖4.16 不同污泥與日本柳杉混合比例與持溫時間對能量產率之影響 88
圖4.17 不同污泥與日本柳杉混合比例對產物分佈之影響 91
圖4.18 不同污泥與日本柳杉混合比例對液態成分 95
圖4.19 不同污泥與日本柳杉混合比例對氣體組成之影響 99

表目次
表2.1 裂解處理過程之特點 7
表2.2 生質燃料之原料與技術 9
表3.1 紙廠污泥與日本柳杉造粒之性質分析 27
表3.2 紙廠污泥與日本柳杉不同混合比例焙燒物之金屬分析 28
表3.3 焙燒實驗操作條件 36


于敦喜、孫學信、李敏、胡松(2001)煤質對電站鍋爐運行的影響及對策。華中電力 2(14):10-13。
中華民國國家標準(1984)煤炭易磨性試驗法。經濟部標準檢驗局,CNS 11017,類號 M3164。
中華民國國家標準(2004)木漿用材含水量試驗法。經濟部標準檢驗局,CNS 6947, 類別P3041。
朱敬平(2012)廢水污泥減量技術手冊。財團法人中興工程顧問社環境工程研究中心。取自於:http://setsg.ev.ncu.edu.tw/Portals/0/workshop/1010313_%E6%B1%A1%E6%B3%A5%E6%B8%9B%E9%87%8F%E6%8A%80%E8%A1%93.pdf
陳芃(2008)2008年05月能源報導。經濟部能源局
行政院(2009)再生能源發展條例。
陳芃(2010)一月能源報導。經濟部能源局
行政院環境環保署(2012)國內產業污泥處理處置現況與展望。取自於:http://setsg.ev.ncu.edu.tw/Portals/0/workshop/20120705_%E5%9C%8B%E5%85%A7%E7%94%A2%E6%A5%AD%E6%B1%A1%E6%B3%A5%E8%99%95%E7%90%86%E8%99%95%E7%BD%AE%E7%8F%BE%E6%B3%81%E8%88%87%E5%B1%95%E6%9C%9B.pdf
行政院環境環保署(2014)污泥處理現況檢討與因應策略。取自於:http://waste3.epa.gov.tw/download/waste_web/%E6%B1%A1%E6%B3%A5%E8%99%95%E7%90%86%E7%8F%BE%E6%B3%81%E6%AA%A2%E8%A8%8E%E5%8F%8A%E5%9B%A0%E6%87%89%E7%AD%96%E7%95%A5.pdf
吳俊哲(2015)污泥資源化再利用。經濟部工業局。取自於:https://www.moeaidb.gov.tw/iphw/epc/service/training/P150903.pdf
吳耿東(2008)認識生質能源。物理雙月周刊 30(4):377-388。
吳耿東、李宏台(2007)全球生質能源應用現況與未來展望。林業研究專訊 14(3):5-9。
沈桂男 (2005) 煤質變化對鍋爐運行經濟性的影響。華東電力3(33):29-30。
張添晉 (2015) 污泥源頭減量及處理現況。經濟部工業局。取自於:https://www.moeaidb.gov.tw/iphw/epc/service/training/P150902.pdf
張添晉、陳俞穎 (2016) 有機污泥之生物減量技術。廢棄物資源化專輯。
張夏、黃勇、謝衛寧、羅成、魏華、何亞群 (2014) 煤炭性質對E型磨煤機研磨行為的影響研究。中國煤炭40(6):98-100。
蔡佳儒 (2011) 微藻焙燒物之性質分析。國立中興大學森林學系碩士論文。
蔡顯修、吳政宏、王郁惠、孫世勤 (2012) 焙燒前處理生質物之展望。台電工程月刊765:1-8。
魏恩宗、駱仲泱、岑可法、閻志勇、張惠娟 (2001) 燃煤鍋爐低NOx燃燒技術及試驗結果。電站系統工程 17(6)。
顏翊卉 (2012) 農林廢棄物焙燒產物之燃料特性研究。國立中興大學森林學系碩士論文。
Abdullah A. K., C. Wu, R. Wong and A. B. M. Rabie (2009) The assessment of cell cycle genes in the rat mandibular condyle. Archives of Oral Biology 54(5): 470-478.
Arias, B., C. Pevida, J. Fermoso, M. G. Plaza, F. Rubiera and J. J. Pis (2008) Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel processing technology 89: 169 – 175.
Atienza-Martínez M., I. Fonts, J. Ábrego, J. Ceamanos, G. Gea (2013) sewage sludge torrefaction in a fluidized bed reactor. Chemical Engineering Journal 222: 534-545.

Atienza-Martínez M., J. F. Mastral, J. Á brego, J. Ceamanos and G. Gea (2015) sewage sludge Torrefaction in an Auger Reactor. Energy Fuels 29:160-170.
Asomaning, J., P. Mussone and D.C. Bressler (2014) Thermal deoxygenation and pyrolysis oleic acid. Journal of Analytical and Applied Pyrolysis. Journal of Analytical Appleed Pyrolysis 105: 1-7.
Basu, P. (2010) Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory. Academic Press.
Bergman, P. C. A., A. R. Boersma, R. W. R. Zwart and J. H. A. Kiel (2005) Torrefaction for biomass co-firing in existing coal-fired power station. ECN report, ECN-C-05-013.
Bridgeman, T. G., J. M. Jones, I. Shield and P. T. Williams (2008) Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel 87: 844- 856.
Chen, W. H. and P. C. Kuo (2011a) Isothermal torrefaction kinetics of hemicellulose, cellulose, lignin and xylan using thermogravimetric analysis. Energy 36: 6451-6460.
Chen, W. H., W. Y. Cheng, K. M. Lu and Y. P. Huang (2011b) An evaluation on improvement of pulverized biomass property for solid fuel through torrefaction. Applied Energy 88: 3636-3644.
Christy, A. A., M. I. Lian and G. W. Francis (2011) Pyrolytic formation of polyaromatic hydrocarbons from steroid hormones. Food Chemistry 124(4): 1466-1472.
Ciolkosz, D. and R. Wallace. (2011) A review of torrefaction for bioenergy feedstock production. Biofuels, Bioproducts and Biorefining 5: 317-329.
Demirbaş, A. (2000) Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Conversion & Management 41: 633-646.
European Commission (1986) Council Directive 86/278/EEC.
European Commission (1991) Council Directive 91/271/EEC.
Garcia, G., J. Arauzo, A. Gonzalo, J. L. Sánchez and J. Ábrego (2013) Influence of feedstock composition in fluidised bed co-gasification of mixtures of lignite, bituminous coal and sewage sludge. Chemical Engineering Journal 222: 347-352.
Gaur, S. and T. B. Reed (1998) Thermal data for natural and synthetic materials, Marcel Dekker, New York. 253 pp.
Goyal, H. B., D. Seal and R. C. Saxena (2008) Bio-fuels from thermochemical conversion of renewable resources: A review. Science Direct 12:504-517.
Huang Y. F., H. T. Sung, P. T. Chiueh and S. L. Lo (2016) Co-torrefaction of sewage sludge and leucaena by using microwave. Energy 116: 1-7.
Huang Y. F., H. T. Sung, P. T. Chiueh and S. L. Lo (2017) Microwave torrefaction of sewage sludge and leucaena. Journal of the Taiwan Institute of Chemical Engineers 70: 236–243.
Hospido A., M.T. Moreira, M. Martin, M. Rigola and G. Feijoo (2005) Environmental evaluation of different treatment processes for sludge from urban wastewater treatments: anaerobic digestion versus thermal processes. The International Journal of Life Cycle Assessment. 10(5): 336-345.
Hubbert, K. M. (1956) Nuclear energy and the fossil fuels. Publication No. 95. Shell Development Company.
IEA (2009) World Energy Outlook 2009. International energy agency.
IEA (2010) CO2 Emissions from fuel Combustion. International Energy Agency.
IEA (2012) Status overview of torrefaction technologies.
IEA (2016a) Key renewables trends. International energy agency.
IEA (2016b) CO2 emissions from fuel combustion. International energy agency.


Li, X. G., Y. Lv, B. G. Ma, S. W. Jian and H. B. Tan (2011) Thermogravimetric investigation on co-combustion characteristics of tobacco residue and high-ash anthracite coal. Bioresource Technology 102: 9783–9787.
Magdziarz, A. and W. Sebastian (2014) Analysis of the combustion and pyrolysis of dried sewage sludge by TGA. Waste Management 34: 174-179.
Martínez, A. M., J. F. Mastral, J. Á Brego, J. Ceamanos and G. Gea (2015) Sewage sludge torrefaction in an auger reactor. Energy Fuels 29:160-170.
Małgorzata, W., A. Magdziarz and I. Kalemba (2015) Characterisation of renewable fuels' torrefaction process with different instrumental techniques. Energy 57: 259-269.
Mani, S., L. G. Tabil and S. Sokhansanj (2004) Grinding performance and physical properties of wheat and barley straws, corn stover and switchgrass. Biomass and Bioenergy 27: 339-352.
Mani, S. (2005) A system analysis of biomass densification process. Ph. D. Dissertation. Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada.
Mani, S., L. G. Tabil and S. Sokhansanj (2006) Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets. Biomass and Bioenergy 30: 648-654.
Mather, K. D. and D. C. Bressler (2007) Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals. Bioresource Technology 98(12): 2351-2368.
McKendry, P. (2002a) Energy production from biomass (part1): overview of biomass. Bio-resources Technology 83:37-46.
McKendry, P. (2002b) Energy production from biomass (part2): overview of biomass. Bio-resources Technology 83:47-54.
Parnaudeau, V. and M. F. Dignac (2007) The organic matter composition of various wastewater sludges and their neutral detergent fractions as revealed by pyrolysis-GC/MS. J. Anal. Appl. Pyrolysis 78(1): 140-152.
Pavlath, A. E. and K. S. Gregorski (1987) A continuous mass spectrometric method for the analysis of the analysis of the resulting gaseous mixture. Journal of Analytical and Applied Pyrolysis 11: 341-353.
Phanphanich, M. and S. Mani (2011a) Drying characteristics of pine forest residues. Bioresources 5: 108-120.
Phanphanich, M. and S. Mani (2011b) Impact of torrefaction on the grindabillity and fuel characteristics of forest biomass. Bioresources Technology 102: 1246-1253.
Pimchuai, A., A. Dutta and P. Basu (2010) Torrefaction of agriculture residue to enhance combustible properties. Energy Fuels 24: 4638-4645.
Prins, M. J., K. J. Ptasinski and F. J. J. G. Janssen (2006) Torrefaction of wood Part 2. Analysis of products. J. Anal. Appl. Pyrolysis 77: 35–40.
Poudel, J., T. I. Ohm, S. H. Lee and S. C. Oh (2015) A study on torrefaction of sewage sludge to enhance solid fuel qualities. Waste Management 40: 112-118.
Schowanek D., R. Carr, H. David, P. Douben, J. Hall, H. Kirchmann, L. Patria, P. Sequi, S. Smith, S. Webb. (2004) A risk-based methodology for deriving quality standards for organic contaminants in sewage sludge for use in agriculture – conceptual framework. Regul. Toxicol. Pharmacol 40(3) 227-251.
Spliethoff, H. (2010) Power Generation from Solid Fuels. Springer, Germany.
Tina, Y., J. Zhang, W. Zuo, L. Chen, Y. Cui and T. Tan (2013) Nitrogen conversion in relation to NH3 and HCN during microwave pyrolysis of sewage sludge. Environmental Science and Technology 47(7): 3498-3505.
Uemura, Y., N. O. Wissam, T. Toshio and B. Y. Suzana (2011) Torrefaction of oil palm wastes. Fuel 90: 2585-2591.
van der Stelt, M. J .C., H. Gerhauser , J. H. A. Kiel and K. J. PtasinskiBiomass (2011) upgrading by torrefaction for the production of biofuels: A review. Biomass and Bioenergy 35: 3748-3762.
Walton, R. A. and D. I. B. G. Van Bommel. (2010) A complete and comprehensive overview of torrefaction technologies, from World Wide Web: http://www.academia.edu/7281139/A_Complete_and_Comprehensive_Overview_of_Torrefaction_Technologies
Wiggers, V. R., G. R. Zonta, A. P. Francam, D. R. Scharfm, E. L. Simionatto, L. Ender and H. F. Meier (2013) Challenges associated with choosing operational conditions for triglyceride thermal cracking aiming to improve biofuel quality. Fuel 107: 601-608.
Wilk, M., A. Magdziarz and L. Kalemba (2015) Characterisation of renewable fuels' torrefaction process with different instrumental techniques. Energy 87: 259-269.
Wrether, J. and T. Ogada (1999) sewage sludge combustion. Progress in Energy and Combust. Sci. 25: 55-116.
Zhang, L., C. (Charles) Xu and P. Champagne (2010) Overview of recent advances in thermo-chemical conversion of biomass. Energy Conversion and Management 51: 969-982.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top