跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/02 18:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪克昌
研究生(外文):Ke-Chang Hung
論文名稱:不同金屬烷氧化合物處理對木材–無機複合材物理機械、熱分解以及潛變性質之影響
論文名稱(外文):Effect of different metal alkoxide treatments on physicomechanical, thermal decomposition, and creep properties of wood-inorganic composites
指導教授:吳志鴻吳志鴻引用關係
口試委員:陳載永王松永林曉洪卓志隆楊德新張豐丞盧崑宗林翰謙
口試日期:2017-06-27
學位類別:博士
校院名稱:國立中興大學
系所名稱:森林學系所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:108
中文關鍵詞:溶膠–凝膠法木材–SiO2複合材木材–TiO2複合材熱分解動力學階段式等應力法
外文關鍵詞:Sol-gelWood-SiO2 compositesWood-TiO2 compositeThermal decomposition kineticsStepped isostress method
相關次數:
  • 被引用被引用:1
  • 點閱點閱:271
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用甲基三甲氧基矽烷(Methyltrimethoxysilane,MTMOS)、甲基三乙氧基矽烷(Methyltriethoxysilane,MTEOS)、四乙氧基矽烷(Tetraethoxysilane,TEOS)以及異丙基氧化鈦(Titanium (IV) isopropoxide,TTIP)為反應藥劑,透過溶膠–凝膠(Sol-gel)法製備木材–無機複合材,除尋求其最適化條件外,並探討木材–無機複合材之無機物分布情形、物理機械性質、熱分解動力學以及潛變性質。試驗結果顯示,當含浸時間為3天時,木材–SiO2複合材中係以MTMOS/甲醇/醋酸莫耳比為0.12/1/0.08處理所得之重量增加率(Weight percent gain,WPG)最高;而木材–TiO2複合材係以莫耳比為0.12/1/0.02之TTIP/異丙醇/醋酸條件處理者最佳。另外,吸水試驗及抗彎性質試驗結果顯示,SiO2或TiO2無機物(WPG 20)均能有效提高柳杉試材之尺寸安定性;其中,又以木材–SiO2複合材改善效果較佳。再者,掃描式電子顯微鏡/能量分散光譜儀(Scanning electron microscope/energy dispersive spectrometer,SEM/EDS)之試驗結果則指出,木材–TiO2複合材中鈦元素多存在於細胞腔。而木材–SiO2複合材中矽元素之分布則會因其含水率不同而有所差異,以含水率9%柳杉試材所製備之無機複合材,其矽元素多存在於細胞壁;相對的,當試材為飽水狀態時,其矽元素除存在於細胞壁亦會填充於細胞腔內。同時,根據固態29Si-NMR之分析結果得知,以MTMOS製備木材–SiO2複合材之Si元素主要結構為T2及T3型態,顯示MTMOS複合材中會形成三次元網狀結構。
熱分解試驗主要係以熱重分析儀於氮氣環境下進行,並透過Friedman、Flynn-Wall-Ozawa(F-W-O)、modified Coats-Redfern(modified C-R)以及Starink四種等轉化率法評估其熱分解動力學。試驗結果顯示,以MTMOS所製備之木材–SiO2複合材中,當WPG達10、20以及30%時,其轉化率為10–70%之平均活化能分別為193–204、201–214以及209–213 kJ/mol;相對的,未處理柳杉試材之活化能僅為155–165 kJ/mol。此外,利用TTIP及TEOS所製備之木材–TiO2及木材–SiO2複合材,其平均活化能與MTMOS處理者相似。然而,由Avrami分析法所得之反應級數得知,木材之熱分解反應級數(0.52)均較木材–SiO2複合材及木材–TiO2複合材為高。另一方面,由階段式等應力法(Stepped isostress method,SSM)之試驗結果可以得知,不同SSM試驗條件之潛變主曲線具有高度一致性,且各組試材長期潛變曲線之趨勢與SSM預測之潛變主曲線相似,顯示SSM可用以評估木材及木材–無機複合材之長期潛變行為。同時,由結果得知,木材–無機複合材之潛變抗性較未處理木材為佳;其中,又以MTMOS所製備之木材–SiO2複合材(WPG 20)具有最低之時間依存(Time-dependent)模數衰減率。而由Eyring方程式計算所得之活化體積得知,木材之活化體積(0.856 nm3)較MTEOS(0.799 nm3)及TEOS(0.750 nm3)處理材(WPG 20)為高。綜合上述試驗結果可以得知,透過金屬烷氧化合物處理可以有效提高木材之尺寸安定性、熱安定性以及潛變抗性。
In this study, methyltrimethoxysilane (MTMOS), methyltriethoxysilane (MTEOS), tetraethoxysilane (TEOS), and titanium (IV) isopropoxide (TTIP) were used as reagents to prepare the wood-inorganic composites by sol-gel process. The optimal sol-gel condition, inorganic component distributions within the composites, physicomechanical properties, thermal decomposition kinetics, and creep properties were evaluated. The results revealed that, under impregnation time of 3 days, the solutions of MTMOS/methanol/acetic acid and TTIP/2-propanol/acetic acid with molar ratios of 0.12/1/0.08 and 0.12/1/0.02 exhibited the highest weight percent gain (WPG) for wood-SiO2 composite and wood-TiO2 composite, respectively. In addition, the dimensional stabilities and modulus of rupture (MOR) of wood-SiO2 composite and wood-TiO2 composite (WPG 20) were better than those of untreated Japanese cedar wood, especially for the wood-SiO2 composite. The scanning electron microscope/energy dispersive spectrometer (SEM-EDS) showed that the titanium were deposited principly in the cell lumens of wood-TiO2 composite, but the silicon deposition site within the composite was significantly dependent on the moisture content of wood. For instance, most silicon was deposited in the cell wall of conditioned wood (moisture content = 9%) after sol-gel process, while the silicon was deposited in both cell wall and cell lumen for the water saturated wood. According to the results of the 29Si NMR, two different siloxane peaks (T2 and T3) were observed, which supporting the MTMOS formed a network structure in the composite.
The thermal decomposition experiments were carried out in a TG analyzer under a nitrogen atmosphere, and four iso-conversional methods, including Friedman, Flynn-Wall-Ozawa (F-W-O), modified Coats-Redfern (modified C-R), and Starink, were used to determine the thermal decomposition kinetics. The results showed that the activation energies of thermal decomposition between 10% and 70% conversion were 147–172, 170–291, 189–251, and 192–248 kJ/mol for Japanese cedar wood and its SiO2 composites prepared from MTMOS with a WPG of 10, 20, and 30%, respectively. The average activation energies of wood-SiO2 and wood-TiO2 composites prepared from TEOS and TTIP were similar to the MTMOS treated one. However, the average reaction order of wood-inorganic composites was lower than that of untreated wood (0.52). On the other hand, according to the result of stepped isostress method (SSM), smooth master curves were obtained from different SSM testing parameters, and they fitted well with the long-term creep curves of wood and wood-inorganic composites. These results demonstrated that SSM could be used to evaluate the long-term creep behavior of wood and wood-inorganic composites. The creep resistance of wood-inorganic composites was greater than that of untreated wood. Among all wood-inorganic composites, the wood-SiO2 composite prepared from MTMOS with a WPG of 20% exhibited the lowest reduction in time-dependent modulus. According to the activation volume of specimens calculated by the Eyring equation, the activation volume of wood-SiO2 composite (WPG 20) prepared from MTMOS (0.799 nm3) and TEOS (0.750 nm3) were lower than that of untreated wood (0.856 nm3). Accordingly, the dimensional stability, thermal stability, and creep resistance of the wood could be effectively enhanced by metal alkoxides treatment.
摘要 i
Abstract iii
目錄 v
表目次 vii
圖目次 ix
第一章 前言 1
第二章 文獻回顧 6
一、溶膠–凝膠法之反應機制及其對木材光安定性(Photostability)及熱安定性(Thermal stability)之影響 6
(一)溶膠–凝膠法之反應機制 6
(二)溶膠–凝膠處理對木材光安定性之影響 8
(三)溶膠–凝膠處理對木材熱性質之影響 11
二、木材熱分解動力學之介紹 13
三、短期加速潛變試驗法之介紹 18
(一)時間–溫度疊加原理(TTSP) 20
(二)時間–應力疊加原理(TSSP) 21
(三)階段式等溫試驗法(SIM) 24
(四)階段式等應力試驗法(SSM) 26
第三章 試驗材料與方法 28
一、試驗材料 28
(一)柳杉 28
(二)化學藥品 28
(三)木材–無機複合材之製備 28
二、性質分析 29
(一)木材及其無機複合材之理學性質 29
(二)木材及其無機複合材之抗彎性質 30
(三)木材及其無機複合材之潛變性質 30
(四)儀器分析 31
三、木材及其無機複合材熱分解動力學分析 32
(一)木材及其無機複合材之熱分解活化能計算 32
(二)木材及其無機複合材之熱分解反應級數評估 34
四、統計分析 34
第四章 結果與討論 35
一、溶膠–凝膠處理條件對木材–無機複合材重量增加率之影響 35
二、不同重量增加率及金屬烷氧化合物對木材–無機複合材物理機械性質之影響 41
三、不同重量增加率及金屬烷氧化合物對木材–無機複合材熱分解性質之影響 50
(一)不同重量增加率對木材–SiO2複合材熱分解性質之影響 50
(二)不同金屬烷氧化合物對木材–無機複合材熱分解性質之影響 64
四、不同重量增加率及金屬烷氧化合物對木材–無機複合材潛變性質之影響 75
(一)不同重量增加率對木材–SiO2複合材潛變性質之影響 80
(二)不同金屬烷氧化合物對木材–無機複合材潛變性質之影響 86
第五章 結論與建議 93
參考文獻 96
李文昭、劉正字(1995)農林廢料製造木材膠合劑之研究(I): 樹皮、稻殼及蔗渣之化學組成分分析。林產工業 14(1):102–119。
谷雲川、陳信泰、陳榮祖(1987)速生樹種木材纖維性質與製漿試驗(一):山黃麻、麻六甲合歡及柳杉。林業試驗所研究報告季刊2(4):319–332。
洪國榮、廖坤福(1980)山黃麻強化積層材之製造及其性質之研究。中興大學實驗林研究報告2:241–256。
郭蘭生、張豐吉(1979)山黃麻製漿試驗。中興大學實驗林研究報告1:59–73。
陳載永(1988)速生樹種木材製造建築用粒片板之適用性(I-1):杉木、麻六甲合歡及山黃麻製造水泥及石膏膠合之粒片板。中興大學實驗林研究報告9:135–147。
陳載永(1989a)速生樹種木材製造建築用粒片板之適用性(II-2):柳杉、台灣泡桐及木油桐製造木材粒片水泥板。中興大學實驗林研究報告10:89–101。
陳載永(1989b)速生樹種木材製造建築用粒片板之適用性(III-1):相思樹、楓香及台灣杉製造長薄片型與方薄片型粒片板。中興大學實驗林研究報告11:63–78。
陳載永(1991)速生樹種木材製造建築用粒片板之適用性(III-3): 相思樹、楓香及台灣杉製造木材粒片石膏板。中興大學實驗林研究報告13(2):81–94。
陳載永、吳俊萍(1992)速生樹種木材製造粒片板之研究(IV-2): 木材粒片含水率對聚異氰酸鹽膠粒片板性質之影響。中興大學實驗林研究報告14(2):137–145。
陳鴻財、蘇裕昌(1998)越南產白千層之硫酸鹽法製漿適性。台灣林業科學13(3):209–217。

劉正字、李文昭(1987a)速生樹種之理化學性質及膠合方法對集成材性能之影響(1):杉木、山黃麻、麻六甲合歡之基本理化學性質。林產工業6(3):11–22。
劉正字、李文昭(1987b)速生樹種之理化學性質及膠合方法對集成材性能之影響(2):杉木、山黃麻、麻六甲合歡製作集成材之研究。中華林學季刊 20(4):27–40。
符韵林(2009)二氧化矽/木材複合材料的微細構造與物性。中國環境科學出版社。第43–44頁。
Aboyade, A. O., T. J. Hugo, M. Carrier, E. L. Meyer, R. Stahl, J. H. Knoetze, and J. F. Görgens (2011) Non-isothermal kinetic analysis of the devolatilization of corn cobs and sugar cane bagasse in an inert atmosphere. Thermochim. Acta 517:81–89.
Achereiner, F., K. Engelsing, M. Bastian, and P. Heidemeyer (2013) Accelerated creep testing of polymers using the stepped isothermal method. Polym. Test. 32:447–454.
Allen, N. S., M. Edge, G. Sandoval, J. Verran, J. Stratton, and J. Maltby (2005) Photocatalytic coatings for environmental applications. Photochem. Photobiol. 81:279–290.
Alwani, M. S., H. P. S. A. Khalil, O. Sulaiman, M. N. Islam, and R. Dungani (2014) An approach to using agricultural waste fibres in biocomposites application: thermogravimetric analysis and activation energy study. Bioresources 9(1):218–230.
Alwis, K. G. N. C. and C. J. Burgoyne (2008) Accelerated creep testing for aramid fibres using the stepped isothermal method. J. Mater. Sci. 43:4789–4800.
Antal, M. J. and G. Varhegyi (1995) Cellulose pyrolysis kinetics-the current state knowledge. Ind. Eng. Chem. Res. 34:703–717.
Antal, M. J., G. Varhegyi, and E. Jakab (1998) Cellulose pyrolysis kinetics: revisited. Ind. Eng. Chem. Res. 37:1267–1275.
ASTM D 1037-06a. (2006) Standard test methods for evaluating properties of wood-base fiber and particle panel materials. ASTM international, West Conshohoccken, PA.
ASTM D 2395-07a. (2007) Standard test methods for specific gravity of wood and wood-based materials. ASTM international, West Conshohoccken, PA.
ASTM D 2990-09. (2009) Standard test methods for tensile, compressive, and flexural creep and creep-rupture of plastics. ASTM international, West Conshohoccken, PA.
ASTM D 4442-07. (2007) Standard test methods for direct moisture content measurement of wood and wood-based materials. ASTM international, West Conshohoccken, PA.
ASTM D 6992-16. (2016) Standard test method for accelerated tensile creep and creep-rupture of geosynthetic materials based on time-temperature superposition using the stepped isothermal method. ASTM international, West Conshohoccken, PA.
ASTM D 7361-07. (2007) Standard test method for accelerated compressive creep of geosynthetic materials based on time-temperature superposition using the stepped isothermal method. ASTM international, West Conshohoccken, PA.
Brown, M. E., M. Maciejewski, S. Vyazovkin, R. Nomen, J. Sempere, and A. Burnham (2000) Computational aspects of kinetic analysis. Part A: the ICTAC kinetics project-data, methods and results. Thermochim. Acta 355:125–143.


Bueno, B. S., M. A. Costanzi, and J. G. Zornberg (2005) Conventional and accelerated creep tests on nonwoven needle-punched geotextiles. Geosynth. Int. 12(6):276–287.
Capart, R., L. Khezami, and A. K. Burnham (2004) Assessment of various kinetic models for the pyrolysis of a microgranular cellulose. Thermochim. Acta 417:79–89.
Chen, H. X., N. A. Liu, and W. C. Fan (2006) Two-step consecutive reaction model and kinetic parameters relevant to the decomposition of Chinese forest fuels. J. Appl. Polym. Sci. 102:571–576.
Chen, J. and S. J. Bull (2009) The investigation of creep of electroplated Sn and Ni-Sn coating on copper at room temperature by nanoindentation. Surf. Coat. Tech. 203:1609–1617.
Chen, X. and S. S. Mao (2007) Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 107:2891–2959.
Chevali, V. S., D. R. Dean, and G. M. Janowski (2009) Flexural creep behavior of discontinuous thermoplastic composites: Non-linear viscoelastic modeling and time-temperature-stress superposition. Compos. Part A-Appl. S. 40:870–877.
Chiang, C. L. and C. C. M. Ma (2004) Synthesis, characterization, thermal properties and flame retardance of novel phenolic resin/silica nanocomposites. Polym. Degrad. Stabil. 95:2255–2259.
Damartzis, T. H., D. Vamvuka, S. Sfakiotakis, and A. Zabaniotou (2011) Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA). Bioresource Technol. 102:6230–6238.

Daood, S. S., S. Munir, W. Nimmo, and B. M. Gibbs (2010) Char oxidation study of sugar cane bagasse, cotton stalk and Pakistani coal under 1% and 3% oxygen concentrations. Biomass Bioenerg. 34:263–271.
Di Blasi, C. (2002) Modeling intra- and extra-particle processes of wood fast pyrolysis. AIChe J. 48:2386–2397.
Diebold, J. P. (1994) A unified, global-model for the pyrolysis of cellulose. Biomass Bioenerg. 7:75–85.
Doyle, C. D. (1961) Kinetic analysis of thermogravimetric data. J. Appl. Polym. Sci. 5:285–292.
Fengel, D. and G. Wegener (1989) Wood: Chemistry, Ultrastructure, Reaction. Walter de Gruyter, Berlin. 613 pp.
Ferry, J. D. (1980) Viscoelastic properties of polymers. John Wiley & Sons, New York. 641 pp.
Findley, W. N., J. S. Lai, and K. Onaran (1976) Creep and Relaxation of Nonlinear Viscoelastic Materials with an Introduction to Linear Viscoelasticity, Dover Publications, New York.
Font, R. and P. T. Williams (1995) Pyrolysis of biomass with constant heating rate: influence of the operating conditions. Thermochim. Acta 250:109–123.
Fujishima, A., X. T. Zhang, and D. A. Tryk (2008) TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63:515–582.
Gai, C., Y. Dong, and T. Zhang (2013) The kinetic analysis of the pyrolysis of agricultural residue under non-isothermal conditions. Bioresource Technol. 127:298–305.
Ghosh, S. C., H. Militz, and C. Mai (2009) The efficacy of commercial silicones against blue stain and mould fungi in wood. Eur. J. Wood Wood Prod. 67:159–167.
Giannopoulos, I. P. and C. J. Burgoyne (2011) Predication of the long-term bahaviour of high modulus fibers using the stepped isostress method (SSM). J. Mater. Sci. 46:7660–7671.
Giannopoulos, I. P. and C. J. Burgoyne (2012) Accelerated and real-time creep and creep-rupture results for aramid fibers. J. Appl. Polym. Sci. 125:3856–3870.
Goertzen, W. K. and M. R. Kessler (2006) Creep behavior of carbon fiber/epoxy matrix composites. Mat. Sci. Eng. A-Struct. 421(1–2):217–225.
Gr?nli, M., M. J. Antal, and G. Varhegyi (1999) A round-robin study of cellulose pyrolysis kinetics by thermogravimetry. Ind. Eng. Chem. Res. 38:2238–2244.
Hadid, M., B. Guerira, M. Bahri, and A. Zouani (2014) Assessment of the stepped isostress method in the prediction of long term creep of thermoplastics. Polym. Test. 34:113–119.
Hadid, M., S. Rechak, and A. Tati (2004) Long-term bending creep behavior prediction of injection molded composite using stress–time correspondence principle. Mat. Sci. Eng. A-Struct. 385:54–58.
Hübert, T., B. Unger, and M. Bücker (2010) Sol-gel derived TiO2 wood composites. J. Sol-Gel Sci. Technol. 53:384–389.
Hung, K. C., T. L. Wu, Y. L. Chen, and J. H. Wu (2016) Assessing the effect of wood acetylation on mechanical properties and extended creep behavior of wood/recycled-polypropylene composites. Constr. Build. Mater. 108:139–145.
Jazouli, S., W. Luo, F. Bremand, and T. Vu-Khanh (2005) Application of time-stress equivalence to nonlinear creep of polycarbonate. Polym. Test. 24:463–467.
Joseph, R., S. Zhang, and W. T. Ford (1996) Structure and dynamics of a colloidal silica-poly(methyl methacrylate) composite by 13C and 29Si MAS NMR spectroscopy. Macromolecules 29:1305–1312.
Kartal, S. N., T. Yoshimura, and Y. Imamura (2004) Decay and termite resistance of boron-treated and chemically modified wood by in situ co-polymerization of allyl glycidyl ether (AGE) with methyl methacrylate (MMA). Int. Biodeterior. Biodegrad. 53(2):111–117.
Kartal, S. N., T. Yoshimura, and Y. Imamura (2009) Modification of wood with Si compounds to limit boron leaching from treated wood and to increase termite and decay resistance. Int. Biodeterior. Biodegrad. 63:187–190.
Kim, S. S., J. Kim, Y. H. Park, and Y. K. Park (2010) Pyrolysis kinetics and decomposition characteristics of pine trees. Bioresource Technol. 121:9797–9802.
Kissinger, H. E. (1957) Reaction kinetics in differential thermal analysis. Anal. Chem. 29:1702–1706.
Leademan, H. (1943) Elastic and creep properties of filamentous materials and other high polymers. The Textile Foundation Inc, Washington D.C.
Li, Y. J., L. X. Du, C. Kai, R. H. Huang, and Q. L. Wu (2013) Bamboo and high density polyethylene composite with heat-treated bamboo fiber: thermal decomposition properties. Bioresources 8(1):900–912.
Lin, C. H., T. H. Yang, W. J. Lai, and F. C. Lin (2013) Anisotropic physical and mechanical performance of PF-impregnated oriented strand board. Bioresources 8(2):1933–1945.
Luo, W., C. Wang, and R. Zhao (2007) Application of time-temperature-stress superposition principle to nonlinear creep of poly(methyl methacrylate). Key Eng. Mater. 340:1091–1096.
Manya, J. J., E. Velo, and L. Puigjaner (2003) Kinetics of biomass pyrolysis: a reformulated three-parallel-reactions model. Ind. Eng. Chem. Res. 42:434–441.

Martínez, Á. T., M. S. Francisco, J. Ruiz-Dueñas, P. Ferreira, S. Camarero, F. Guillén, M. J. Martínez, A. Gutiérrez, and J. C. del Río (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int. Microbiol. 8:195–204.
Meszaros, E., G. Varhegyi, and E. Jakab (2004) Thermogravimetric and reaction kinetic analysis of biomass samples from an energy plantation. Energy Fuels 18:497–507.
Milosavljevic, I. and E. M. Suuberg (1995) Cellulose thermal-decomposition kinetics– global mass-loss kinetics. Ind. Eng. Chem. Res. 34:1081–1091.
Miyafuji, H. and S. Saka (1997) Fire-resisting properties in several TiO2 wood-inorganic composites and their topochemistry. Wood Sci Technol. 31:449–455.
Miyafuji, H. and S. Saka (2001) Na2O-SiO2 wood-inorganic composites prepared by the sol-gel process and their fire-resistant properties. J. Wood Sci. 47:483–489.
Miyafuji, H., H. Kokaji, and S. Saka (2004) Photostable wood-inorganic composites prepared by the sol-gel process with UV absorbent. J. Wood Sci. 50:130–135.
Nada, A. M. A. and M. L. Hassan (2000) Thermal behavior of cellulose and some cellulose derivatives. Polym. Degrad. Stabil. 67:111–115.
Nuñez, A. J., N. E. Marcovich, and M. I. Aranguren (2004) Analysis of the creep behavior of polypropylene-woodflour composites. Polym. Eng. Sci. 44:1593–1603.
Orfao, J. J. M., F. J. A. Antunes, and J. L. Figueiredo (1999) Pyrolysis kinetics of lignocellulosic meterals–three independent reactions model. Fuel 78:349–358.
Ounas, A., A. Aboulkas, K. Elharfi, A. Bacaoui, and A. Yaacoubi (2011) Pyrolysis of olive residue and sugar cane bagasse: non-isothermal thermogravimetric kinetic analysis. Bioresource Technol. 102:11234–11238.
Plazek, D. J. (1965) Temperature dependence of the viscoelastic behavior of polystyrene. J. Phys. Chem. 69:3480–3487.
Poletto, M., A. J. Zattera, and R. M. C. Santana (2012) Thermal decomposition of wood: kinetics and degradation mechanisms. Bioresource Technol. 126:7–12.
Qaiser, A. A. and J. Price (2011) Estimation of long-term creep behavior of polycarbonate by stress-time superposition and effects of physical aging. Mech. Time-depend. Mat. 15:41–50.
Qin, C. and W. Zang (2012) Antibacterial properties of titanium alkoxide/poplar wood composite prepared by sol-gel process. Mater. Lett. 89:101–103.
Saka, S and T. Ueno (1997) Several SiO2 wood-inorganic composites and their fire-resisting properties. Wood Sci. Technol. 31:457–466.
Saka, S. and Y. Yakake (1993) Wood-inorganic composites prepared by sol-gel process III. Chemically-modified wood-inorganic composites. Mokuzai Gakkaishi 39:308–314.
Sakka, S. and H. Miyafuji (2005) Application of sol-gel processing to wood-inorganic composites pp. 577–595. In S. Sakka ed. Handbook of sol-gel science and technology: processing, characterization and applications. Volume III: Applications of sol-gel technology. Kluwer Academic Publishers, Boston. 791 pp.
Sánchez-Jiménez, P. E., L. A. Pérez-Maqueda, A. Perejón, and J. M. Criado (2010) A new model for the kinetic analysis of thermal degradation of polymers driven by randon scission. Polym. Degrad. Stabil. 95:733–739.
Sanchez-Silva, L., D. López-González, J. Villaseñor, P. Sánchez, and J. L. Valverde (2012) Thermogravimetic-mass spectromrtric analysis of lignocellulosic and marine biomass pyrolysis. Bioresource Technol. 109:163–172.

Shuping, Z., W. Yulong, Y. Mingde, L. Chun, and T. Jummao (2010) Pyrolysis characteristics and kintics of the marine microalgae Dunaliella tertiolecta using thermogravimetic analyzer. Bioresource Technol. 101:359–365.
Starink, M. J. (1996) A new method for the derivation of activation energies from experiments performed at constant heating rate. Thermochim. Acta 288:97–104.
Starkova, O., J. Yang, and Z. Zhang (2007) Application of time-stress superposition to nonlinear creep of polyamide 66 filled with nanoparticles of various sizes. Compos. Sci. Technol. 67:2691–2698.
Sun, Q. F., Y. Lu, H. M. Zhang, H. J. Zhao, H. P. Yu, J. S. Xu, Y. C. Fu, D. J. Yang, and Y. X. Liu (2012) Hydrothermal fabrication of rutile TiO2 submicrospheres on wood surface: An efficient method to prepare UV-protective wood. Mater. Chem. Phys. 133:253–258.
Tajvidi, M., R. H. Falk, and J. C. Hermanson (2005) Time-temperature superposition principle applied to a kenaf fiber/high density polyethylene composites. J. Appl. Polym. Sci. 97:1995–2004.
Tajvidi, M. and L. C. Simon (2015) High-temperature creep behavior of wheat straw isotactic/impact-modified polypropylene composites. J. Thermoplast. Compos. Mater. 28:1406–1422.
Tamrakar, S., R. A. Lopez-Anido, A. Kiziltas, and D. J. Gardner (2011) Time and temperature dependent response of a wood-polyproplyene composite. Compos. Part A-Appl. S. 42:834–842.
Tanks, J. D., K. E. Rader, and S. R. Sharp (2016) Accelerated creep testing of CFRP with the stepped isostress method. pp. 397–403. In: C. Ralph, M. Silberstein, P. R. Thakre, and R. Singh eds. Mechanics of composite and mulit-functional materials. Volume 7: Conference proceedings of the society for experimental mechanics seies. Springer International Publishing, Cham. 468 pp.
Thornton, J. S., S. R. Allen, R. W. Thomas, and D. Sandri (1998a) The stepped isothermal method for TTS and its application to creep data on polyester yarn. In: Proc., The Sixth International Conference on Geosynthetics, Atlanta, USA. pp. 699–706.
Thornton, J. S., J. N. Paulson, and D. Sandri (1998b) Conventional and stepped isothermal methods for characterizing long term creep strength of polyester geogrids creep of product. In: Proc., The Sixth International Conference on Geosynthetics. Atlanta, USA. pp. 691–698.
Tissaoui, J. (1996) Effects of long-term creep on the integrity of modern wood structures. Doctor Thesis, Virginia Polytechnic Institute and State University. 121 pp.
Tobolsky, A. V. and R. D. Andrews (1945) Systems manifesting superposed elastic and viscous behavior. J. Chem. Phys. 13:3–27.
Tshabalala, M. A. and L. P. Sung (2007) Wood surface modification by in-situ sol-gel deposition of hybrid inorganic-organic thin films. J. Coat. Technol. Res. 4:483–490.
Tshabalala, M. A., P. Kingshott, M. R. Vanlandingham, and D. Plackett (2003) Surface chemistry and moisture sorption properties of wood coated with multifunctional alkoxysilanes by sol-gel process. J Appl. Polym. Sci. 88:2828–2841.
Tshabalala, M. A., R. Libert, and C. M. Schaller (2011) Photostability and moisture uptake properties of wood veneer coated with a combination of thin sol-gel films and light stabilizers. Holzforschung 65:215–220.
Unger, B., M. Bücker, S. Reinsch, and T. Hübert (2013) Chemical aspects of wood modification by sol-gel-derived silica. Wood Sci. Technol. 47:83–104.
Vuthaluru, H. B. (2004) Investigations into the pyrolytic behavior of coal/biomass blends using thermogravimetric analysis. Biores. Technol. 92:187–195.
Wang, S., C. Liu, M. Zang, J. Li, and C. Wang (2011a) Fabrication of superhydrophobic wood surface by a sol-gel process. Appl. Surf. Sci. 258:806–810.
Wang, S., R. Mahlberg, S. Tämsä, J. Nikkola, J. Mannila, A.-C. Ritschkoff, and J. Peltonen (2011b) Surface properties and moisture behaviour of pine and heat-treated spruce modified with alkoxysilanes by sol-gel process. Prog. Org. Coat. 71:274–282.
Wang, X., J. Liu, and Y. Chai (2012) Thermal, mechanical, and moisture absorption properties of wood-TiO2 composites prepared by a sol-gel process. Bioresources 7:893–901.
Xu, Y., Q. Wu, Y. Lei, and F. Yao (2010) Creep behavior of bagasse fiber reinforced polymer composites. Bioresource Technol. 101:3280–3286.
Xu, Y., S. Y. Lee, and Q. Wu (2011) Creep analysis of bamboo high-density polyethylene composites: effect of interfacial treatment and fiber loading level. Polym. Composite. 32:692–699.
Yang, C. N., K. C. Hung, T. L. Wu, T. C. Yang , Y. L. Chen, and J. H. Wu (2014) Comparisons and characteristics of slicewood acetylation with acetic anhydride by liquid phase, microwave, and vapor phase reaction. Bioresources 9:6463–6475.
Yang, T. C., T. L. Wu, K. C. Hung, Y. L. Chen, and J. H. Wu (2015) Mechanical properties and extended creep behavior of bamboo fiber reinforced recycled poly(lactic acid) composites using the time–temperature superposition principle. Constr. Build. Mater. 93:558–563.

Yang, T. H., S. Y. Wang, M. J. Tsai, and C. Y. Lin (2009a) Temperature distribution within glued laminated timber during a standard fire exposure test. Mater. Design 30:518–525.
Yang, T. H., S. Y. Wang, M. J. Tsai, and C. Y. Lin (2009b) The charring depth and charring rate of glued laminated timber after a standard fire exposure test. Build. Environ. 44(2):231–236.
Yang, T. H., S. Y. Wang, M. J. Tsai, C. Y. Lin, and Y. J. Chuang (2009c) Effect of fire exposure on the mechanical properties of glued laminated timber. Mater. Design 30:698–703.
Yao, F., Q. Wu, Y. Lei, W. Guo, and Y. Xu (2008) Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym. Degrad. Stabil. 93:90–98.
Yeo, S. S. and Y. G. Hsuan (2009) Predicting the creep behavior of high density polyethylene geogrid using stepped iso thermal method. In: J. W. Martin, R. A. Ryntz, J. Chin and R. A. Dickie eds. Service life prediction of polymeric materials. Springer, New York. pp 205–218.
Yeo, S. S. and Y. G. Hsuan (2010) Evaluation of creep behavior of high density polyethylene and polyethylene-terephthalate geogrids. Geotext. Geomembr. 28:409–421.
Zornberg, J. G., B. R. Byler, and J. W. Kundsen (2004) Creep of geotextiles using time-temperature superposition methods. J. Geotech. Geoenviron. Eng. 130:1158–1168.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top