李文昭、劉正字(1995)農林廢料製造木材膠合劑之研究(I): 樹皮、稻殼及蔗渣之化學組成分分析。林產工業 14(1):102–119。谷雲川、陳信泰、陳榮祖(1987)速生樹種木材纖維性質與製漿試驗(一):山黃麻、麻六甲合歡及柳杉。林業試驗所研究報告季刊2(4):319–332。洪國榮、廖坤福(1980)山黃麻強化積層材之製造及其性質之研究。中興大學實驗林研究報告2:241–256。
郭蘭生、張豐吉(1979)山黃麻製漿試驗。中興大學實驗林研究報告1:59–73。
陳載永(1988)速生樹種木材製造建築用粒片板之適用性(I-1):杉木、麻六甲合歡及山黃麻製造水泥及石膏膠合之粒片板。中興大學實驗林研究報告9:135–147。
陳載永(1989a)速生樹種木材製造建築用粒片板之適用性(II-2):柳杉、台灣泡桐及木油桐製造木材粒片水泥板。中興大學實驗林研究報告10:89–101。
陳載永(1989b)速生樹種木材製造建築用粒片板之適用性(III-1):相思樹、楓香及台灣杉製造長薄片型與方薄片型粒片板。中興大學實驗林研究報告11:63–78。
陳載永(1991)速生樹種木材製造建築用粒片板之適用性(III-3): 相思樹、楓香及台灣杉製造木材粒片石膏板。中興大學實驗林研究報告13(2):81–94。
陳載永、吳俊萍(1992)速生樹種木材製造粒片板之研究(IV-2): 木材粒片含水率對聚異氰酸鹽膠粒片板性質之影響。中興大學實驗林研究報告14(2):137–145。
陳鴻財、蘇裕昌(1998)越南產白千層之硫酸鹽法製漿適性。台灣林業科學13(3):209–217。
劉正字、李文昭(1987a)速生樹種之理化學性質及膠合方法對集成材性能之影響(1):杉木、山黃麻、麻六甲合歡之基本理化學性質。林產工業6(3):11–22。劉正字、李文昭(1987b)速生樹種之理化學性質及膠合方法對集成材性能之影響(2):杉木、山黃麻、麻六甲合歡製作集成材之研究。中華林學季刊 20(4):27–40。符韵林(2009)二氧化矽/木材複合材料的微細構造與物性。中國環境科學出版社。第43–44頁。
Aboyade, A. O., T. J. Hugo, M. Carrier, E. L. Meyer, R. Stahl, J. H. Knoetze, and J. F. Görgens (2011) Non-isothermal kinetic analysis of the devolatilization of corn cobs and sugar cane bagasse in an inert atmosphere. Thermochim. Acta 517:81–89.
Achereiner, F., K. Engelsing, M. Bastian, and P. Heidemeyer (2013) Accelerated creep testing of polymers using the stepped isothermal method. Polym. Test. 32:447–454.
Allen, N. S., M. Edge, G. Sandoval, J. Verran, J. Stratton, and J. Maltby (2005) Photocatalytic coatings for environmental applications. Photochem. Photobiol. 81:279–290.
Alwani, M. S., H. P. S. A. Khalil, O. Sulaiman, M. N. Islam, and R. Dungani (2014) An approach to using agricultural waste fibres in biocomposites application: thermogravimetric analysis and activation energy study. Bioresources 9(1):218–230.
Alwis, K. G. N. C. and C. J. Burgoyne (2008) Accelerated creep testing for aramid fibres using the stepped isothermal method. J. Mater. Sci. 43:4789–4800.
Antal, M. J. and G. Varhegyi (1995) Cellulose pyrolysis kinetics-the current state knowledge. Ind. Eng. Chem. Res. 34:703–717.
Antal, M. J., G. Varhegyi, and E. Jakab (1998) Cellulose pyrolysis kinetics: revisited. Ind. Eng. Chem. Res. 37:1267–1275.
ASTM D 1037-06a. (2006) Standard test methods for evaluating properties of wood-base fiber and particle panel materials. ASTM international, West Conshohoccken, PA.
ASTM D 2395-07a. (2007) Standard test methods for specific gravity of wood and wood-based materials. ASTM international, West Conshohoccken, PA.
ASTM D 2990-09. (2009) Standard test methods for tensile, compressive, and flexural creep and creep-rupture of plastics. ASTM international, West Conshohoccken, PA.
ASTM D 4442-07. (2007) Standard test methods for direct moisture content measurement of wood and wood-based materials. ASTM international, West Conshohoccken, PA.
ASTM D 6992-16. (2016) Standard test method for accelerated tensile creep and creep-rupture of geosynthetic materials based on time-temperature superposition using the stepped isothermal method. ASTM international, West Conshohoccken, PA.
ASTM D 7361-07. (2007) Standard test method for accelerated compressive creep of geosynthetic materials based on time-temperature superposition using the stepped isothermal method. ASTM international, West Conshohoccken, PA.
Brown, M. E., M. Maciejewski, S. Vyazovkin, R. Nomen, J. Sempere, and A. Burnham (2000) Computational aspects of kinetic analysis. Part A: the ICTAC kinetics project-data, methods and results. Thermochim. Acta 355:125–143.
Bueno, B. S., M. A. Costanzi, and J. G. Zornberg (2005) Conventional and accelerated creep tests on nonwoven needle-punched geotextiles. Geosynth. Int. 12(6):276–287.
Capart, R., L. Khezami, and A. K. Burnham (2004) Assessment of various kinetic models for the pyrolysis of a microgranular cellulose. Thermochim. Acta 417:79–89.
Chen, H. X., N. A. Liu, and W. C. Fan (2006) Two-step consecutive reaction model and kinetic parameters relevant to the decomposition of Chinese forest fuels. J. Appl. Polym. Sci. 102:571–576.
Chen, J. and S. J. Bull (2009) The investigation of creep of electroplated Sn and Ni-Sn coating on copper at room temperature by nanoindentation. Surf. Coat. Tech. 203:1609–1617.
Chen, X. and S. S. Mao (2007) Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 107:2891–2959.
Chevali, V. S., D. R. Dean, and G. M. Janowski (2009) Flexural creep behavior of discontinuous thermoplastic composites: Non-linear viscoelastic modeling and time-temperature-stress superposition. Compos. Part A-Appl. S. 40:870–877.
Chiang, C. L. and C. C. M. Ma (2004) Synthesis, characterization, thermal properties and flame retardance of novel phenolic resin/silica nanocomposites. Polym. Degrad. Stabil. 95:2255–2259.
Damartzis, T. H., D. Vamvuka, S. Sfakiotakis, and A. Zabaniotou (2011) Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA). Bioresource Technol. 102:6230–6238.
Daood, S. S., S. Munir, W. Nimmo, and B. M. Gibbs (2010) Char oxidation study of sugar cane bagasse, cotton stalk and Pakistani coal under 1% and 3% oxygen concentrations. Biomass Bioenerg. 34:263–271.
Di Blasi, C. (2002) Modeling intra- and extra-particle processes of wood fast pyrolysis. AIChe J. 48:2386–2397.
Diebold, J. P. (1994) A unified, global-model for the pyrolysis of cellulose. Biomass Bioenerg. 7:75–85.
Doyle, C. D. (1961) Kinetic analysis of thermogravimetric data. J. Appl. Polym. Sci. 5:285–292.
Fengel, D. and G. Wegener (1989) Wood: Chemistry, Ultrastructure, Reaction. Walter de Gruyter, Berlin. 613 pp.
Ferry, J. D. (1980) Viscoelastic properties of polymers. John Wiley & Sons, New York. 641 pp.
Findley, W. N., J. S. Lai, and K. Onaran (1976) Creep and Relaxation of Nonlinear Viscoelastic Materials with an Introduction to Linear Viscoelasticity, Dover Publications, New York.
Font, R. and P. T. Williams (1995) Pyrolysis of biomass with constant heating rate: influence of the operating conditions. Thermochim. Acta 250:109–123.
Fujishima, A., X. T. Zhang, and D. A. Tryk (2008) TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63:515–582.
Gai, C., Y. Dong, and T. Zhang (2013) The kinetic analysis of the pyrolysis of agricultural residue under non-isothermal conditions. Bioresource Technol. 127:298–305.
Ghosh, S. C., H. Militz, and C. Mai (2009) The efficacy of commercial silicones against blue stain and mould fungi in wood. Eur. J. Wood Wood Prod. 67:159–167.
Giannopoulos, I. P. and C. J. Burgoyne (2011) Predication of the long-term bahaviour of high modulus fibers using the stepped isostress method (SSM). J. Mater. Sci. 46:7660–7671.
Giannopoulos, I. P. and C. J. Burgoyne (2012) Accelerated and real-time creep and creep-rupture results for aramid fibers. J. Appl. Polym. Sci. 125:3856–3870.
Goertzen, W. K. and M. R. Kessler (2006) Creep behavior of carbon fiber/epoxy matrix composites. Mat. Sci. Eng. A-Struct. 421(1–2):217–225.
Gr?nli, M., M. J. Antal, and G. Varhegyi (1999) A round-robin study of cellulose pyrolysis kinetics by thermogravimetry. Ind. Eng. Chem. Res. 38:2238–2244.
Hadid, M., B. Guerira, M. Bahri, and A. Zouani (2014) Assessment of the stepped isostress method in the prediction of long term creep of thermoplastics. Polym. Test. 34:113–119.
Hadid, M., S. Rechak, and A. Tati (2004) Long-term bending creep behavior prediction of injection molded composite using stress–time correspondence principle. Mat. Sci. Eng. A-Struct. 385:54–58.
Hübert, T., B. Unger, and M. Bücker (2010) Sol-gel derived TiO2 wood composites. J. Sol-Gel Sci. Technol. 53:384–389.
Hung, K. C., T. L. Wu, Y. L. Chen, and J. H. Wu (2016) Assessing the effect of wood acetylation on mechanical properties and extended creep behavior of wood/recycled-polypropylene composites. Constr. Build. Mater. 108:139–145.
Jazouli, S., W. Luo, F. Bremand, and T. Vu-Khanh (2005) Application of time-stress equivalence to nonlinear creep of polycarbonate. Polym. Test. 24:463–467.
Joseph, R., S. Zhang, and W. T. Ford (1996) Structure and dynamics of a colloidal silica-poly(methyl methacrylate) composite by 13C and 29Si MAS NMR spectroscopy. Macromolecules 29:1305–1312.
Kartal, S. N., T. Yoshimura, and Y. Imamura (2004) Decay and termite resistance of boron-treated and chemically modified wood by in situ co-polymerization of allyl glycidyl ether (AGE) with methyl methacrylate (MMA). Int. Biodeterior. Biodegrad. 53(2):111–117.
Kartal, S. N., T. Yoshimura, and Y. Imamura (2009) Modification of wood with Si compounds to limit boron leaching from treated wood and to increase termite and decay resistance. Int. Biodeterior. Biodegrad. 63:187–190.
Kim, S. S., J. Kim, Y. H. Park, and Y. K. Park (2010) Pyrolysis kinetics and decomposition characteristics of pine trees. Bioresource Technol. 121:9797–9802.
Kissinger, H. E. (1957) Reaction kinetics in differential thermal analysis. Anal. Chem. 29:1702–1706.
Leademan, H. (1943) Elastic and creep properties of filamentous materials and other high polymers. The Textile Foundation Inc, Washington D.C.
Li, Y. J., L. X. Du, C. Kai, R. H. Huang, and Q. L. Wu (2013) Bamboo and high density polyethylene composite with heat-treated bamboo fiber: thermal decomposition properties. Bioresources 8(1):900–912.
Lin, C. H., T. H. Yang, W. J. Lai, and F. C. Lin (2013) Anisotropic physical and mechanical performance of PF-impregnated oriented strand board. Bioresources 8(2):1933–1945.
Luo, W., C. Wang, and R. Zhao (2007) Application of time-temperature-stress superposition principle to nonlinear creep of poly(methyl methacrylate). Key Eng. Mater. 340:1091–1096.
Manya, J. J., E. Velo, and L. Puigjaner (2003) Kinetics of biomass pyrolysis: a reformulated three-parallel-reactions model. Ind. Eng. Chem. Res. 42:434–441.
Martínez, Á. T., M. S. Francisco, J. Ruiz-Dueñas, P. Ferreira, S. Camarero, F. Guillén, M. J. Martínez, A. Gutiérrez, and J. C. del Río (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int. Microbiol. 8:195–204.
Meszaros, E., G. Varhegyi, and E. Jakab (2004) Thermogravimetric and reaction kinetic analysis of biomass samples from an energy plantation. Energy Fuels 18:497–507.
Milosavljevic, I. and E. M. Suuberg (1995) Cellulose thermal-decomposition kinetics– global mass-loss kinetics. Ind. Eng. Chem. Res. 34:1081–1091.
Miyafuji, H. and S. Saka (1997) Fire-resisting properties in several TiO2 wood-inorganic composites and their topochemistry. Wood Sci Technol. 31:449–455.
Miyafuji, H. and S. Saka (2001) Na2O-SiO2 wood-inorganic composites prepared by the sol-gel process and their fire-resistant properties. J. Wood Sci. 47:483–489.
Miyafuji, H., H. Kokaji, and S. Saka (2004) Photostable wood-inorganic composites prepared by the sol-gel process with UV absorbent. J. Wood Sci. 50:130–135.
Nada, A. M. A. and M. L. Hassan (2000) Thermal behavior of cellulose and some cellulose derivatives. Polym. Degrad. Stabil. 67:111–115.
Nuñez, A. J., N. E. Marcovich, and M. I. Aranguren (2004) Analysis of the creep behavior of polypropylene-woodflour composites. Polym. Eng. Sci. 44:1593–1603.
Orfao, J. J. M., F. J. A. Antunes, and J. L. Figueiredo (1999) Pyrolysis kinetics of lignocellulosic meterals–three independent reactions model. Fuel 78:349–358.
Ounas, A., A. Aboulkas, K. Elharfi, A. Bacaoui, and A. Yaacoubi (2011) Pyrolysis of olive residue and sugar cane bagasse: non-isothermal thermogravimetric kinetic analysis. Bioresource Technol. 102:11234–11238.
Plazek, D. J. (1965) Temperature dependence of the viscoelastic behavior of polystyrene. J. Phys. Chem. 69:3480–3487.
Poletto, M., A. J. Zattera, and R. M. C. Santana (2012) Thermal decomposition of wood: kinetics and degradation mechanisms. Bioresource Technol. 126:7–12.
Qaiser, A. A. and J. Price (2011) Estimation of long-term creep behavior of polycarbonate by stress-time superposition and effects of physical aging. Mech. Time-depend. Mat. 15:41–50.
Qin, C. and W. Zang (2012) Antibacterial properties of titanium alkoxide/poplar wood composite prepared by sol-gel process. Mater. Lett. 89:101–103.
Saka, S and T. Ueno (1997) Several SiO2 wood-inorganic composites and their fire-resisting properties. Wood Sci. Technol. 31:457–466.
Saka, S. and Y. Yakake (1993) Wood-inorganic composites prepared by sol-gel process III. Chemically-modified wood-inorganic composites. Mokuzai Gakkaishi 39:308–314.
Sakka, S. and H. Miyafuji (2005) Application of sol-gel processing to wood-inorganic composites pp. 577–595. In S. Sakka ed. Handbook of sol-gel science and technology: processing, characterization and applications. Volume III: Applications of sol-gel technology. Kluwer Academic Publishers, Boston. 791 pp.
Sánchez-Jiménez, P. E., L. A. Pérez-Maqueda, A. Perejón, and J. M. Criado (2010) A new model for the kinetic analysis of thermal degradation of polymers driven by randon scission. Polym. Degrad. Stabil. 95:733–739.
Sanchez-Silva, L., D. López-González, J. Villaseñor, P. Sánchez, and J. L. Valverde (2012) Thermogravimetic-mass spectromrtric analysis of lignocellulosic and marine biomass pyrolysis. Bioresource Technol. 109:163–172.
Shuping, Z., W. Yulong, Y. Mingde, L. Chun, and T. Jummao (2010) Pyrolysis characteristics and kintics of the marine microalgae Dunaliella tertiolecta using thermogravimetic analyzer. Bioresource Technol. 101:359–365.
Starink, M. J. (1996) A new method for the derivation of activation energies from experiments performed at constant heating rate. Thermochim. Acta 288:97–104.
Starkova, O., J. Yang, and Z. Zhang (2007) Application of time-stress superposition to nonlinear creep of polyamide 66 filled with nanoparticles of various sizes. Compos. Sci. Technol. 67:2691–2698.
Sun, Q. F., Y. Lu, H. M. Zhang, H. J. Zhao, H. P. Yu, J. S. Xu, Y. C. Fu, D. J. Yang, and Y. X. Liu (2012) Hydrothermal fabrication of rutile TiO2 submicrospheres on wood surface: An efficient method to prepare UV-protective wood. Mater. Chem. Phys. 133:253–258.
Tajvidi, M., R. H. Falk, and J. C. Hermanson (2005) Time-temperature superposition principle applied to a kenaf fiber/high density polyethylene composites. J. Appl. Polym. Sci. 97:1995–2004.
Tajvidi, M. and L. C. Simon (2015) High-temperature creep behavior of wheat straw isotactic/impact-modified polypropylene composites. J. Thermoplast. Compos. Mater. 28:1406–1422.
Tamrakar, S., R. A. Lopez-Anido, A. Kiziltas, and D. J. Gardner (2011) Time and temperature dependent response of a wood-polyproplyene composite. Compos. Part A-Appl. S. 42:834–842.
Tanks, J. D., K. E. Rader, and S. R. Sharp (2016) Accelerated creep testing of CFRP with the stepped isostress method. pp. 397–403. In: C. Ralph, M. Silberstein, P. R. Thakre, and R. Singh eds. Mechanics of composite and mulit-functional materials. Volume 7: Conference proceedings of the society for experimental mechanics seies. Springer International Publishing, Cham. 468 pp.
Thornton, J. S., S. R. Allen, R. W. Thomas, and D. Sandri (1998a) The stepped isothermal method for TTS and its application to creep data on polyester yarn. In: Proc., The Sixth International Conference on Geosynthetics, Atlanta, USA. pp. 699–706.
Thornton, J. S., J. N. Paulson, and D. Sandri (1998b) Conventional and stepped isothermal methods for characterizing long term creep strength of polyester geogrids creep of product. In: Proc., The Sixth International Conference on Geosynthetics. Atlanta, USA. pp. 691–698.
Tissaoui, J. (1996) Effects of long-term creep on the integrity of modern wood structures. Doctor Thesis, Virginia Polytechnic Institute and State University. 121 pp.
Tobolsky, A. V. and R. D. Andrews (1945) Systems manifesting superposed elastic and viscous behavior. J. Chem. Phys. 13:3–27.
Tshabalala, M. A. and L. P. Sung (2007) Wood surface modification by in-situ sol-gel deposition of hybrid inorganic-organic thin films. J. Coat. Technol. Res. 4:483–490.
Tshabalala, M. A., P. Kingshott, M. R. Vanlandingham, and D. Plackett (2003) Surface chemistry and moisture sorption properties of wood coated with multifunctional alkoxysilanes by sol-gel process. J Appl. Polym. Sci. 88:2828–2841.
Tshabalala, M. A., R. Libert, and C. M. Schaller (2011) Photostability and moisture uptake properties of wood veneer coated with a combination of thin sol-gel films and light stabilizers. Holzforschung 65:215–220.
Unger, B., M. Bücker, S. Reinsch, and T. Hübert (2013) Chemical aspects of wood modification by sol-gel-derived silica. Wood Sci. Technol. 47:83–104.
Vuthaluru, H. B. (2004) Investigations into the pyrolytic behavior of coal/biomass blends using thermogravimetric analysis. Biores. Technol. 92:187–195.
Wang, S., C. Liu, M. Zang, J. Li, and C. Wang (2011a) Fabrication of superhydrophobic wood surface by a sol-gel process. Appl. Surf. Sci. 258:806–810.
Wang, S., R. Mahlberg, S. Tämsä, J. Nikkola, J. Mannila, A.-C. Ritschkoff, and J. Peltonen (2011b) Surface properties and moisture behaviour of pine and heat-treated spruce modified with alkoxysilanes by sol-gel process. Prog. Org. Coat. 71:274–282.
Wang, X., J. Liu, and Y. Chai (2012) Thermal, mechanical, and moisture absorption properties of wood-TiO2 composites prepared by a sol-gel process. Bioresources 7:893–901.
Xu, Y., Q. Wu, Y. Lei, and F. Yao (2010) Creep behavior of bagasse fiber reinforced polymer composites. Bioresource Technol. 101:3280–3286.
Xu, Y., S. Y. Lee, and Q. Wu (2011) Creep analysis of bamboo high-density polyethylene composites: effect of interfacial treatment and fiber loading level. Polym. Composite. 32:692–699.
Yang, C. N., K. C. Hung, T. L. Wu, T. C. Yang , Y. L. Chen, and J. H. Wu (2014) Comparisons and characteristics of slicewood acetylation with acetic anhydride by liquid phase, microwave, and vapor phase reaction. Bioresources 9:6463–6475.
Yang, T. C., T. L. Wu, K. C. Hung, Y. L. Chen, and J. H. Wu (2015) Mechanical properties and extended creep behavior of bamboo fiber reinforced recycled poly(lactic acid) composites using the time–temperature superposition principle. Constr. Build. Mater. 93:558–563.
Yang, T. H., S. Y. Wang, M. J. Tsai, and C. Y. Lin (2009a) Temperature distribution within glued laminated timber during a standard fire exposure test. Mater. Design 30:518–525.
Yang, T. H., S. Y. Wang, M. J. Tsai, and C. Y. Lin (2009b) The charring depth and charring rate of glued laminated timber after a standard fire exposure test. Build. Environ. 44(2):231–236.
Yang, T. H., S. Y. Wang, M. J. Tsai, C. Y. Lin, and Y. J. Chuang (2009c) Effect of fire exposure on the mechanical properties of glued laminated timber. Mater. Design 30:698–703.
Yao, F., Q. Wu, Y. Lei, W. Guo, and Y. Xu (2008) Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym. Degrad. Stabil. 93:90–98.
Yeo, S. S. and Y. G. Hsuan (2009) Predicting the creep behavior of high density polyethylene geogrid using stepped iso thermal method. In: J. W. Martin, R. A. Ryntz, J. Chin and R. A. Dickie eds. Service life prediction of polymeric materials. Springer, New York. pp 205–218.
Yeo, S. S. and Y. G. Hsuan (2010) Evaluation of creep behavior of high density polyethylene and polyethylene-terephthalate geogrids. Geotext. Geomembr. 28:409–421.
Zornberg, J. G., B. R. Byler, and J. W. Kundsen (2004) Creep of geotextiles using time-temperature superposition methods. J. Geotech. Geoenviron. Eng. 130:1158–1168.