|
參考文獻 Agrawal R., Satlewal A., Verma A.K. (2013) Development of a beta-glucosidase hyperproducing mutant by combined chemical and UV mutagenesis. 3 Biotech 3:381-388. Akamatsu T., Taguchi H. (2012) Plasmid transformation of competent Bacillus subtilis by lysed protoplast DNA. J Biosci Bioeng 114:138-43. Alavo T.B.C., Boukari S., Fayalo D.G., Bochow H., Tejada Moral M. (2015) Cotton fertilization using PGPR Bacillus amyloliquefaciens FZB42 and compost: Impact on insect density and cotton yield in North Benin, West Africa. Cogent Food & Agriculture 1. Anagnostopoulos C., Spizizen J. (1961) Requirements for transformation in Bacillus subtilis. J Bacteriol 81:741. Besson F., Michel G. (1987) Isolation and characterization of new iturins: iturin D and iturin E. J Antibiot 40:437-442. Branda S.S., Gonzalez-Pastor J.E., Ben-Yehuda S., Losick R., Kolter R. (2001) Fruiting body formation by Bacillus subtilis. PNAS 98:11621-6. Cawoy H., Bettiol W., Fickers P., Ongena M. (2011) Bacillus-based biological control of plant diseases. Pesticides in the modern world—pesticides use and management. InTech, Rijeka:273-302. Chang S., Cohen S.N. (1979) High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA.MGG 168:111-115. Chang Y. L. (2011) Characterization of tomato endophytic Bacillus cereus and its effects on bacterial wilt disease. Master thesis. National Chung Hsing University, Taichung. Chen K. T.(2000) The characteristics of Pseudomonas syringae from carambola. Master thesis. National Chung Hsing University, Taichung. Chen Y., Yan F., Chai Y., Liu H., Kolter R., Losick R., Guo J.H. (2013) Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environ Microbiol 15:848-64. Chowdhury S.P., Hartmann A., Gao X., Borriss R. (2015) Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 - a review. Front Microbiol 6:780. Chung K.M., Hsu H.H., Govindan S., Chang B.Y. (2004) Transcription regulation of ezrA and its effect on cell division of Bacillus subtilis. J Bacteriol 186:5926-32. Dong H., Zhang D. (2014) Current development in genetic engineering strategies of Bacillus species. Microb Cell Fact 13:63. Dong Y.H., Xu J.L., Li X.Z., Zhang L.H. (2000) AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. PNAS 97:3526-31. Duitman E.H., Wyczawski D., Boven L.G., Venema G., Kuipers O.P., Hamoen L.W. (2007) Novel methods for genetic transformation of natural Bacillus subtilis isolates used to study the regulation of the mycosubtilin and surfactin synthetases. Appl Environ Microbiol 73:3490-6. Dunn A.K., Handelsman J. (1999) A vector for promoter trapping in Bacillus cereus. Gene 226:297-305. El Husseini M.M., Bochow H., Junge H. (2012) The biofertilising effect of seed dressing with PGPR Bacillus amyloliquefaciensFZB 42 combined with two levels of mineral fertilising in African cotton production. Arch Phytopathol Pfl 45:2261-2271. Fedorec A.J. (2014) Mechanisms for Plasmid Maintenance. CoMPLEX, University College London Fodor K., Demiri E., Alföldi L. (1978) Polyethylene glycol-induced fusion of heat-inactivated and living protoplasts of Bacillus megaterium. J Bacteriol 135:68-70. Fortini B.K., Pokharel S., Polaczek P., Balakrishnan L., Bambara R.A., Campbell J.L. (2011) Characterization of the endonuclease and ATP-dependent flap endo/exonuclease of Dna2. J Biol Chem 286:23763-70. Gao C., Xue Y., Ma Y. (2011) Protoplast transformation of recalcitrant alkaliphilic Bacillus sp. with methylated plasmid DNA and a developed hard agar regeneration medium. PloS One 6:e28148. Ghazaei C. (2016) Comparison Survey of Receiving the Plasmid 253pil by Bacillus cereus atcc1098 and Bacillus Cereus ATCC14579 By Using of Electroporation and Thermal Shock Method. J. Asian 6:169-173. Han J.H., Shim H., Shin J.H., Kim K.S. (2015) Antagonistic Activities of Bacillus spp. Strains Isolated from Tidal Flat Sediment Towards Anthracnose Pathogens Colletotrichum acutatum and C. gloeosporioides in South Korea. Plant Pathol J 31:165-75. Harwood C.R., Cranenburgh R. (2008) Bacillus protein secretion: an unfolding story. Trends Microbiol 16:73-79. Hsieh F.C., Li M.C., Lin T.C., Kao S.S. (2004) Rapid detection and characterization of surfactin-producing Bacillus subtilis and closely related species based on PCR. Curr Microbiol 49:186-91. Hsieh F.C., Lin T.C., Meng M., Kao S.S. (2008) Comparing methods for identifying Bacillus strains capable of producing the antifungal lipopeptide iturin A. Curr Microbiol 56:1-5. Hsu, Y. T. (2014) Factors affecting occurrence of oilseed rape clubroot caused by Plasmodiophora brassicae. Master thesis. National Chung Hsing University, Taichung. Huang T.P., Tzeng D.D., Wong A.C., Chen C.H., Lu K.M., Lee Y.H., Huang W.D., Hwang B.F., Tzeng K.C. (2012) DNA polymorphisms and biocontrol of Bacillus antagonistic to citrus bacterial canker with indication of the interference of phyllosphere biofilms. PLoS One 7:e42124. Idris E.E., Bochow H., Ross H., Borriss R. (2004) Use of Bacillus subtilis as biocontrol agent. VI. Phytohormonelike action of culture filtrates prepared from plant growth-promoting Bacillus amyloliquefaciens FZB24, FZB42, FZB45 and Bacillus subtilis FZB37/Nutzung von Bacillus subtilis als Mittel für den biologischen Pflanzenschutz. VI. Phytohormonartige Wirkung von Kulturfiltraten von pflanzenwachstumsfördernden Bacillus amyloliquefaciens FZB24, FZB42, FZB45 und Bacillus subtilis FZB37. J Plant Dis Protect:583-597. Ishiwa H., Shibahara H. (1985) New shuttle vectors for Escherichia coil and Bacillus subtilis. Jpn J Genet 60:235-243. Ishiwa H., Tsuchida N. (1984) New shuttle vectors for Escherichia coli and Bacillus subtilis. I. Construction and characterization of plasmid pHY460 with twelve unique cloning sites. Gene 32:129-134. Islam T.M., Rahman M., Pandey P., Jha C.K., Aeron A. (2017) Bacilli and Agrobiotechnology Springer Johnston C., Martin B., Fichant G., Polard P., Claverys J.P. (2014) Bacterial transformation: distribution, shared mechanisms and divergent control. Nat Rev Microbiol 12:181-96. Kearns D.B. (2010) A field guide to bacterial swarming motility. Nat Rev Microbiol 8:634-44. Kimura S., Takenouchi M., Hatanaka M., Seto H., Kouroku Y., Sakaguchi K. (1998) An ATP-inhibited endonuclease from cauliflower (Brassica oleracea var. botrytis) inflorescence: purification and characterization. Planta 206:641-648. Le Breton Y., Mohapatra N.P., Haldenwang W. (2006) In vivo random mutagenesis of Bacillus subtilis by use of TnYLB-1, a mariner-based transposon. Appl Environ Microbiol 72:327-333. Leifert C., Li H., Chidburee S., Hampson S., Workman S., Sigee D., Epton H. A., Harbour A. (1995) Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumilus CL45. J Appl Bacteriol. 78(2):97-108. Liang Z., Li G., An T. (2017) Purifying, cloning and characterizing a novel dehalogenase from Bacillus sp. GZT to enhance the biodegradation of 2,4,6-tribromophenol in water. Environ Pollut 225:104-111. Lin H. F. (2001) Identification, Infection Process and Telemorph Formation of the Pathogen of Chinese Amaranth Leaf Spot in Taiwan. Master thesis. National Chung Hsing University, Taichung. Lin S. S. (2015) Application of Bacillus amyloliquefaciens PMB01 to control bacterial leaf spot caused by Xanthomonas euvesicatoria on sweet pepper. Master thesis. National Pingtung University of Science and Technology, Pingtung. Louden B.C., Haarmann D., Lynne A.M. (2011) Use of blue agar CAS assay for siderophore detection. J Microbiol Biol Educ 12:51-3. Makoto S., Chieko I., Tokujiro A.(1983) Protoplast Formation of Bacillus colistinus. Agricultural and Biological Chemistry. Agricultural and 47:4, 877-879 Chemistry McRobbie A.M., Meyer B., Rouillon C., Petrovic-Stojanovska B., Liu H., White M.F. (2012) Staphylococcus aureus DinG, a helicase that has evolved into a nuclease. Biochem J 442:77-84. Mielich-Suss B., Lopez D. (2015) Molecular mechanisms involved in Bacillus subtilis biofilm formation. Environ Microbiol 17:555-65. Miethke M., Marahiel M.A. (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71:413-51. Muñoz-López M., García-Pérez J. L. (2010) DNA Transposons: Nature and Applications in Genomics. Curr Genomics. 11: 115–128. Murray N. E., (2000) Type I restriction systems: sophisticated molecular machines (a legacy of Bertani and Weigle). Microbiol.64:412–434. Nadeem M., Syed Q., Liaquat A., Baig S., and Kashmiri A. (2010) Study on biosynthesis of alkaline protease by mutagenized culture of Bacillus pumilus. Pak J Food Sci, 20: 1-4. Naerdal I., Netzer R., Irla M., Krog A., Heggeset T.M., Wendisch V.F., Brautaset T. (2017) l-lysine production by Bacillus methanolicus: Genome-based mutational analysis and l-lysine secretion engineering. J Biotechnol 244:25-33. Narasimhan A., Suresh S., Bist D., Shivakumar S. (2013) Enhancement of mycolytic activity of an antagonistic Bacillus subtilis through ethyl methane sulfonate (EMS) mutagenesis. Turk J Biol 37:323-328. Pal K.K., McSpadden Gardener B. (2006) Biological Control of Plant Pathogens. The Plant Health Instructor. Perez-Miranda S., Cabirol N., George-Tellez R., Zamudio-Rivera L.S., Fernandez F.J. (2007) O-CAS, a fast and universal method for siderophore detection. J Microbiol Methods 70:127-31. Peypoux F., Besson F., Michel G., Delcambe L. (1979) Preparation and antibacterial activity upon Micrococcus luteus of derivatives of iturin A, mycosubtilin and bacillomycin L, antibiotics from Bacillus subtilis. J Antibiot 32:136-140. Peypoux F., Bonmatin J., Wallach J. (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51:553-563. Pohl S., Harwood C.R. (2010) Heterologous protein secretion by Bacillus species: From the cradle to the grave. Adv Appl Microbiol 73:1-25. Promchai R., Promdonkoy B., Tanapongpipat S., Visessanguan W., Eurwilaichitr L., Luxananil P. (2016) A novel salt-inducible vector for efficient expression and secretion of heterologous proteins in Bacillus subtilis. J Biotechnol 222:86-93. Qing Z., He X., Qing T., Wang K., Shi H., He D., Zou Z., Yan L., Xu F., Ye X., Mao Z. (2013) Poly(thymine)-templated fluorescent copper nanoparticles for ultrasensitive label-free nuclease assay and its inhibitors screening. Anal Chem 85:12138-43. Rattanachaikunsopon P., Phumkhachorn P. (2009) Glass bead transformation method for gram-positive bacteria. Braz J Microbiol 40:923-926. Raza W., Ling N., Yang L., Huang Q., Shen Q. (2016) Response of tomato wilt pathogen Ralstonia solanacearum to the volatile organic compounds produced by a biocontrol strain Bacillus amyloliquefaciens SQR-9. Sci Rep 6:24856. Romero D. (2013) Bacterial deterants of the social behavior of Bacillus subtilis. Res Microbiol 164:788-798. Rosenberg N.L. (1987) ATP as an alternative inhibitor of bacterial and endogenous nucleases and its effect on native chromatin compaction. Mol Cell Biochem 76:113-121. Sadaie Y., Kada T. (1983) Formation of competent Bacillus subtilis cells. J Bacteriol 153:813-821. Sambrook J. (2001) Molecular Cloning. Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory Press. Schallmey M., Singh A., Ward O.P. (2004) Developments in the use of Bacillus species for industrial production. Can J Microbiol 50:1-17. Schindler C.A., Schuhardt V. (1964) Lysostaphin: a new bacteriolytic agent for the Staphylococcus. PNAS 51:414-421. Schumann W. (2007) Production of recombinant proteins in Bacillus subtilis. Adv Appl Microbiol 62:137-189. Schaad, N. W., Jones, J.B., Chun, W. (2001) Laboratory guide for identification of plant pathogenic bacteria. 3 ed. American Phytopathological Society St Paul, USA Shank E.A., Kolter R. (2011) Extracellular signaling and multicellularity in Bacillus subtilis. Curr Opin Microbiol 14:741-7. Shimada A., Kawasoe Y., Hata Y., Takahashi T.S., Masui R., Kuramitsu S., Fukui K. (2013) MutS stimulates the endonuclease activity of MutL in an ATP-hydrolysis-dependent manner. FEBS J 280:3467-79. Short F.L., Monson R.E., Salmond G.P. (2015) A Type III protein-RNA toxin-antitoxin system from Bacillus thuringiensis promotes plasmid retention during spore development. RNA Biol 12:933-7. Singh P.K., Ramachandran G., Ramos-Ruiz R., Peiro-Pastor R., Abia D., Wu L.J., Meijer W.J. (2013) Mobility of the native Bacillus subtilis conjugative plasmid pLS20 is regulated by intercellular signaling. PLoS Genet 9:e1003892. Singhvi M., Joshi D., Gaikaiwari S., Gokhale D.V. (2010) Protoplast formation and regeneration in Lactobacillus delbrueckii. Indian J Microbiol 50:97-100. Stratford J.P., Woodley M.A., Park S. (2013) Variation in the morphology of bacillus mycoides due to applied force and substrate structure. PloS One 8:e81549. Sullivan M.A., Yasbin R.E., Young F.E. (1984) New shuttle vectors for Bacillus subtilis and Escherichia coli which allow rapid detection of inserted fragments. Gene 29:21-26. Tahir H.A., Gu Q., Wu H., Niu Y., Huo R., Gao X. (2017) Bacillus volatiles adversely affect the physiology and ultra-structure of Ralstonia solanacearum and induce systemic resistance in tobacco against bacterial wilt. Sci Rep 7:40481. Temeter K.B. (1987) Comparison of methods for protoplast formation in Bacillus thuringiensis. Microbiology 133:503-506. Toledano E., Ogryzko V., Danchin A., Ladant D., Mechold U. (2012) 3'-5' phosphoadenosine phosphate is an inhibitor of PARP-1 and a potential mediator of the lithium-dependent inhibition of PARP-1 in vivo. Biochem J 443:485-90. Unterholzner S.J., Poppenberger B., Rozhon W. (2013) Toxin-antitoxin systems: Biology, identification, and application. Mob Genet Elements 3:e26219. Vanittanakom N., Loeffler w., Koch U., Jung G. (1986) Fengycin-a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J Antibiot 39:888-901. Vehmaanperä J. (2000) Bacillus amyloliquefaciens—Production Host for Industrial Enzymes, Electrotransformation of Bacteria, Springer. pp. 119-123. Vlamakis H., Chai Y., Beauregard P., Losick R., Kolter R. (2013) Sticking together: building a biofilm the Bacillus subtilis way. Nat Rev Microbiol 11:157-68. Wang H., Yang L., Ping Y., Bai Y., Luo H., Huang H., Yao B. (2016) Engineering of a Bacillus amyloliquefaciens Strain with High Neutral Protease Producing Capacity and Optimization of Its Fermentation Conditions. PLoS One. 11(1): e0146373. William A. S., Joseph J. L. (1972) Hydrolysis of casein: a differential aid for the indentification of Serratia marcescens. J Clin Pathol. 25: 1083–1085. Wilson G.G., Murray N.E. (1991) Restriction and modification systems. Annual review of genetics 25:585-627. Wong S. L. (1995) Advances in the use of Bacillus subtilis for the expression and secretion of heterologous proteins. Curr Opin Biotechnol 6:517-522. Wu J.A., Kusuma C., Mond J.J., Kokai-Kun J.F. (2003) Lysostaphin disrupts Staphylococcus aureus and Staphylococcus epidermidis biofilms on artificial surfaces. Antimicrob Agents Chemother. 47:3407-14. Wu L., Wu H., Chen L., Xie S., Zang H., Borriss R., Gao X. (2014) Bacilysin from Bacillus amyloliquefaciens FZB42 has specific bactericidal activity against harmful algal bloom species. Appl Environ Microb 80:7512-7520. Xia Y., Chen W., Zhao J., Tian F., Zhang H., Ding X. (2007) Construction of a new food-grade expression system for Bacillus subtilis based on theta replication plasmids and auxotrophic complementation. Appl Microbiol Biot 76:643-650. Xue G.-P., Johnson J.S., Dalrymple B.P. (1999) High osmolarity improves the electro-transformation efficiency of the gram-positive bacteria Bacillus subtilis and Bacillus licheniformis. J Microbiol Meth 34:183-191. Yan X., Yu H.J., Hong Q., Li S.P. (2008) Cre/lox system and PCR-based genome engineering in Bacillus subtilis. Appl Environ Microbiol 74:5556-62. Yang S., Kang Z., Cao W., Du G., Chen J. (2016) Construction of a novel, stable, food-grade expression system by engineering the endogenous toxin-antitoxin system in Bacillus subtilis. J Biotechnol 219:40-7. Youngman P.J., Perkins J.B., Losick R. (1983) Genetic transposition and insertional mutagenesis in Bacillus subtilis with Streptococcus faecalis transposon Tn917. PNAS 80:2305-2309. Zhang G.Q., Bao P., Zhang Y., Deng A.H., Chen N., Wen T.Y. (2011) Enhancing electro-transformation competency of recalcitrant Bacillus amyloliquefaciens by combining cell-wall weakening and cell-membrane fluidity disturbing. Anal Biochem 409:130-7. Zhang K., Duan X., Wu J. (2016) Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system. Sci Rep 6:27943. Zhang X.Z., Zhang Y. (2011) Simple, fast and high-efficiency transformation system for directed evolution of cellulase in Bacillus subtilis. Microb Biotechnol 4:98-105.
|