跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/07 22:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邵宇恆
研究生(外文):Yu-Heng Shao
論文名稱:改良式芽孢桿菌屬細菌轉型及再生效率提升技術
論文名稱(外文):An improved method for efficient transformation and regeneration of diverse Bacillus species
指導教授:鄧文玲鄧文玲引用關係
指導教授(外文):Wen-Ling Deng
口試委員:黃姿碧林宜賢
口試委員(外文):Tzu-Pi HuangYi-Hsien Lin
口試日期:2017-07-27
學位類別:碩士
校院名稱:國立中興大學
系所名稱:植物病理學系所
學門:農業科學學門
學類:植物保護學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:57
中文關鍵詞:芽孢桿菌屬細菌PEG 原生質體轉型法溶菌酶
外文關鍵詞:BacillusPEG-mediated protoplast transformationLysostaphin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:526
  • 評分評分:
  • 下載下載:54
  • 收藏至我的研究室書目清單書目收藏:2
芽孢桿菌屬菌株為革蘭氏陽性菌,可在環境逆境下產生內生孢子而存活,此屬細菌目前有廣泛的農業及與工業應用價值。由前人研究得知具有生物防治能力的芽孢桿菌屬菌株在系統分類學上多分屬於 Bacillus subtilis group,然而只有少數的馴化菌株可進行遺傳分析。為能有效分析野生型芽孢桿菌屬細菌功能性基因體,提高轉型效率,本研究使用三株已獲得全基因體序列之生物防治菌株 ( Bacillus mycoides BM02、Bacillus pumilus PMB102、及 Bacillus amyloliquefaciens PMB01) 為實驗材料,改良Chang 等人於 1979 年發表之 PEG 原生質體轉型法 (protoplast transformation) 進行逢機基因突變。在優化的原生質體轉型法中,細菌以終濃度 2 μg/ml 之 lysozyme 與 lysostaphin 溶菌酶混合液處理 2 至 3 小時可有效提高原生質體形成率,後續以 PEG6000 進行質體 DNA轉型時,額外添加終濃度為 3.3 mM 過濾滅菌之 ATP,再將轉型菌株培養於含抗生素之DM3固態培養基 [洋菜濃度為 2% (w/v)] 則可提昇轉型及原生質體再生效率。以優化之原生質體轉型法分別將帶有跳躍子 Tn-YLB-1 之 pMarB 質體送入 B. mycoides BM02、B. pumilus PMB102 與 B. amyloliquefaciens PMB01 中,所得之逢機突變菌株庫以 96 孔微孔盤建立快速篩選平台,以測試跳躍子隨機突變效率及穩定性;下一步可製作專一性基因突變菌株,用以分析二次代謝物生合成基因與細菌生物防治能力的相關性。另外,運用優化之轉型法將綠螢光蛋白 (Green fluorescent protein, GFP) 表現質體 pAD43-25 送入 B. mycoides BM02 及 B. pumilus PMB102 中,可於螢光顯微鏡下觀察表現綠色螢光之轉型株,後續可用於原位 (in situ) 觀察細菌在植物根系分布情形。結果顯示,利用優化之原生質體轉型法,明顯提升田間分離之三株芽孢桿菌屬細菌轉型效率,並說明此轉型方法可將候選基因轉型至遺傳特性不明之芽孢桿菌屬細菌內表現。
Genetic analyses are the key to unraveling gene functions in microorganisms, particularly in the post-genomics era when the draft sequence of a microbial genome can be done in a few days. Forward genetics employing random and specific mutations are commonly used to characterize gene functions, e.g. the genes associated with the biological control activity in Bacillus spp. Nevertheless, genetic manipulations in the field-isolated Bacillus strains are challenging. In this research, we aim to develop a feasible genetic protocol to study the functions of biocontrol-associated genes in 3 biocontrol-active Bacillus strains, namely B. mycoides BM02, B. pumilus PMB102, and B. amyloliquefaciens PMB01. The first step in the protocol is to set up a stable protoplast transformation method. Based on the standard PEG protoplast transformation method, we optimized protoplast generation by treating bacteria with 2 peptidoglycan degrading enzymes— lysostaphin (2 μg/ml) and lysozyme (2 μg/ml)—for 2 to 3 hours, followed by PEG-mediated protoplast transformation with tester plasmid DNAs and regeneration on 2% (w/v) DM3 agar supplemented with appropriate antibiotics. During the trials, the efficiency of protoplast formation was monitored by microscopic observation and optical absorbance at 660 nm, and the putative transformants were confirmed by colony PCR. Previous studies showed that the treatment of 3.3-mM ATP during protoplast transformation reduces endonuclease activity. Similar results were obtained by treating plasmid DNA with Bacillus whole-cell extract supplemented with ATP. The optimized protoplast transformation protocol was used to generate random mutations by transforming Bacillus spp. with the transposon-harboring plasmid pMarB. For high throughput screening of putative mutants, we employed a microtitration assay system using starch agar (for amylase activity) to test the efficiency of mutation. In addition, the protoplast transformation efficiency was monitored by transforming GFP plasmid pAD43-25 and visualized under an epifluorescent microscope. Our results revealed that this optimized transformation method increases protoplast transformation efficiency in the 3 field-isolated Bacillus strains, indicating it is an applicable protocol for transforming candidate genes to other genetically uncharacterized Bacillus strains.
目次
中文摘要 i
英文摘要 ii
目次 iv
表目次 vi
圖目次 vii
前言 1
材料與方法 6
一、供試菌株、質體及菌體生長環境 6
二、生理生化測試 6
三、質體 DNA 之抽取 7
四、Chang 及 Cohen建立之細菌原生質體轉型方法 8
五、原生質體形成效率試驗 9
六、測定 Bacillus 屬細菌細胞萃取物之限制內切酶 10
七、原生質體再生效率試驗 10
八、優化之細菌原生質體轉型方法 10
九、芽孢桿菌屬細菌染色體 DNA 抽取及濃度測定 11
十、應用優化之轉型方法建立突變菌株庫 12
十一、南方雜合法 13
十二、突變菌株庫之快速篩選 15
十三、應用優化之轉型方法轉殖持續表現綠色螢光蛋白之載體 15
十四、應用優化之轉型方法轉殖表現 AiiA-HA 融合蛋白之載體 15
十五、西方墨點法確認芽孢桿菌屬細菌表現 AiiA-HA 融合蛋白之轉型菌株 15
結果 18
一、生理生化特性 18
二、原生質體形成效率試驗 19
三、測定 Bacillus 屬細菌細胞萃取物之限制內切酶 20
四、原生質體再生效率試驗 20
五、應用優化之轉型方法建立突變菌株庫 21
六、突變菌株庫之快速篩選 21
七、南方雜合法確認突變菌株 22
八、優化原生質體轉型法應用於持續表現綠色螢光蛋白之載體 22
九、西方墨點法確認芽孢桿菌屬細菌表現 AiiA-HA 融合蛋白之轉型菌株 23
討論 24
參考文獻 32
圖表 40
參考文獻
Agrawal R., Satlewal A., Verma A.K. (2013) Development of a beta-glucosidase hyperproducing mutant by combined chemical and UV mutagenesis. 3 Biotech 3:381-388.
Akamatsu T., Taguchi H. (2012) Plasmid transformation of competent Bacillus subtilis by lysed protoplast DNA. J Biosci Bioeng 114:138-43.
Alavo T.B.C., Boukari S., Fayalo D.G., Bochow H., Tejada Moral M. (2015) Cotton fertilization using PGPR Bacillus amyloliquefaciens FZB42 and compost: Impact on insect density and cotton yield in North Benin, West Africa. Cogent Food & Agriculture 1.
Anagnostopoulos C., Spizizen J. (1961) Requirements for transformation in Bacillus subtilis. J Bacteriol 81:741.
Besson F., Michel G. (1987) Isolation and characterization of new iturins: iturin D and iturin E. J Antibiot 40:437-442.
Branda S.S., Gonzalez-Pastor J.E., Ben-Yehuda S., Losick R., Kolter R. (2001) Fruiting body formation by Bacillus subtilis. PNAS 98:11621-6.
Cawoy H., Bettiol W., Fickers P., Ongena M. (2011) Bacillus-based biological control of plant diseases. Pesticides in the modern world—pesticides use and management. InTech, Rijeka:273-302.
Chang S., Cohen S.N. (1979) High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA.MGG 168:111-115.
Chang Y. L. (2011) Characterization of tomato endophytic Bacillus cereus and its effects on bacterial wilt disease. Master thesis. National Chung Hsing University, Taichung.
Chen K. T.(2000) The characteristics of Pseudomonas syringae from carambola. Master thesis. National Chung Hsing University, Taichung.
Chen Y., Yan F., Chai Y., Liu H., Kolter R., Losick R., Guo J.H. (2013) Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environ Microbiol 15:848-64.
Chowdhury S.P., Hartmann A., Gao X., Borriss R. (2015) Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 - a review. Front Microbiol 6:780.
Chung K.M., Hsu H.H., Govindan S., Chang B.Y. (2004) Transcription regulation of ezrA and its effect on cell division of Bacillus subtilis. J Bacteriol 186:5926-32.
Dong H., Zhang D. (2014) Current development in genetic engineering strategies of Bacillus species. Microb Cell Fact 13:63.
Dong Y.H., Xu J.L., Li X.Z., Zhang L.H. (2000) AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. PNAS 97:3526-31.
Duitman E.H., Wyczawski D., Boven L.G., Venema G., Kuipers O.P., Hamoen L.W. (2007) Novel methods for genetic transformation of natural Bacillus subtilis isolates used to study the regulation of the mycosubtilin and surfactin synthetases. Appl Environ Microbiol 73:3490-6.
Dunn A.K., Handelsman J. (1999) A vector for promoter trapping in Bacillus cereus. Gene 226:297-305.
El Husseini M.M., Bochow H., Junge H. (2012) The biofertilising effect of seed dressing with PGPR Bacillus amyloliquefaciensFZB 42 combined with two levels of mineral fertilising in African cotton production. Arch Phytopathol Pfl 45:2261-2271.
Fedorec A.J. (2014) Mechanisms for Plasmid Maintenance. CoMPLEX, University College London
Fodor K., Demiri E., Alföldi L. (1978) Polyethylene glycol-induced fusion of heat-inactivated and living protoplasts of Bacillus megaterium. J Bacteriol 135:68-70.
Fortini B.K., Pokharel S., Polaczek P., Balakrishnan L., Bambara R.A., Campbell J.L. (2011) Characterization of the endonuclease and ATP-dependent flap endo/exonuclease of Dna2. J Biol Chem 286:23763-70.
Gao C., Xue Y., Ma Y. (2011) Protoplast transformation of recalcitrant alkaliphilic Bacillus sp. with methylated plasmid DNA and a developed hard agar regeneration medium. PloS One 6:e28148.
Ghazaei C. (2016) Comparison Survey of Receiving the Plasmid 253pil by Bacillus cereus atcc1098 and Bacillus Cereus ATCC14579 By Using of Electroporation and Thermal Shock Method. J. Asian 6:169-173.
Han J.H., Shim H., Shin J.H., Kim K.S. (2015) Antagonistic Activities of Bacillus spp. Strains Isolated from Tidal Flat Sediment Towards Anthracnose Pathogens Colletotrichum acutatum and C. gloeosporioides in South Korea. Plant Pathol J 31:165-75.
Harwood C.R., Cranenburgh R. (2008) Bacillus protein secretion: an unfolding story. Trends Microbiol 16:73-79.
Hsieh F.C., Li M.C., Lin T.C., Kao S.S. (2004) Rapid detection and characterization of surfactin-producing Bacillus subtilis and closely related species based on PCR. Curr Microbiol 49:186-91.
Hsieh F.C., Lin T.C., Meng M., Kao S.S. (2008) Comparing methods for identifying Bacillus strains capable of producing the antifungal lipopeptide iturin A. Curr Microbiol 56:1-5.
Hsu, Y. T. (2014) Factors affecting occurrence of oilseed rape clubroot caused by Plasmodiophora brassicae. Master thesis. National Chung Hsing University, Taichung.
Huang T.P., Tzeng D.D., Wong A.C., Chen C.H., Lu K.M., Lee Y.H., Huang W.D., Hwang B.F., Tzeng K.C. (2012) DNA polymorphisms and biocontrol of Bacillus antagonistic to citrus bacterial canker with indication of the interference of phyllosphere biofilms. PLoS One 7:e42124.
Idris E.E., Bochow H., Ross H., Borriss R. (2004) Use of Bacillus subtilis as biocontrol agent. VI. Phytohormonelike action of culture filtrates prepared from plant growth-promoting Bacillus amyloliquefaciens FZB24, FZB42, FZB45 and Bacillus subtilis FZB37/Nutzung von Bacillus subtilis als Mittel für den biologischen Pflanzenschutz. VI. Phytohormonartige Wirkung von Kulturfiltraten von pflanzenwachstumsfördernden Bacillus amyloliquefaciens FZB24, FZB42, FZB45 und Bacillus subtilis FZB37. J Plant Dis Protect:583-597.
Ishiwa H., Shibahara H. (1985) New shuttle vectors for Escherichia coil and Bacillus subtilis. Jpn J Genet 60:235-243.
Ishiwa H., Tsuchida N. (1984) New shuttle vectors for Escherichia coli and Bacillus subtilis. I. Construction and characterization of plasmid pHY460 with twelve unique cloning sites. Gene 32:129-134.
Islam T.M., Rahman M., Pandey P., Jha C.K., Aeron A. (2017) Bacilli and Agrobiotechnology Springer
Johnston C., Martin B., Fichant G., Polard P., Claverys J.P. (2014) Bacterial transformation: distribution, shared mechanisms and divergent control. Nat Rev Microbiol 12:181-96.
Kearns D.B. (2010) A field guide to bacterial swarming motility. Nat Rev Microbiol 8:634-44.
Kimura S., Takenouchi M., Hatanaka M., Seto H., Kouroku Y., Sakaguchi K. (1998) An ATP-inhibited endonuclease from cauliflower (Brassica oleracea var. botrytis) inflorescence: purification and characterization. Planta 206:641-648.
Le Breton Y., Mohapatra N.P., Haldenwang W. (2006) In vivo random mutagenesis of Bacillus subtilis by use of TnYLB-1, a mariner-based transposon. Appl Environ Microbiol 72:327-333.
Leifert C., Li H., Chidburee S., Hampson S., Workman S., Sigee D., Epton H. A., Harbour A. (1995) Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumilus CL45. J Appl Bacteriol. 78(2):97-108.
Liang Z., Li G., An T. (2017) Purifying, cloning and characterizing a novel dehalogenase from Bacillus sp. GZT to enhance the biodegradation of 2,4,6-tribromophenol in water. Environ Pollut 225:104-111.
Lin H. F. (2001) Identification, Infection Process and Telemorph Formation of the Pathogen of Chinese Amaranth Leaf Spot in Taiwan. Master thesis. National Chung Hsing University, Taichung.
Lin S. S. (2015) Application of Bacillus amyloliquefaciens PMB01 to control bacterial leaf spot caused by Xanthomonas euvesicatoria on sweet pepper. Master thesis. National Pingtung University of Science and Technology, Pingtung.
Louden B.C., Haarmann D., Lynne A.M. (2011) Use of blue agar CAS assay for siderophore detection. J Microbiol Biol Educ 12:51-3.
Makoto S., Chieko I., Tokujiro A.(1983) Protoplast Formation of Bacillus colistinus. Agricultural and Biological Chemistry. Agricultural and 47:4, 877-879 Chemistry
McRobbie A.M., Meyer B., Rouillon C., Petrovic-Stojanovska B., Liu H., White M.F. (2012) Staphylococcus aureus DinG, a helicase that has evolved into a nuclease. Biochem J 442:77-84.
Mielich-Suss B., Lopez D. (2015) Molecular mechanisms involved in Bacillus subtilis biofilm formation. Environ Microbiol 17:555-65.
Miethke M., Marahiel M.A. (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71:413-51.
Muñoz-López M., García-Pérez J. L. (2010) DNA Transposons: Nature and Applications in Genomics. Curr Genomics. 11: 115–128.
Murray N. E., (2000) Type I restriction systems: sophisticated molecular machines (a legacy of Bertani and Weigle). Microbiol.64:412–434.
Nadeem M., Syed Q., Liaquat A., Baig S., and Kashmiri A. (2010) Study on biosynthesis of alkaline protease by mutagenized culture of Bacillus pumilus. Pak J Food Sci, 20: 1-4.
Naerdal I., Netzer R., Irla M., Krog A., Heggeset T.M., Wendisch V.F., Brautaset T. (2017) l-lysine production by Bacillus methanolicus: Genome-based mutational analysis and l-lysine secretion engineering. J Biotechnol 244:25-33.
Narasimhan A., Suresh S., Bist D., Shivakumar S. (2013) Enhancement of mycolytic activity of an antagonistic Bacillus subtilis through ethyl methane sulfonate (EMS) mutagenesis. Turk J Biol 37:323-328.
Pal K.K., McSpadden Gardener B. (2006) Biological Control of Plant Pathogens. The Plant Health Instructor.
Perez-Miranda S., Cabirol N., George-Tellez R., Zamudio-Rivera L.S., Fernandez F.J. (2007) O-CAS, a fast and universal method for siderophore detection. J Microbiol Methods 70:127-31.
Peypoux F., Besson F., Michel G., Delcambe L. (1979) Preparation and antibacterial activity upon Micrococcus luteus of derivatives of iturin A, mycosubtilin and bacillomycin L, antibiotics from Bacillus subtilis. J Antibiot 32:136-140.
Peypoux F., Bonmatin J., Wallach J. (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51:553-563.
Pohl S., Harwood C.R. (2010) Heterologous protein secretion by Bacillus species: From the cradle to the grave. Adv Appl Microbiol 73:1-25.
Promchai R., Promdonkoy B., Tanapongpipat S., Visessanguan W., Eurwilaichitr L., Luxananil P. (2016) A novel salt-inducible vector for efficient expression and secretion of heterologous proteins in Bacillus subtilis. J Biotechnol 222:86-93.
Qing Z., He X., Qing T., Wang K., Shi H., He D., Zou Z., Yan L., Xu F., Ye X., Mao Z. (2013) Poly(thymine)-templated fluorescent copper nanoparticles for ultrasensitive label-free nuclease assay and its inhibitors screening. Anal Chem 85:12138-43.
Rattanachaikunsopon P., Phumkhachorn P. (2009) Glass bead transformation method for gram-positive bacteria. Braz J Microbiol 40:923-926.
Raza W., Ling N., Yang L., Huang Q., Shen Q. (2016) Response of tomato wilt pathogen Ralstonia solanacearum to the volatile organic compounds produced by a biocontrol strain Bacillus amyloliquefaciens SQR-9. Sci Rep 6:24856.
Romero D. (2013) Bacterial deterants of the social behavior of Bacillus subtilis. Res Microbiol 164:788-798.
Rosenberg N.L. (1987) ATP as an alternative inhibitor of bacterial and endogenous nucleases and its effect on native chromatin compaction. Mol Cell Biochem 76:113-121.
Sadaie Y., Kada T. (1983) Formation of competent Bacillus subtilis cells. J Bacteriol 153:813-821.
Sambrook J. (2001) Molecular Cloning. Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory Press.
Schallmey M., Singh A., Ward O.P. (2004) Developments in the use of Bacillus species for industrial production. Can J Microbiol 50:1-17.
Schindler C.A., Schuhardt V. (1964) Lysostaphin: a new bacteriolytic agent for the Staphylococcus. PNAS 51:414-421.
Schumann W. (2007) Production of recombinant proteins in Bacillus subtilis. Adv Appl Microbiol 62:137-189.
Schaad, N. W., Jones, J.B., Chun, W. (2001) Laboratory guide for identification of plant pathogenic bacteria. 3 ed. American Phytopathological Society St Paul, USA
Shank E.A., Kolter R. (2011) Extracellular signaling and multicellularity in Bacillus subtilis. Curr Opin Microbiol 14:741-7.
Shimada A., Kawasoe Y., Hata Y., Takahashi T.S., Masui R., Kuramitsu S., Fukui K. (2013) MutS stimulates the endonuclease activity of MutL in an ATP-hydrolysis-dependent manner. FEBS J 280:3467-79.
Short F.L., Monson R.E., Salmond G.P. (2015) A Type III protein-RNA toxin-antitoxin system from Bacillus thuringiensis promotes plasmid retention during spore development. RNA Biol 12:933-7.
Singh P.K., Ramachandran G., Ramos-Ruiz R., Peiro-Pastor R., Abia D., Wu L.J., Meijer W.J. (2013) Mobility of the native Bacillus subtilis conjugative plasmid pLS20 is regulated by intercellular signaling. PLoS Genet 9:e1003892.
Singhvi M., Joshi D., Gaikaiwari S., Gokhale D.V. (2010) Protoplast formation and regeneration in Lactobacillus delbrueckii. Indian J Microbiol 50:97-100.
Stratford J.P., Woodley M.A., Park S. (2013) Variation in the morphology of bacillus mycoides due to applied force and substrate structure. PloS One 8:e81549.
Sullivan M.A., Yasbin R.E., Young F.E. (1984) New shuttle vectors for Bacillus subtilis and Escherichia coli which allow rapid detection of inserted fragments. Gene 29:21-26.
Tahir H.A., Gu Q., Wu H., Niu Y., Huo R., Gao X. (2017) Bacillus volatiles adversely affect the physiology and ultra-structure of Ralstonia solanacearum and induce systemic resistance in tobacco against bacterial wilt. Sci Rep 7:40481.
Temeter K.B. (1987) Comparison of methods for protoplast formation in Bacillus thuringiensis. Microbiology 133:503-506.
Toledano E., Ogryzko V., Danchin A., Ladant D., Mechold U. (2012) 3'-5' phosphoadenosine phosphate is an inhibitor of PARP-1 and a potential mediator of the lithium-dependent inhibition of PARP-1 in vivo. Biochem J 443:485-90.
Unterholzner S.J., Poppenberger B., Rozhon W. (2013) Toxin-antitoxin systems: Biology, identification, and application. Mob Genet Elements 3:e26219.
Vanittanakom N., Loeffler w., Koch U., Jung G. (1986) Fengycin-a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J Antibiot 39:888-901.
Vehmaanperä J. (2000) Bacillus amyloliquefaciens—Production Host for Industrial Enzymes, Electrotransformation of Bacteria, Springer. pp. 119-123.
Vlamakis H., Chai Y., Beauregard P., Losick R., Kolter R. (2013) Sticking together: building a biofilm the Bacillus subtilis way. Nat Rev Microbiol 11:157-68.
Wang H., Yang L., Ping Y., Bai Y., Luo H., Huang H., Yao B. (2016) Engineering of a Bacillus amyloliquefaciens Strain with High Neutral Protease Producing Capacity and Optimization of Its Fermentation Conditions. PLoS One. 11(1): e0146373.
William A. S., Joseph J. L. (1972) Hydrolysis of casein: a differential aid for the indentification of Serratia marcescens. J Clin Pathol. 25: 1083–1085.
Wilson G.G., Murray N.E. (1991) Restriction and modification systems. Annual review of genetics 25:585-627.
Wong S. L. (1995) Advances in the use of Bacillus subtilis for the expression and secretion of heterologous proteins. Curr Opin Biotechnol 6:517-522.
Wu J.A., Kusuma C., Mond J.J., Kokai-Kun J.F. (2003) Lysostaphin disrupts Staphylococcus aureus and Staphylococcus epidermidis biofilms on artificial surfaces. Antimicrob Agents Chemother. 47:3407-14.
Wu L., Wu H., Chen L., Xie S., Zang H., Borriss R., Gao X. (2014) Bacilysin from Bacillus amyloliquefaciens FZB42 has specific bactericidal activity against harmful algal bloom species. Appl Environ Microb 80:7512-7520.
Xia Y., Chen W., Zhao J., Tian F., Zhang H., Ding X. (2007) Construction of a new food-grade expression system for Bacillus subtilis based on theta replication plasmids and auxotrophic complementation. Appl Microbiol Biot 76:643-650.
Xue G.-P., Johnson J.S., Dalrymple B.P. (1999) High osmolarity improves the electro-transformation efficiency of the gram-positive bacteria Bacillus subtilis and Bacillus licheniformis. J Microbiol Meth 34:183-191.
Yan X., Yu H.J., Hong Q., Li S.P. (2008) Cre/lox system and PCR-based genome engineering in Bacillus subtilis. Appl Environ Microbiol 74:5556-62.
Yang S., Kang Z., Cao W., Du G., Chen J. (2016) Construction of a novel, stable, food-grade expression system by engineering the endogenous toxin-antitoxin system in Bacillus subtilis. J Biotechnol 219:40-7.
Youngman P.J., Perkins J.B., Losick R. (1983) Genetic transposition and insertional mutagenesis in Bacillus subtilis with Streptococcus faecalis transposon Tn917. PNAS 80:2305-2309.
Zhang G.Q., Bao P., Zhang Y., Deng A.H., Chen N., Wen T.Y. (2011) Enhancing electro-transformation competency of recalcitrant Bacillus amyloliquefaciens by combining cell-wall weakening and cell-membrane fluidity disturbing. Anal Biochem 409:130-7.
Zhang K., Duan X., Wu J. (2016) Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system. Sci Rep 6:27943.
Zhang X.Z., Zhang Y. (2011) Simple, fast and high-efficiency transformation system for directed evolution of cellulase in Bacillus subtilis. Microb Biotechnol 4:98-105.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top