跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/14 04:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾淑媛
研究生(外文):Kitty Tsang
論文名稱:無篩選標幟轉基因大葉煙草對薊馬傳播的蕃茄斑萎病毒屬廣泛性抗性之建構
論文名稱(外文):Development of marker-free transgenic resistance against thrips-borne orthotospoviruses in tobacco plants
指導教授:葉錫東葉錫東引用關係
指導教授(外文):Shyi-Dong Yeh
口試委員:林詩舜陳宗祺陳煜焜詹富智
口試委員(外文):Shih-Shun LinTsung-Chi ChenYuh-Kun ChenFuh-Jyh Jan
口試日期:2017-07-24
學位類別:碩士
校院名稱:國立中興大學
系所名稱:植物病理學系所
學門:農業科學學門
學類:植物保護學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:46
中文關鍵詞:蕃茄斑萎病毒屬大葉煙草轉基因薊馬無篩選標幟
外文關鍵詞:orthotospovirusesthrips-bornetobaccotransgenic resistancemarker-free
相關次數:
  • 被引用被引用:0
  • 點閱點閱:130
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
栽培煙草(Nicotiana tabacum)植物是捲菸和雪茄的常見煙草。然而,蕃茄班萎病毒屬包括西瓜銀斑病毒(WSMoV)血清群的胡椒斑點病毒(pepper chlorotic spot virus,PCSV),對中國南方雲南省的煙草作物造成嚴重損害。到目前為止,由於缺乏抗性煙草品種,沒有有效的措施控制這種病毒。基於轉錄後基因沉默作用(PTGS)的轉基因抗性是控制病毒性疾病的有效方法;然而,選擇標記的轉基因的存在一直是生態和食品安全的關注議題。因此,我們以前曾開發了一種無標記的T-DNA雙元載體,其中包含一個選擇標記(nptII)和一個單獨構建在兩組T-DNA邊界中的目標基因,以產生無選擇標記的轉基因植物。之前我們實驗室已經產生了以攜帶高度保守的病毒複製酶(L)基因區,NSs編碼序列(NSs)和WSMoV的N編碼序列的反義片段的pBI2T-HpL / NSs / N的髮夾結構轉化的轉基因圓葉煙草(Nicotiana benthamiana)賦予煙草病毒廣譜抗性。在本研究中,我們嘗試使用相同的構建體在栽培煙草品種Yunyan-87的實際作物中開發無標記轉基因抗性。以農桿菌轉殖方法將此轉基因轉殖入菸草葉片組織,並再生成轉基因菸草株系,通過聚合酶鏈反應檢測,我們總共獲得了43個卡那黴素陽性煙草品系,其中28株是為轉基因陽性。在PCSV分別接種後14天(dpi)和25 dpi下進行酶聯免疫吸附測定(ELISA)。總共11個轉基因株系顯示症狀發展延遲7-11天,3個高度抗性轉基因株系顯示25 dpi恢復症狀,3個免疫抗性轉基因株系顯示無症狀,ELISA陰性達25 dpi。我們得到的6 個高度抗性及免疫抗性株系,再以tomato spottd wilt virus(TSWV)接種分析,其中34,43,44株系對PCSV和TSWV均具有免疫抗性,11, 49株系則對PCSV和TSWV均有高度抗性,這5個轉基因煙草株系經過南方墨點法分析後發現當中44號只有一個轉基因插入片斷,而43及49號則只有兩到三個。隨後,我們將通過選擇的轉基因品系的自體受粉,篩選出對不同種類的煙草病毒具有廣譜抗性的無標記F2煙草後代並解決蕃茄班萎病毒屬對雲南煙草業造成的問題。
Cultivated Nicotiana tabacum plants are the common tobacco for cigarettes and cigars. However, thrips-borne orthotospoviruses including pepper chlorotic spot virus (PCSV), a member of watermelon silver mottle virus (WSMoV) serogroup, cause severe damages on tobacco crop in Yunnan Province, southern China. So far, there are no effective measures to control these viruses due to lack of resistant tobacco varieties. Transgenic resistance based on post transcriptional gene silencing (PTGS) is an effective approach to control viral diseases; however, the maker genes for regeneration selection are concerns for ecology and food safety. Hence, we previously developed a marker-free two-T-DNA-binary vector, which contains a selection marker (nptII) and a target gene separately constructed in two individual sets of T-DNA borders to generate maker-free transgenic plant. Transgenic Nicotiana benthamiana lines carrying the hairpin construct of pBI2T-HpL/NSs/N, which contains highly conserved tospoviral replicase (L) gene region, NSs coding sequence (NSs) and an antisense fragment of N coding sequence of WSMoV, have been proved conferring broad-spectrum resistance to orthotospoviruses. In this study, we attempted to use the same construct to develop marker-free transgenic resistance in the real crop of cultivated tobacco variety Yunyan-87. By Agrobacterium tumefaciens-mediated transformation, a total of 43 kanamycin positive tobacco lines were obtained and among them 28 lines were transgene positive, as detected by polymerase chain reaction. After challenged with PCSV, enzyme-linked immunosorbent assay (ELISA) was conducted at 14 days post inoculation (dpi) and 25 dpi to check the presence of the virus. A total of 11 lines showed delay in symptom development for 7-11 days, 3 highly resistant lines showed recovered symptom at 25 dpi, and 3 immune lines were symptomless and ELISA negative up to 25 dpi. The selected 6 lines with high levels of resistance to PCSV were challenged with tomato spotted wilt virus (TSWV) to validate the broad-spectrum resistance. Our results indicated that lines 11, 34, 43, 44 and 49 confer high levels of resistance to PCSV and TSWV. Southern hybridization analysis showed that line 44 has a single insert of the transgene and 43 and 49 has 2 and 3 transgene inserts, all can be used for further breeding. As PCSV and TSWV belong to two different serogroups of orthotospoviruses, the borad-spectrum resistance of our transgenic lines may solve the problem of orthotospoviruses infection in Yunan. Following by self-fertilization of selected transgenic lines, marker-free F2 tobacco progenies with broad-spectrum resistance to different species of orthotospoviruses are being screened.
Content
Acknowledgement i
中文摘要 ii
Abstract iii
Introduction 1
Materials and Methods 10
Transgene construction 10
Transformation of Tobacco plants 10
Detection of the transgene and the marker gene in plants of transgenic tobacco lines 12
Infectivity tests with WSMoV, TSWV and PCSV for non-transgenic Yunyan-87 tobacco plants 13
Indirect Enzyme-linked Immunosorbent Assay (ELISA) 14
Evaluation of transgenic resistance to PCSV 15
Evaluation of transgenic resistance to TSWV 15
Southern blotting analysis 16
Results 18
Transformation of Tobacco plants 18
Detection of the transgene and the marker gene in plants of putative transgenic tobacco lines 18
Infectivity tests of WSMoV, TSWV and PCSV on non-transgenic Yunyan-87 tobacco plants 19
Evaluation of transgenic resistance to PCSV 20
Evaluation of transgenic resistance to TSWV 21
Southern blotting analysis 23
Discussion 24
References 29
Table 1: All primers used in the study 36
Detection of nptII selection marker 36
Table 2: Evaluation of transgenic Nicotiana tabacum Yunyan-87 tobacco lines carrying transgene HpL/NSs/N resistance of tomato spotted wilt virus (TSWV) and pepper chlorotic spot virus (PCSV) under greenhouse condition 37
Fig.1: Construction 38
Fig.2: Transformation of Nicotiana tabacum tobacco plants (Variety Yunyan 87) with the HpL/NSs/N construct 39
Fig.3: Detection of nptII selection marker by polymerase chain reaction (PCR). 40
Fig.4: Detection of the L fragment of the transgene by polymerase chain reaction (PCR). 41
Fig.5: Non-transgenic tobacco plants of Nicotiana tabacum (Variety Yunyan 87) inoculated with watermelon silver mottle virus (WSMoV), pepper Chlorotic spot virus (PCSV) or tomato spotted wilt virus (TSWV) 42
Fig.6: Indirect Enzyme-linked Immunosorbent Assay (ELISA) to check the presence of watermelon silver mottle virus (WSMoV) after inoculation. 43
Fig.7: Evaluation of transgenic tobacco lines by challenge inoculation with pepper chlorotic spot virus (PCSV) under greenhouse condition. 44
Fig.8: Evaluation of transgenic tobacco lines by challenge inoculation with tomato spotted wilt virus (TSWV) under greenhouse condition 45
Fig.9: Detection of transgene inserts from transgenic Nicotiana tabacum tobacco highly resistant T0 lines for selfing. 46
References
Catoni, M., Lucioli, A., Doblas-Ibanez, P., Accotto, G.P., and Vaira, A.M. 2013. From immunity to susceptibility: virus resistance induced in tomato by a silenced transgene is lost as TGS overcomes PTGS. Plant J 75:941-953.
Chen, T.C., Lu, Y.Y., Cheng, Y.H., Li, J.T., Yeh, Y.C., Kang, Y.C., Chang, C.P., Huang, L.H., Peng, J.C., and Yeh, S.D. 2010. Serological relationship between Melon yellow spot virus and Watermelon silver mottle virus and differential detection of the two viruses in cucurbits. Arch Virol 155:1085-1095.
Chen, W.T., Tseng, C.H., and Tsai, C.W. 2014. Effect of watermelon silver mottle virus on the life history and feeding preference of Thrips palmi. Plos One 9:e102021.
Cheng, Y.H., Zheng, Y.X., Tai, C.H., Yen, J.H., Chen, Y.K., and Jan, F.J. 2014. Identification, characterisation and detection of a new tospovirus
on sweet pepper. Ann App Biol 164:107-115.
Chu, F.-H., Chao, C.-H., Chung, M.-H., Chen, C.-C., and Yeh, S.-D. 2001. Completion of the Genome Sequence of Watermelon silver mottle virus and Utilization of Degenerate Primers for Detecting Tospoviruses in Five Serogroups. Phytopathology 91:361-368.
Curaba, J., and Chen, X. 2008. Biochemical activities of Arabidopsis RNA-dependent RNA polymerase 6. J Biol Chem 283:3059-3066.
de Haan, P., Gielen, J.J., Prins, M., Wijkamp, I.G., van Schepen, A., Peters, D., van Grinsven, M.Q., and Goldbach, R. 1992. Characterization of RNA-mediated resistance to tomato spotted wilt virus in transgenic tobacco plants. Biotechnology (N Y) 10:1133-1137.
Duan, C.G., Wang, C.H., and Guo, H.S. 2012. Application of RNA silencing to plant disease resistance. Silence 3:5.
Fuchs, M., Tricoli, D.M., Carney, K.J., Schesser, M., McFerson, J.R., and Gonsalves, D. 1998. Comparative Virus Resistance and Fruit Yield of Transgenic Squash with Single and Multiple Coat Protein Genes. Plant Disease 82:1350-1356.
Fukunaga, R., and Doudna, J.A. 2009. dsRNA with 5' overhangs contributes to endogenous and antiviral RNA silencing pathways in plants. EMBO J 28:545-555.
Goodwin, J., Chapman, K., Swaney, S., Parks, T.D., Wernsman, E.A., and Dougherty, W.G. 1996. Genetic and biochemical dissection of transgenic RNA-mediated virus resistance. Plant Cell 8:95-105.
Hassani-Mehraban, A., Brenkman, A.B., van den Broek, N.J., Goldbach, R., and Kormelink, R. 2009. RNAi-mediated transgenic Tospovirus resistance broken by intraspecies silencing suppressor protein complementation. Mol Plant Microbe Interact 22:1250-1257.
Huang, C.H., Hsiao, W.R., Huang, C.W., Chen, K.C., Lin, S.S., Chen, T.C., Raja, J.A.J., Wu, H.W., and Yeh, S.D. 2015. Two Novel Motifs of Watermelon Silver Mottle Virus NSs Protein Are Responsible for RNA Silencing Suppression and Pathogenicity. Plos One 10.
Hutvagner, G., and Simard, M.J. 2008. Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 9:22-32.
Jackson, M.A., Anderson, D.J., and Birch, R.G. 2013. Comparison of Agrobacterium and particle bombardment using whole plasmid or minimal cassette for production of high-expressing, low-copy transgenic plants. Transgenic Res 22:143-151.
Jan, F.J., Chen, T.C., and Yeh. S.D. 2003. Occurrence, importance, taxonomy and control of thrips-borne tospoviruses. Advances in plant disease management Research Signpost:391-411.
Jan, F.J., Fagoaga, C., Pang, S.Z., and Gonsalves, D. 2000. A single chimeric transgene derived from two distinct viruses confers multi-virus resistance in transgenic plants through homology-dependent gene silencing. J Gen Virol 81:2103-2109.
Kikkert, M., Verschoor, A., Kormelink, R., Rottier, P., and Goldbach, R. 2001. Tomato spotted wilt virus glycoproteins exhibit trafficking and localization signals that are functional in mammalian cells. Journal of virology 75:1004-1012.
Koprek, T., Rangel, S., McElroy, D., Louwerse, J.D., Williams-Carrier, R.E., and Lemaux, P.G. 2001. Transposon-mediated single-copy gene delivery leads to increased transgene expression stability in barley. Plant Physiol 125:1354-1362.
Kormelink, R., Storms, M., Van Lent, J., Peters, D., and Goldbach, R. 1994. Expression and subcellular location of the NSM protein of tomato spotted wilt virus (TSWV), a putative viral movement protein. Virology 200:56-65.
Kormelink, R., Kitajima, E.W., De Haan, P., Zuidema, D., Peters, D., and Goldbach, R. 1991. The nonstructural protein (NSs) encoded by the ambisense S RNA segment of tomato spotted wilt virus is associated with fibrous structures in infected plant cells. Virology 181:459-468.
Kung, Y.J., Lin, S.S., Huang, Y.L., Chen, T.C., Harish, S.S., Chua, N.H., and Yeh, S.D. 2012. Multiple artificial microRNAs targeting conserved motifs of the replicase gene confer robust transgenic resistance to negative-sense single-stranded RNA plant virus. Mol Plant Pathol 13:303-317.
Liu, L.Y., Ye, H.Y., Chen, T.H., and Chen, T.C. 2017. Development of a microarray for simultaneous detection and differentiation of different tospoviruses that are serologically related to Tomato spotted wilt virus. Virol J 14.
Meng, L., Ziv, M., and Lemaux, P.G. 2006. Nature of stress and transgene locus influences transgene expression stability in barley. Plant Mol Biol 62:15-28.
Pappu, H.R., Jones, R.A., and Jain, R.K. 2009. Global status of tospovirus epidemics in diverse cropping systems: successes achieved and challenges ahead. Virus Res 141:219-236.
Peng, J.-C., Chen, T.-C., Raja, J.A.J., Yang, C.-F., Chien, W.-C., Lin, C.-H., Liu, F.-L., Wu, H.-W., and Yeh, S.-D. 2014. Broad-Spectrum Transgenic Resistance against Distinct Tospovirus Species at the Genus Level. PLoS ONE 9:e96073.
Peng, J., Chen, T., and Yeh, S. 2011. Generation of broad-spectrum resistance in transgenic tobacco and tomato plants against distinct tospovirus species of different serogroups. Phytopathology 101:S140-S140.
Prins, M., Kikkert, M., Ismayadi, C., de Graauw, W., de Haan, P., and Goldbach, R. 1997. Characterization of RNA-mediated resistance to tomato spotted wilt virus in transgenic tobacco plants expressing NS(M) gene sequences. Plant Mol Biol 33:235-243.
Pumplin, N., and Voinnet, O. 2013. RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence. Nat Rev Microbiol 11:745-760.
Riley, D.R., Joseph, S.V., Srinivasan, R., and Diffie, S. 2011. Thrips vectors of Tospoviruses. Journal of Integrated Pest Management 1:1-9.
Takeda, A., Sugiyama, K., Nagano, H., Mori, M., Kaido, M., Mise, K., Tsuda, S., and Okuno, T. 2002. Identification of a novel RNA silencing suppressor, NSs protein of Tomato spotted wilt virus. FEBS letters 532:75-79.
Wu, H., Awan, F.S., Vilarinho, A., Zeng, Q., Kannan, B., Phipps, T., McCuiston, J., Wang, W., Caffall, K., and Altpeter1, F. 2015. Transgene integration complexity and expression stability
following biolistic or Agrobacterium-mediated
transformation of sugarcane. BIOTECHNOLOGY 1.
Xie, Z., Johansen, L.K., Gustafson, A.M., Kasschau, K.D., Lellis, A.D., Zilberman, D., Jacobsen, S.E., and Carrington, J.C. 2004. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2:E104.
Yan, K.L., Chen, W., Zhou, B., Ling, J., Yang, Y., Zhu, D.L., and Hu, W.Y. 2016. The Comparison of Seven Harmful Components of Main Varieties in Yunnan. Hubei Agricultural Sciences 55:5291-5299.
Yang, C.F., Chen, K.C., Cheng, Y.H., Raja, J.A.J., Huang, Y.L., Chien, W.C., and Yeh, S.D. 2014. Generation of Marker-free Transgenic Plants Concurrently Resistant to a DNA Geminivirus and a RNA Tospovirus. Sci Rep-Uk 4.
Yazhisai, U., Rajagopalan, P.A., Raja, J.A.J., Chen, T.C., and Yeh, S.D. 2015. Untranslatable tospoviral NSs fragment coupled with L conserved region enhances transgenic resistance against the homologous virus and a serologically unrelated tospovirus. Transgenic Res 24:635-649.
Zheng, K., Chen, T.C., Yeh, S.D., Rahman, M.S., Su, X., Wu, K., Li, T., Zhang, Z., and Dong, J. 2017. Characterization of a new isolate of pepper chlorotic spot virus from Yunnan province, China. Arch Virol.
Zhu, C.X., Liu, H.M., Song, Y.Z., and Wen, F.J. 2005. [Genetic analysis of RNA-mediated virus resistance in transgenic tobacco]. Yi Chuan Xue Bao 32:94-103.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top