跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/15 01:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳樂融
研究生(外文):Yue- Rong Tan
論文名稱:西瓜銀斑病毒之核鞘蛋白與病毒基因體體外組裝之探討
論文名稱(外文):In-vitro encapsidation of genomic RNA segments of watermelon silver mottle virus with its nucleocapsid protein
指導教授:葉錫東葉錫東引用關係
指導教授(外文):Shyi-Dong Yeh
口試委員:林詩舜詹富智陳煜焜陳宗祺
口試委員(外文):Shih-Shun LinFuh-Jyh, JanYuh-Kun ChenTsung-Chi Chen
口試日期:2017-07-24
學位類別:碩士
校院名稱:國立中興大學
系所名稱:植物病理學系所
學門:農業科學學門
學類:植物保護學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:64
中文關鍵詞:核鞘蛋白病毒基因體體外組裝RNP
外文關鍵詞:NPin vitro encapsidationRNP
相關次數:
  • 被引用被引用:0
  • 點閱點閱:127
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
逆向遺傳學系統對於了解植物RNA病毒的複製週期和致病機制至關重要。然而,目前尚未有人成功地建構出具有感染力的Orthotospovirus屬的病毒載體。過去研究顯示,將西瓜銀斑病毒(watermelon silver mottle virus, WSMoV)L,M和S全長cDNA接種到表現核鞘蛋白(NP)和RNA聚合酶(L)蛋白的轉基因煙草植物中,研究顯示此方法無法建立該病毒之感染性。因此,我們假設從病毒基因體構築之cDNA構建體轉錄的mRNA形成穩定的病毒核糖核蛋白(ribonucleoprotein, RNP)對於在寄主植物感染過程中保護病毒基因組RNA是不可或缺的。本研究目的是探討WSMoV RNP體外組裝的條件。為了測定體外RNA的組裝能力,將試管內轉錄的帶有GFP基因片段的WSMoV S GFP-RNA與由大腸桿菌表達的重組核鞘蛋白(rNP)進行組裝。我們首先發現超高速離心純化之WSMoV成分之具有感染性的分管(P25 infectious fraction)與未純化之WSMoV病毒原液接種於葵藜後有相似的密集單斑形成。更近一步利用西方墨點法可於純化之WSMoV分管成分中偵測到大量的L、NSs、NP和NSm蛋白。此外,抗體中和實驗 (neutralization assay)顯示針對L、NSs、NP和NSm蛋白的抗體抑制了P25的感染力。由此可見,這四種病毒蛋白具有非常重要的複製核心功能。透過電子顯微鏡觀察此具有感染性的分管成分P25可看到完整的核鞘蛋白體,而此RNP可以保護RNA不受RNase的分解。後續實驗顯示細菌表現的rNP可以跟P25抽取的病毒RNA以及試管內轉錄的S GFP-RNA進行體外組裝,並於電子顯微鏡下觀察到形成長鏈狀的RNP特徵,顯示病毒RNA可以被rNP包裹成核鞘蛋白複合體RNP。此人工合成的RNP可以被利用接種試驗,以分析此人工RNP是否會在具有感染力分管存在時進行複製。
Reverse genetics studies are pivotal for understanding replication cycle and pathogenesis of plant RNA viruses. However, successful infectious clones for negative-sense RNA viruses of the multipartite genus Orthotospovirus have yet to be created. Introduction of watermelon silver mottle virus (WSMoV) L, M and S full-length cDNAs into transgenic Nicotiana benthamiana plants expressing nucleocapsid protein (NP) and RNA polymerase (L) in previous studies showed no infectivity. We hypothesized that formation of stable viral ribonucleoprotein (RNP) with the mRNAs transcribed from infiltrated cDNA constructs is essential to protect the viral genomic RNAs during bioassay for transcription and replication. Thus, the objective of this study was directed to determine the conditions for the in vitro assembly of WSMoV RNP. Our inoculation results of a subcellular fraction of WSMoV designated an infectious fraction P25 portrayed numerous local lesions on Chenopodium quinoa plants similar to those induced by the wild type WSMoV. In this infectious fraction, abundant amounts of L protein, NSs protein, NP, and NSm protein were detected by western blotting. The infectivity of this fraction, however, was greatly reduced when treated with PAb of L, NSs, NSm, and N proteins in neutralization assay. RNP from the P25 fractions was also resistant to RNase digestion. Therefore, bacteria-expressed rNP was used for the in vitro assembly of the viral RNA with the in vitro transcribed S GFP-RNA carrying GFP ORF which replaces the N ORF. Electron microscopy results of the encapsidated products indicated that bacteria-expressed rNP can successfully assemble both viral RNA and in vitro transcribed S GFP-RNA into long and linear RNP-like structures. Taken together, our results suggested that native and transcribed single-stranded orthotospoviral RNAs can be assembled in vitro using bacteria-expressed rNP. The RNP-like structures may be used in generating reverse genetics system of WSMoV.
摘要 i
Abstract ii
Table of Contents iii
Introduction 1
Materials and Methods 10
Virus source and propagation 10
Subcellular fractionation for monitoring the presence of viral proteins of WSMoV for infection 10
Phenol-chloroform extraction of viral RNA 11
Construction of WSMoV S GFP-RNA genomic segment 12
In vitro Transcription 13
RNase Protection Assay 14
Reverse Transcription-Polymerase Chain Reaction (RT-PCR) 14
Expression and purification of recombinant NP (rNP) from bacteria E. coli 15
Western blot analysis 17
Purification of ɤ-globulin (IgG) for all viral proteins of WSMoV 17
Neutralization assay 18
Electron Microscopy 19
Reconstitution of RNP complex 19
Results 21
Partially purified P25 fraction from WSMoV infected C. quinoa plants showed enhanced infectivity 21
Abundant amounts of viral L, NSm, NSs, and N proteins are associated with P25 infectious fraction 21
IgG antibodies of L, NSm, NSs, and NP neutralized the infectivity of P25 fraction 22
NP from P25 but not P30 fractions formed bulky long-chain clusters and protect viral RNA against RNase digestion 24
Immunogold labeling of NP 24
WSMoV rNP was successfully expressed and purified from bacteria and the bacteria-expressed NP showed similar function to the native NP 25
In vitro assembly / in vitro encapsidation of viral RNA (RNAIF) and in vitro transcribed S GFP-RNA with bacteria-expressed rNP 26
Recombinant WSMoV with GFP carrying S-RNA (S GFP-RNA) was not obtained yet 27
Discussion 28
References 36
Tables and Figures 45
Table 1: Primers used in this study 45
Table 2: Statistical analysis results of neutralization assay 46
Fig. 1. Subcellular fractionation of WSMoV infected C. quinoa plants. 48
Fig. 2. Identification of individual proteins of watermelon silver mottle virus (WSMoV) present in the P25 infectious fraction. 49
Fig. 3. Neutralization effect on infectivity of the infectious fraction of watermelon silver mottle virus (WSMoV) using IgG against individual proteins of WSMoV. 52
Fig. 4. Electron microscopy and RNase protection assay of ribonucleoprotein (RNP) complex from infectious fraction (P25) and non-infectious fraction (P30) 55
Fig. 5. Immunogold labelling of RNP in the P25 infectious fraction. 57
Fig. 6. Recombinant nucleocapsid protein of watermelon silver mottle virus expressed by bacteria. 59
Fig. 7. Reconstitution of genomic RNA of watermelon silver mottle virus with bacteria-expressed recombinant nucleocapsid (rNP). 62
Fig. 8. Reconstitution of in vitro transcribed S GFP-RNA with bacteria-expressed recombinant nucleocapsid (rNP). 64
References

Adam, G., Lesemann, D.E., and Vetten, H.J. 1991. Monoclonal antibodies against tomato spotted wilt virus: Characterisation and application. Ann. of Appl. Biol. 118:87-104.
Adkins, S., Quadt, R., Choi, T.J., Ahlquist, P., and German, T. 1995. An RNA-dependent RNA polymerase activity associated with virions of tomato spotted wilt virus, a plant- and insect-infecting bunyavirus. Virology 207:308-311.
Ariza, A., Tanner, S.J., Walter, C.T., Dent, K.C., Shepherd, D.A., Wu, W., Matthews, S.V., Hiscox, J.A., Green, T.J., Luo, M., Elliott, R.M., Fooks, A.R., Ashcroft, A.E., Stonehouse, N.J., Ranson, N.A., Barr, J.N., and Edwards, T.A. 2013. Nucleocapsid protein structures from orthobunyaviruses reveal insight into ribonucleoprotein architecture and RNA polymerization. Nucl. Acids Res. 41:5912-5926.
Bucher, E., Sijen, T., De Haan, P., Goldbach, R., and Prins, M. 2003. Negative-strand tospoviruses and tenuiviruses carry a gene for a suppressor of gene silencing at analogous genomic positions. J. Virol. 77:1329-1336.
Bucher, E., Lohuis, D., Pieter, M., van Poppel, J.A., Geerts-Dimitriadou, C., Goldbach, R., and Prins, M. 2006. Multiple virus resistance at a high frequency using a single transgene construct. J. Virol. 87:3697-3701.
Carter, S.D., Barr, J.N., and Edwards, T.A. 2012. Expression, purification and crystallization of the Crimean-Congo haemorrhagic fever virus nucleocapsid protein. Acta Crystallogr. Sect. F. Struct. Biol. Cryst. Commun. 68:569-573.
Chang, H.H., and Jan, F.J. (2011). Development of a reverse genetics system for Watermelon silver mottle tospovirus and studies of mechanical transmissibility, pathogenicity and tomato-infection determinant of Tomato leaf curl New Delhi begomovirus-oriental melon isolate. In Department of Plant Pathology (National Chung Hsing University).
Chang, H.H., Tseng, H.H., Yeh, S.D., Ku, S.M., and Jan, F.J. 2009. Generation of monoclonal antibody against the replicase of Watermelon silver mottle virus and its application on the detection of L protein expression in planta. Plant Pathol. Bul. 18:237-246.
Chen, T.C., and Jan, F.J. 2015. Tomato Spotted Wilt. Virus Dis. of Trop. and Subtrop. Crops 162-176.
Chen, T.C., Huang, C.W., Kuo, Y.W., Liu, F.L., Yuan, C.H., Hsu, H.T., and Yeh, S.D. 2006. Identification of common epitopes on a conserved region of NSs proteins among tospoviruses of Watermelon silver mottle virus serogroup. Phytopathology 96:1296-1304.
Chen, T.C., Lu, Y.Y., Kang, Y.C., Li, J.T., Yeh, Y.C., Kormelink, R., and Yeh, S.D. 2011. Detection of eight different tospovirus species by a monoclonal antibody against the common epitope of NSs protein. Acta Hortic. 901:61-66.
Chen, T.C., Li, J.T., Lin, Y.P., Yeh, Y.C., Kang, Y.C., Huang, L.H., and Yeh, S.D. 2012. Genomic characterization of Calla lily chlorotic spot virus and design of broad-spectrum primers for detection of tospoviruses. Plant Pathol. 61:183-194.
Chen, X., Xu, X., Li, Y., and Liu, Y. 2013. Development of a real-time fluorescent quantitative PCR assay for detection of Impatiens necrotic spot virus. J. Virol. Methods 189:299-304.
Cheng, H.W. (unpublished). Cloning of WSMoV N gene into pET vector.
Chu, F.H., Chao, C.H., Chung, M.H., Chen, C.C., and Yeh, S.D. 2001. Completion of the genome sequence of Watermelon silver mottle virus and utilization of degenerate primers for detecting tospoviruses in five serogroups. Phytopathology 91:361-368.
Clabbers, M.T.B., Olsthoorn, R.C.L., and Gultyaev, A.P. 2014. Tospovirus ambisense genomic RNA segments use almost complete repertoire of stable tetraloops in the intergenic region. Bioinformatics 30:1800-1804.
Davison, A.J. 2017. Journal of General Virology - Introduction to 'ICTV Virus Taxonomy Profiles'. J. Gen. Virol. 98:1.
de Avila, A.C., de Haan, P., Kormelink, R., de. R. Resende, R., Goldach, R.W., and Peters, D. 1993. Classification of tospoviruses based on phylogeny of nucleoprotein gene sequences J. Gen. Virol. 74:153-159.
Deng, T.C. 2013. The taxonomy of plant viruses in Taiwan - 2013. . Plant Prot. Bul. 55:35-56.
Ding, B., Qin, Y., and Chen, M. 2016. Nucleocapsid proteins: roles beyond viral RNA packaging. Wiley Interdiscip. Rev. RNA 7:213-226.
Elliott, R.M., Blakqori, G., van Knippenberg, I.C., Koudriakova, E., Li, P., McLees, A., Shi, X., and Szemiel, A.M. 2013. Establishment of a reverse genetics system for Schmallenberg virus, a newly emerged orthobunyavirus in Europe. J. Gen. Virol. 94:851-859.
EPPO. (2017). EPPO Data Sheets on Quarantine Pests: Watermelon silver mottle tospovirus
Feng, Z., Chen, X., Bao, Y., Dong, J., Zhang, Z., and Tao, X. 2013. Nucleocapsid of Tomato spotted wilt tospovirus forms mobile particles that traffic on an actin/endoplasmic reticulum network driven by myosin XI-K. New Phytol. 200:1212-1224.
Gerlach, P., Malet, H., Cusack, S., and Reguera, J. 2015. Structural insights into Bunyavirus replication and its regulation by the vRNA promoter. Cell 161:1267–1279.
Goldbach, R., and Peters, D. 1996. Molecular and biological aspects of tospoviruses. Pages 129-157 in: The Bunyaviridae. , R.M. Elliott, ed. Plenum Press, New York
Goldbach, R., and Kuo, G. 1996. Introduction of tospoviruses and thrips of floral and vegetable crops. Acta Hortic. 431:6.
Green, T.J., Cox, R., Tsao, J., Rowse, M., Qiu, S., and Luo, M. 2014. Common mechanism for RNA encapsidation by negative-strand RNA viruses. J. Virol. 88:3766-3775.
Guardado-Calvo, P., and Rey, F.A. 2017. The envelope proteins of the Bunyavirales. Adv. Virus. Res. 98:83-118.
Guo, Y., Wang, W., Ji, W., Deng, M., Sun, Y., Zhou, H., Yang, C., Deng, F., Wang, H., Hu, Z., Lou, Z., and Rao, Z. 2012. Crimean–Congo hemorrhagic fever virus nucleoprotein reveals endonuclease activity in bunyaviruses. Proc. Natl. Acad. Sci. U. S. A. 109:5046-5051.
Harrison, S.C., Strong, R.K., Schlesinger, S., and Schlesinger, M.J. 1992. Crystallization of Sindbis virus and its nucleocapsid. J. Mol. Biol. 226:277-280.
Hoenen, T., Groseth, A., de Kok-Mercado, F., Kuhn, J.H., and Wahl-Jensen, V. 2011. Minigenomes, transcription and replication competent virus-like particles and beyond: reverse genetics systems for filoviruses and other negative stranded hemorrhagic fever viruses. Antiviral Res. 91:195-208.
Hogenhout, S.A., Ammar el, D., Whitfield, A.E., and Redinbaugh, M.G. 2008. Insect vector interactions with persistently transmitted viruses. Annu. Rev. Phytopathol. 46:327-359.
Iwaki, M., Honda, Y., Hanada, K., Tochihara, H., Yonaha, T., Hokama, K., and Yokoyama, T. 1984. Silver mottle disease of watermelon caused by tomato spotted wilt virus. Plant Dis. 68:1006-1008.
Jahn, M., Paran, I., Hoffmann, K., Radwanski, E.R., Livingstone, K.D., Grube, R.C., Aftergoot, E., Lapidot, M., and Moyer, J. 2000. Genetic mapping of the Tsw locus for resistance to the Tospovirus Tomato spotted wilt virus in Capsicum spp. and its relationship to the Sw-5 gene for resistance to the same pathogen in tomato. Mol. Plant Microbe Interact. 13:673-682.
Kang, Y.C., Yeh, S.D., Liao, C.H., Chou, W.C., Liu, F.L., Dong, J.H., and Chen, T.C. 2014. Verification of serological relationship between two phylogenetically related peanut-infecting Tospovirus species. European J. Plant Pathol. 140:815-828.
Keer, J.T., and Birch, L. 2008. Essentials of nucleic acid analysis: A robust approach. Royal Society of Chemistry.
Knierim, D. (unpublished). Cloning of WSMoV genome
Komoda, K., Narita, M., Tanaka, I., and Yao, M. 2013. Expression, purification, crystallization and preliminary X-ray crystallographic study of the nucleocapsid protein of tomato spotted wilt virus. Acta. Crystallogr. Sect. F. Struct. Biol. Cryst. Commun. 69:700-703.
Kung, Y.J., Lin, S.S., Huang, Y.L., Chen, T.C., Harish, S.S., Chua, N.H., and Yeh, S.D. 2012. Multiple artificial microRNAs targeting conserved motifs of the replicase gene confer robust transgenic resistance to negative-sense single-stranded RNA plant virus. Mol. Plant. Pathol. 13:303-317.
Law, M.D., and Moyer, J.W. 1990. A tomato spotted wilt-like virus with a serologically distinct N protein. J. Gen. Virol. 71:933-938.
Li, B., Wang, Q., Pan, X., Fernandez de Castro, I., Sun, Y., Guo, Y., Tao, X., Risco, C., Sui, S.F., and Lou, Z. 2013. Bunyamwera virus possesses a distinct nucleocapsid protein to facilitate genome encapsidation. Proc. Natl. Acad. Sci. U. S. A. 110:9048-9053.
Li, J., Feng, Z., Wu, J., Huang, Y., Lu, G., Zhu, M., Wang, B., Mao, X., and Tao, X. 2015. Structure and function analysis of nucleocapsid protein of tomato spotted wilt virus interacting with RNA using homology modeling. J. Biol. Chem. 290:3950-3961.
Lin, C.Y., Ku, S.M., Tan, C.W., Yeh, S.D., and Jan, F.J. 2011. Construction of the binary vector with bi-selectable markers for generating marker-free transgenic plants. Botanical Studies 52:239-248.
Lopez, C., Aramburu, J., Galipienso, L., Soler, S., Nuez, F., and Rubio, L. 2011. Evolutionary analysis of tomato Sw-5 resistance-breaking isolates of Tomato spotted wilt virus. J. Gen. Virol. 92:210-215.
Lu, G., Li, J., Zhou, Y., Zhou, X., and Tao, X. 2017. Model-based structural and functional characterization of the Rice stripe tenuivirus nucleocapsid protein interacting with viral genomic RNA. Virology 506:73-83.
Mohl, B.P., and Barr, J.N. 2009. Investigating the specificity and stoichiometry of RNA binding by the nucleocapsid protein of Bunyamwera virus. RNA 15:391-399.
Neumann, G., Whitt, M.A., and Kawaoka, Y. 2002. A decade after the generation of a negative-sense RNA virus from cloned cDNA - what have we learned? J. Gen. Virol. 83:2635-2662.
Niu, F., Shaw, N., Wang, Y.E., Jiao, L., Ding, W., Li, X., Zhu, P., Upur, H., Ouyang, S., Cheng, G., and Liu, Z.J. 2013. Structure of the Leanyer orthobunyavirus nucleoprotein-RNA complex reveals unique architecture for RNA encapsidation. Proc. Natl. Acad. Sci. U. S. A. 110:9054-9059.
Olal, D., and Daumke, O. 2016. Structure of the Hantavirus nucleoprotein provides insights into the mechanism of RNA encapsidation. Cell Rep. 14:2092-2099.
Olal, D., Dick, A., Woods Jr., V.L., Liu, T., Li, S., Devignot, S., Weber, F., Saphire, E.O., and Daumke, O. 2014. Structural insights into RNA encapsidation and helical assembly of the Toscana virus nucleoprotein. Nucleic Acids Res. 42:6025-6037.
Osborne, J.C., and Elliott, R.M. 2000. RNA binding properties of Bunyamwera virus nucleocapsid protein and selective binding to an element in the 5' terminus of the negative-sense S segment. J. Virol. 74:9946-9952.
Pang, S.Z., Jan, F.J., and Gonsalves, D. 1997. Nontarget DNA sequences reduce the transgene length necessary for RNA-mediated tospovirus resistance in transgenic plants. Proc. Natl. Acad. Sci. U. S. A. 94:227-264.
Pang, S.Z., Bock, J.H., Gonsalves, C., Slightbottom, J.L., and Gonsalves, D. 1994. Resistance of transgenic Nicotiana benthamiana plants to tomato spotted wilt and impatiens necrotic spot tospoviruses: evidence of involvement of the N protein and N gene RNA in resistance. Phytopathology 84:243-249.
Pappu, H.R., Jones, R.A., and Jain, R.K. 2009. Global status of tospovirus epidemics in diverse cropping systems: successes achieved and challenges ahead. Virus Res. 141:219-236.
Peng, J.C., Yeh, S.D., Huang, L.H., Li, J.T., Cheng , Y.F., and Chen, T.C. 2011. Emerging threat of thrips-borne Melon yellow spot virus on melon and watermelon in Taiwan. Eur. J. Plant Pathol. 130:205-214.
Peng, J.C., Chen, T.C., Raja, J.A.J., Yang, C.F., Chien, W.C., Lin, C.S., Liu, F.L., Wu, H.W., and Yeh, S.D. 2014. Broad-spectrum transgenic resistance against distinct tospovirus species at the genus level. PLOS ONE 9:e96073.
Peng, R., Zhu, T., Oladejo, B.O., Musyoki, A.M., Cui, Y., Shi, Y., Wang, P., and Gao, G.F. 2016. In vitro assembly of Ebola virus nucleocapsid-like complex expressed in E. coli. Protein Cell 7:888-898.
Ponchon, L., Catala, M., Seijo, B., El Khouri, M., Dardel, F., Nonin-Lecomte, S., and Tisne, C. 2013. Co-expression of RNA-protein complexes in Escherichia coli and applications to RNA biology. Nucleic Acids Res. 41:e150.
Prins, M., de Haan, P., Luyten, R., van Veller, M., van Grinsven, M.Q., and Goldbach, R. 1995. Broad resistance to tospoviruses in transgenic tobacco plants expressing three tospoviral nucleoprotein gene sequences. Mol. Plant-Microbe In. 8:85-91.
Rao, X., Liu, Y., Wu, Z., and Li, Y. 2011. First report of natural infection of watermelon by Watermelon silver mottle virus in China. New Disease Reports 24:12.
Raymond, D.D., Piper, M.E., Gerrard, S.R., and Smith, J.L. 2010. Structure of the Rift Valley fever virus nucleocapsid protein reveals another architecture for RNA encapsidation. Proc. Natl. Acad. Sci. U. S. A. 107:11769-11774.
Reguera, J., Malet, H., Weber, F., and Cusack, S. 2013. Structural basis for encapsidation of genomic RNA by La Crosse Orthobunyavirus nucleoprotein. Proc. Natl. Acad. Sci. U. S. A. 110:7246-7251.
Sanford, J.C., and Johnston, S.A. 1985. The concept of parasite-derived resistance-deriving resistance genes from the parasite's own genome. J. Theor. Biol. 113:395-405.
Schmaljohn, C., and Elliott, R.M. 2013. Bunyaviridae. Pages 1244–1282 in: Fields Virology, H.P.M. Knipe D.M., ed. Lippincott Williams & Wilkins, PA, USA.
Stevens, M.R., Scott, S.J., and Gergerich, R.C. 1992. Inheritance of a gene for resitance to Tomato spotted wilt virus (TSWV) from Lycopersicon esculentum Mill. Euphytica. 59:9-17.
Sun, Y.-J. (1995). Molecular cloning and nucleotide sequence analysis of the S RNA of Watermelon Silver Mottle Virus. In Department of Plant Pathology (National Chung Hsing University).
Surtees, R., Ariza, A., Punch, E.K., Trinh, C.H., Dowall, S.D., Hewson, R., Hiscox, J.A., Barr, J.N., and Edwards, T.A. 2015. The crystal structure of the Hazara virus nucleocapsid protein. B.M.C. Struct. Biol. 15:24.
Tseng, H.H., and Jan, F.J. (2006). Generation of monoclonal antibody against the replicase of watermelon silver mottle tospovirus and characterization of the infectious nucleocapsids In Department of Plant Pathology (National Chung Hsing University), pp. 45.
Walter, C.T., Costa Bento, D.F., Alonso, A.G., and Barr, J.N. 2011. Amino acid changes within the Bunyamwera virus nucleocapsid protein differentially affect the mRNA transcription and RNA replication activities of assembled ribonucleoprotein templates. J. Gen. Virol. 92:80-84.
Wang, Q., Ma, X., Qian, S., Zhou, X., Sun, K., Chen, X., Zhou, X., Jackson, A.O., and Li, Z. 2015. Rescue of a plant negative-strand RNA virus from cloned cDNA: insights into enveloped plant virus movement and morphogenesis. PLOS Pathog. 11:e1005223.
Yang, C.F., Chen, K.C., Cheng, Y.H., Raja, J.A., Huang, Y.L., Chien, W.C., and Yeh, S.D. 2014. Generation of marker-free transgenic plants concurrently resistant to a DNA geminivirus and a RNA tospovirus. Sci. Rep. 4:5717.
Yazhisai, U., Rajagopalan, P.A., Raja, J.A., Chen, T.C., and Yeh, S.D. 2015. Untranslatable tospoviral NSs fragment coupled with L conserved region enhances transgenic resistance against the homologous virus and a serologically unrelated tospovirus. Transgenic Res 24:635-649.
Yeh, S.D., and Chang, T.F. 1995. Nucleotide sequence of the N gene of Watermelon silver mottle virus, a proposed new member of the genus Tospovirus. Phytopathology 85.
Yeh, S.D., Chao, C.H., Cheng, Y.H., and Chen, C.C. 1996. Serological comparison of four distinct tospoviruses by polyclonal antibodies to purified nucleocapsid proteins. . Acta Hortic. 431.
Yeh, S.D., Lin, Y.C., Cheng, Y.H., Jih, C.L., Chen, M.J., and Chen, C.C. 1992. Identification to tomato spotted wilt-like virus on watermelon in Taiwan. Plant Dis. 76:825-840.
Zhao, J.H., and Yeh, S.D. (1995). Purification and serology of the nucleocapsid proteins of four distinct tospoviruses. In Department of Plant Pathology (National Chung Hsing University), pp. 52.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top