(3.237.97.64) 您好!臺灣時間:2021/03/04 15:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭晉傑
研究生(外文):Chin-Chieh Cheng
論文名稱:水深及延長照光對茭白生長發育之影響與茭白黑穗菌之菌液對南瓜幼苗生長之影響
論文名稱(外文):Effects of Water Depth and Photoperiod Extension on The Water Bamboo (Zizania latifolia Turcz.) Growth and Development and Effects of Ustilago esculenta P. Henn. Broth Culture Solution on The Squash Seedling Growth
指導教授:黃三光黃三光引用關係
口試委員:謝慶昌莊老達
口試日期:2017-07-06
學位類別:碩士
校院名稱:國立中興大學
系所名稱:園藝學系所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:70
中文關鍵詞:茭白栽培水深延長照光茭白黑穗菌植物生長。
外文關鍵詞:Water bamboo (Zizania latifolia Turcz.)Cultivating water depthPhotoperiod extensionSmut fungi (Ustilago esculenta P. Henn.)Plant growth.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:78
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
全球暖化的現象近年來愈發嚴重,導致氣候異常且極端天氣型態發生頻率增加,例如乾旱、熱浪、寒流、暴雨。水資源是農業生產過程中不可或缺的一環,茭白筍產季為多水的夏秋兩季,倘若缺水會對茭白產業產生莫大衝擊,且栽培茭白時如處於短日環境中則會發生矮化症,目前發現延長光照可以克服此問題。本試驗以不同栽培水位深度(第一次處理:8, 16, 24公分;第二次處理:30, 40, 50公分)與延長光照處理探討栽培水深及光照對茭白生長發育之影響。除了田間栽培試驗之外,也試著將茭白離體葉片放置於不同光度之環境中,探討光照處理是否具有延緩茭白葉片老化的效果,進而討論光照對茭白植株生長促進之效果。另外,寄生於茭白植株中的茭白黑穗菌在離體培養的環境中,已被確認具有產生植物生長素的能力。本試驗試著以液態培養之菌液施用於南瓜幼苗上,探討茭白黑穗菌菌液是否具有促進植物生長之物質。
基本上,茭白植株株高、筍長以及筍重與栽培水深呈正相關,電照處理也會促進茭白植株生長與孕筍;而分蘗數僅受水深處理影響,但於低水位栽培(8, 16, 24公分)時組別之間無顯著差異,於高水位(30, 40, 50公分)試驗處理時則水位較低之處理組其分蘗數顯著多於栽培水深50公分之組別;茭白筍品質則是電照再加上茭白孕筍期時以水深40公分栽培擁有最佳之品質。茭白離體葉片試驗結果發現,將葉片置於低光度(4、7 PPFD)環境能有效地延緩茭白葉片葉綠素螢光值與葉綠素計讀值的下降。此試驗光度遠小於一般正常情況(晴天中午約2200 PPFD),尚須考量到離體葉片本身係已經受傷之組織,故推測適當光照可有效促進茭白葉片行光合作用進而累積乾物質、延緩老化;田間試驗也證實以4.3至10 PPFD之延長光照時間處理可促進茭白植株生長之結果。於茭白黑穗菌菌液噴施澆灌南瓜幼苗的結果,四週後處理組的株高顯著地高於對照組,總生長量約增加80 %,有趣的是此結果並非與菌液濃度呈正相關;另一項被促進之結果為節數,三組處理組(濃度:102、104、106孢子數.毫升-1)皆比對照組約多4個節位,因此推論茭白黑穗菌菌液似乎含有能夠促進植株生長之物質。
The Global warming is getting more and more severe in recent years, and it leads to abnormal climate and extreme weather conditions such as drought, heat wave, cold current and heavy rainfalls. The water resource is quite important in agronomic production process. The cultivation seasons of water bamboo in Taiwan are summer and autumn, if water shortage happens during these seasons, it will crash the industry. On the other hand, cultivating the water bamboo in short daylength will cause stunting disease, but previous research indicated that it can be overcome by extending the photoperiod. In this study, different cultivating water depths with or without photoperiod extension were applied to investigate the effects of water conservation and photoperiod extension on water bamboo (Zizania latifolia Turcz.) growth and development. Furthermore, we also investigated the effects of different light intensities on leaf senescence by using detached leaves and the effects of light intensities on water bamboo plant growth. In addition, it has been known that the smut fungi (Ustilago esculenta) which is parasitic on the water bamboo can produce the auxin in vivo. This study investigated the effects of Ustilago esculenta broth culture solution on squash seedling growth.
Results from this research indicated that plant height, shoot length and shoot weight are positively correlated with cultivating water depth and photoperiod extension may increase water bamboo plant growth. Number of tillers per rhizome was affected by cultivating water depth, however, no significant difference was observed among the lower water depth treatments (8, 16, 24 cm), while significant differences did exist among the higher water depth treatments (30, 40, 50 cm).The number of tillers per rhizome with a cultivating water depth of 30 cm is greater than that of 50 cm. Furthermore, application of photoperiod extension to prevent stunting disease in early growth followed by growing with a cultivating water depth of 40 cm resulted in the best water bamboo quality.
The results of water bamboo detached leaf experiment suggested that the reduction in leaf chlorophyll fluorescence and leaf chlorophyll content is effectively delayed under low light intensities (4, 7 PPFD). Because the light intensities applied in this experiment was much lower than that of the normal condition (2200 PPFD at sunny day noon) and the detached leaves were wounded, we conjectured that appropriate light intensity may effectively enhance leaf photosynthesis accumulate carbohydrates in leaves, and therefore postponed leaf senescence. Previous field experiments also indicated that light intensity can increase the water bamboo growth.
Results from spraying or irrigating smut fungi (Ustilago esculenta) broth culture solution to squash seedlings suggested that plant height in all treatments is significantly higher than that of control and total growth increased about 80% at four weeks after treatment, interestingly, these results were not positively correlated with the concentrations of the solution. The node number of seedling were also promoted by treatment with the fungi broth culture solution with four more nodes in all treatments relative to the control. These results suggested that smut fungi broth culture solution may contain some growth promoting substance.
摘要.......i
Summary.......ii
目錄.......iv
圖目錄.......v
表目錄.......vi
壹、前言.......1
貳、前人研究.......2
一、茭白筍概述.......2
二、茭白黑穗菌概述.......4
三、茭白植株與茭白黑穗菌之共生關係.......6
四、淹水對岸邊植株生長發育之影響.......9
五、光照對植物之重要性.......10
六、葉綠素螢光.......12
七、微生物製劑.......15
參、材料與方法.......16
一、栽培水位深度與延長光照對茭白植株及孕筍之影響.......16
二、光照對茭白離體葉片之影響.......20
三、溫度對茭白黑穗菌生長速度之影響.......22
四、茭白黑穗菌液對南瓜幼苗植株生長之影響.......24
肆、結果.......26
一、栽培水深對茭白植株生長發育之影響.......26
二、延長光照時間與栽培水深處理對茭白植株生長發育之影響.......30
三、茭白離體葉片老化試驗.......42
四、茭白黑穗菌生長適溫試驗.......46
五、茭白黑穗菌液對南瓜幼苗植株生長之影響試驗.......47
伍、討論.......52
一、栽培水深對茭白植株生長發育之結果.......52
二、延長光照時間與栽培水深處理對茭白植株生長發育之影響.......54
三、茭白離體葉片老化試驗.......57
四、茭白黑穗菌生長適溫試驗.......58
五、茭白黑穗菌液對南瓜幼苗植株生長之影響試驗.......59
陸、結論.......61
參考文獻.......62
江解增、曹碚生、邱屆娟、韓秀芹、張強、朱慶森。2003。茭白碳水化合物積累與分配特性研究。園藝學報 30(5): 535-539。
江解增、邱屆娟、韓秀芹、曹碚生、朱慶森。2004。茭白生育過程中地上各部位內源激素的含量變化。武漢植物學研究 22(3): 245-250。
行政院農業委員會農糧署。2016。茭白筍。105年農業統計年報。行政院農業委員會農糧署。
李裕娟、楊純明、蕭巧玲。2010。暗期光中斷對水稻生長, 發育及生產之影響。台灣農業研究 59(1): 1-18。
林天枝。1995。茭白筍產業之現況分析。臺中區農業改良場特刊 37: 215-226。
林天枝、莊杉行。1995。茭白筍栽培技術改進研究。臺中區農業改良場研究彙報 47: 1-9。
林天枝。2005。茭白筍。p. 271-276。方怡丹編著。台灣農家要覽增訂(三版)---農作二。行政院農業委員會。台北。
林源吉、夏湛恩、俞曉平。2006。茭白黑粉菌搖瓶發酵條件的研究。浙江農業學報 18(5): 344-347。
林鈺玲。1985。茭白筍莖膨大之生理探討-天然細胞分裂素的分析及生物活性。國立中興大學植物研究所碩士論文。台中。
洪國棟、高景輝。2007。Hydrogen peroxide, calcium, and leaf senescence in rice. 作物、環境與生物資訊 4(2): 145-150。
胡文若、孫文章。2015。馬鈴薯微體繁殖技術之開發與應用。臺南區農業改良場研究彙報 65: 20-28。
姚銘輝、陳守泓、漆匡時。2007。利用葉綠素螢光估算作物葉片之光合作用。台灣農業研究 56(3): 224-236。
姚銘輝。2011。光度單位轉換問題之探討。農業試驗所技術服務 22(1): 26-29。
徐超華、李軍營、崔明昆、馬二登、黄國賓、龔明。2013。延長光照時間對菸草葉片生長發育及光合特性的影響。西北植物學報 33(4): 763-770。
張林仁、林嘉興、林信山。1990。梨樹之營養動態。果樹營養與果園土壤管理研討會專集 20: 233-244。
許奕婷、高景輝。2010。Abscisic acid-induced leaf senescence of rice seedlings is due to hydrogen peroxide accumulation. 作物、環境與生物資訊 7(4): 243-249。
許崑衍、李明仁。2005。叢枝菌根菌Acaulospora scrobiculata對羅氏鹽膚木苗木生長之效應。中華林學季刊 38(4): 425-435。
陳和緯、林盈宏、黃振文、張碧芳。2010。Bacillus mycoides CHT2402對萵苣幼苗生長之影響。植物病理學會刊 19(2): 157-165。
陳建德、蘇彥碩、高景輝。2004。Changes in soluble sugar content and respiration rate in methyl jasmonate-treated rice leaves. Bot. Bull. Acad. Sin.。45(3): 197-202。
郭得平、李曙軒、曹小芝。1991。茭白黑粉菌(Ustilago esculenta)某些生物學特性 的研究。浙江農業大學學報。
程登國、高景輝。2010。Effects of exogenous spermine on polyethylene glycol-induced responses in rice leaves。作物、環境與生物資訊 7(4): 233-242。
黃文的、曾德賜。1998。黑穗病菌 (Ustilago esculenta P. Henn.) 致病作用過程中茭白 (Zizaniz latifolia Turcz.) 鐵需求性與胺基態氮代謝之改變。國立中興大學植物研究所碩士論文。台中。
黃晉興、林益昇、安寶貞。2010。利用產期調控與田間排水以管理茭白基腐病。近年來我國重大作物病害之發生及其診斷、監測與防治研討會專刊: 109-126。
黃晉興。2014。茭白筍之栽培與利用。農業試驗所技術服務季刊 25(3): 7-10。
黃晉興、安寶貞。2016。茭白矮化症之發生與防治。台灣農業研究 65(3): 278-285。
楊芮、吳俊達。2013。幾丁聚醣與添加抗壞血酸處理對截切‘紅龍’楊桃櫥架壽命與品質之影響。臺灣園藝 59(1): 75-88。
趙雪梅、張治安、楊福、王曉慧。2004。菰葉片光合作用溫度特性的研究。吉林農業大學學報 26(5): 488-490。
蔡正宏。2013。茭白與黑穗菌的相互關係。臺中區農業改良場特刊 :209–215。
劉政道。1977。茭白外部形態及其花器構造之研究。中國園藝 23(6): 281-286。
劉玉穎、廖祥儒、徐景智、王俊峰、李同凱。2002。補充光照對番茄幼苗生長的影響。河北大學學報 22(1): 51-54。
羅英妃。2005。茭白品種及黑穗菌系之研究。臺中區農業改良場特刊 73: 25-25。
Asaeda, T. and K. Siong. 2008. Dynamics of growth, carbon and nutrient translocation in Zizania latifolia. Ecol. Eng. 32(2): 156–165.
Bailey-Serres, J. and L. A. C. J. Voesenek. 2008. Flooding stress: acclimations and genetic diversity. Annu. Rev. Plant Biol. 59:313–39
Blom, C. W. P. M. and L. A. C. J. Voesenek. 1996. Flooding: the survival strategies of plants. Trends Ecol. Evol. 11(7): 290–295.
Blom, C. W. P. M., L. A. C. J. Voesenek, M. Banga, W. M. H. G. Engelaar, J. H. G. M. Rijnders, V. D. Steeg, and E. J. W. Visser. 1994. Physiological ecology of riverside species: adaptive responses of plants to submergence. Ann. Bot. 74(3): 253–263.
Bruce, S. A., B. J. Saville, and R. N. Emery. 2011. Ustilago maydis produces cytokinins and abscisic acid for potential regulation of tumor formation in maize. J. Plant Growth Regul. 30(1): 51–63.
Busch, J., I. A. Mendelssohn, B. Lorenzen, H. Brix, and S. Miao. 2004. Growth responses of the everglades wet prairie species Eleocharis cellulosa and Rhynchospora tracyi to water level and phosphate availability. Aquat. Bot. 78(1): 37–54.
Chan, Y.-S., and L. B. Thrower. 1980a. The host-parasite relationship between Zizania caduciflora Turcz. and Ustilago esculenta P. Henn. III. Carbohydrate metabolism of U. esculenta and the host-parasite combination. New Phytol. 85(2): 217–224.
Chan, Y.-S., and L. B. Thrower. 1980b. The host-parasite relationship between Zizania caduciflora Turcz. and Ustilago esculenta P. Henn. I. Structure and development of the host and host–parasite combination. New Phytol. 85(2): 201–207.
Chan, Y.-S., and L. B. Thrower. 1980c. The host-parasite relationship between Zizania caduciflora Turcz. and Ustilago esculenta P. Henn. II. Ustilago esculenta in culture. New Phytol. 85(2): 209–216.
Chan, Y.-S., and L. B. Thrower. 1980d. The host-parasite relationship between Zizania caduciflora Turcz. and Ustilago esculenta P. Henn. IV. Growth substances in the host-parasite combination. New Phytol. 85(2): 225–233.
Chung, K. R., and D. D. Tzeng. 2004a. Biosynthesis of indole-3-acetic acid by the gall-inducing fungus Ustilago esculenta. J. Biol. Sci. 4(6): 744–750.
Chung, K. R., and D. D. Tzeng. 2004b. Nutritional requirements of the edible gall-producing fungus Ustilago esculenta. J. Biol. Sci. 4(2): 246–252.
Cleland, R. E. 2010. Auxin and cell elongation. In: P. J. Davies (ed), Plant Hormones. Springer Netherlands, New York. pp.204–220.
Cook, C. D., B. J. Gut, E. M. Rix, and J. Schneller. 1974. Water plants of the world: a manual for the identification of the genera of freshwater macrophytes. Springer Science & Business Media, England. pp.441–444.
Cooling, M. P., G. G. Ganf, and K. F. Walker. 2001. Leaf recruitment and elongation: an adaptive response to flooding in Villarsia reniformis. Aquat. Bot. 70(4): 281–294.
Datta, S. K., and B. Banerji. 1978. The influence of varying water regimes on tillering of deepwater rice and its relation to yield. 1978 International Deepwater Rice Workshop. International rice institute, Philippines. pp.233-246.
Delaney, K. J. 2008. Injured and uninjured leaf photosynthetic responses after mechanical injury on Nerium oleander leaves, and Danaus plexippus herbivory on Asclepias curassavica leaves. Plant Ecolog. 199(2): 187–200.
Din, X., X. Xu, and W. Chen. 1991. A preliminary study on the development of “male” and smutted tillers of Zizania caduciflora Hand. J. Wuhan Bot. Res. 9(2): 115–120.
Fajer, J., I. Fujita, M. S. Davis, A. Forman, L. K. Hanson, and K. M. Smith. 1982. Photosynthetic energy transduction. Electrochemical and Spectrochemical Studies of Biological Redox Components. American chemical society, USA. pp. 489–513.
Feldbrügge, M., J. Kämper, G. Steinberg, and R. Kahmann. 2004. Regulation of mating and pathogenic development in Ustilago maydis. Curr. Opin. Microbiol. 7(6): 666–672.
Ferguson, B. J., and C. A. Beveridge. 2009. Roles for Auxin, cytokinin, and strigolactone in regulating shoot branching. Plant Physiol. 149(4): 1929–1944.
Hughes, F. M. R., W. M. Adams, E. Muller, C. Nilsson, K. S. Richards, N. Barsoum, and M. Winfield. 2001. The importance of different scale processes for the restoration of floodplain woodlands. Regul. Rivers: Res. Manage. 17(4–5): 325–345.
Hung, S. F., T. L. Chang, I. Z. Chen, and D. C. N. Chang. 2006. Anatomic observation of the symbiotic coba (Zizania latifolia Turcz.) and Ustilago esculenta P. Henn. J. Taiwan Soc. Hort. Sci. 52(3): 291–296.
Idris, E. E., H. Bochow, H. Ross, and R. Borriss. 2004. Use of Bacillus subtilis as biocontrol agent. VI. Phytohormonelike action of culture filtrates prepared from plant growth-promoting Bacillus amyloliquefaciens FZB24, FZB42, FZB45 and Bacillus subtilis FZB37. J. Plant Dis. Prot. 111(6): 583–597.
Jeong, S. W., S. W. Hogewoning, and W. van Ieperen. 2014. Responses of supplemental blue light on flowering and stem extension growth of cut chrysanthemum. Sci. Hortic. 165: 69–74.
Karrenberg, S., S. Blaser, J. Kollmann, T. Speck, and P. J. Edwards. 2003. Root anchorage of saplings and cuttings of woody pioneer species in a riparian environment. Funct. Ecol. 17(2): 170–177.
Kiang, N. Y., J. Siefert, Govindjee, and R. E. Blankenship. 2007. Spectral signatures of photosynthesis. I. Review of earth organisms. Astrobiol. 7(1): 222–251.
Kim, S. J., E. J. Hahn, J. W. Heo, and K. Y. Paek. 2004. Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Sci. Hortic. 101(1–2): 143–151.
Krause, G. H., and E. Weis. 1991. Chlorophyll fluorescence and photosynthesis: the basics. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42(1): 313–349.
Lieffers, V. J., and J. M. Shay. 1981. The effects of water level on the growth and reproduction of Scirpus maritimus var. paludosus. Can. J. Bot. 59(2): 118–121.
Lin, C. H., and L. R. Chang. 1981. Studies on the gall formation of Zizania latifolia Turcz. I. Anatomical approach. Proceedings of the National Science Council. The Council, Virginia. pp.293–298.
Manzur, M. E., A. A. Grimoldi, P. Insausti, and G. G. Striker. 2009. Escape from water or remain quiescent? Lotus tenuis changes its strategy depending on depth of submergence. Ann. Bot. 104(6): 1163–1169.
Meyer, B. S., D. B. Anderson, and R. H. Böhning. 1960. Introduction to plant physiology. Introduction to Plant Physiology. D. van Nostrand, Princeton, New Jersey. pp.228-240.
Mony, C., E. Mercier, A. Bonis, and J. B. Bouzillé. 2010. Reproductive strategies may explain plant tolerance to inundation: A mesocosm experiment using six marsh species. Aquat. Bot. 92(2): 99–104.
Moulton, J. E. 1942. Extraction of auxin from maize, from smut tumors of maize, and from Ustilago zeae. Bot. Gazz. 103(4): 725–739.
Olson, B. E., and J. H. Richards. 1988. Tussock regrowth after grazing: Intercalary meristem and axillary bud activity of tillers of Agropyron desertorum. Oikos. 51(3): 374–382.
Parolin, P. 2009. Submerged in darkness: adaptations to prolonged submergence by woody species of the Amazonian floodplains. Ann. Bot. 103(2): 359–376.
Piepenbring, M., M. Stoll, and F. Oberwinkler. 2002. The generic position of Ustilago maydis, Ustilago scitaminea, and Ustilago esculenta (Ustilaginales). Mycol. Prog. 1(1): 71–80.
Raines, C. A. 2003. The Calvin cycle revisited. Photosynth. Res. 75(1): 1–10.
Reineke, G., B. Heinze, J. Schirawski, H. Buettner, R. Kahmann, and C. W. Basse. 2008. Indole-3-acetic acid (IAA) biosynthesis in the smut fungus Ustilago maydis and its relevance for increased IAA levels in infected tissue and host tumor formation. Mol. Plant Pathol. 9(3): 339–355.
Rodrı́guez, H., and R. Fraga. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17(4–5): 319–339.
Sakakibara, H. 2010. Cytokinin biosynthesis and metabolism. In: P. J. Davies (ed), Plant Hormones. Springer Netherlands, New York. pp.95–114.
Sparkes, D. L., S. J. Holme, and O. Gaju. 2006. Does light quality initiate tiller death in wheat? Eur. J. Agron. 24(3): 212–217.
Tang, J. Y., R. E. Zielinski, A. R. Zangerl, A. R. Crofts, M. R. Berenbaum, and E. H. DeLucia. 2006. The differential effects of herbivory by first and fourth instars of Trichoplusia ni (Lepidoptera: Noctuidae) on photosynthesis in Arabidopsis thaliana. J. Exp. Bot. 57(3): 527–536.
Tran, D. T., B. E. Verlinden, M. Hertog, and B. M. Nicolaï. 2015. Monitoring of extremely low oxygen control atmosphere storage of “Greenstar” apples using chlorophyll fluorescence. Sci. Hortic. 184: 18–22.
Urban, L., and M. Jannoyer. 2002. Functioning and role of stomata in mango leaves. In: A. C. Q. Pinto (ed), VII International Mango Symposium. Station de Bassin-Martin, Saint-Pierre. pp.441–446.
Wang, Q., J. Chen, F. Liu, and W. Li. 2014. Morphological changes and resource allocation of Zizania latifolia (Griseb.) stapf in response to different submergence depth and duration. Flora – Morphol. Distrib. Func Ecol. Plants 209(5–6): 279–284.
Woodward, A. W., and B. Bartel. 2005. Auxin: regulation, action, and interaction. Ann. Bot. 95(5): 707–735.
Xu, Y. L., D. A. Gage, and J. Zeevaart. 1997. Gibberellins and stem growth in Arabidopsis thaliana (Effects of photoperiod on expression of the GA4 and GA5 loci). Plant Physiol. 114(4): 1471–1476.
Yan, N., X. Q. Wang, X. F. Xu, D. P. Guo, Z. D. Wang, J. Z. Zhang, and H. L. Liu. 2013. Plant growth and photosynthetic performance of Zizania latifolia are altered by endophytic Ustilago esculenta infection. Physiol. Mol. Plant Pathol. 83: 75–83.
Yang, H. C., and L. S. Leu. 1978. Formation and histopathology of galls induced by Ustilago esculenta in Zizania latifolia. Phytopathol. 68(11): 1572–1576.
You, W., Q. Liu, K. Zou, X. Yu, H. Cui, and Z. Ye. 2011. Morphological and molecular differences in two strains of Ustilago esculenta. Curr. Microbiol. 62(1): 44–54.
Zhang, J. Z., F. Q. Chu, D. P. Guo, K. D. Hyde, and G. L. Xie. 2012. Cytology and ultrastructure of interactions between Ustilago esculenta and Zizania latifolia. Mycol. Prog. 11(2): 499–508.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔