跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/20 00:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李巧韻
研究生(外文):Praphasiri Chaiyot
論文名稱:LED光源對組織培養之鳳梨生長與形態之影響
論文名稱(外文):Effects of Light-Emitting Diodes on Growth and Morphogenesis of Pineapples in vitro
指導教授:陳京城
指導教授(外文):Ching-Cheng Chen
口試委員:楊耀祥施昭彰陳京城
口試委員(外文):Yau-Shiang YangJau-Chang ShihChing-Cheng Chen
口試日期:2017-07-20
學位類別:碩士
校院名稱:國立中興大學
系所名稱:園藝學系所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:45
中文關鍵詞:發光二極體光質鳳梨
外文關鍵詞:LEDlight qualityAnanas comosus
相關次數:
  • 被引用被引用:0
  • 點閱點閱:236
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
本研究以果冠之腋芽及芽球培養而來之鳯梨小苗為試驗材料,調查不同LED光源對台農17號(‘TN17’)及‘MD-2’鳳梨小苗瓶内生長及形態發生的影響。
結果顯示,不同光源處理之‘TN17’果冠腋芽之植株的葉片數及根數有顯著差異,在9IR (100 % 遠紅光) 處理下之葉片數及根數最低。經9B (100 % 藍光) 處理之植株葉片氣孔密度最高 (147/mm2)。在3R4B2IR (Red 45%, Green 1%, Blue 43%, Infrared 11%) 處理下之‘TN17’植株鮮重乾重和葉綠素含量最高。經9IR (100 % 遠紅光) 處理下之‘MD-2’植株,總葉綠素含量及植株葉片氣孔密度最低。來自‘TN17’和‘MD-2’芽球之植株的葉綠素含量在不同處理間有顯著差異。經9IR (100% 遠紅光) 處理下之‘TN17’和‘MD-2’植株的葉綠素含量最低。經9B (100 %藍光) 處理之‘TN17’芽球之植株的植株葉片氣孔密度最低。經CW (冷白光) 處理之‘MD-2’芽球之植株的葉片氣孔密度最高,而經9IR (100 % 遠紅光) 最低。
總結而言,不同LED光源對‘TN17’和‘MD-2’鳳梨瓶内生長及形態發生有顯著的影響。紅、藍、白光相對於遠紅光對促進‘TN17’和‘MD-2’鳳梨瓶内生長及形態發生的影響較為顯著。
The effect of different light emitting diode (LED) lights on growth and morphogenesis of ‘TN17’ (Tainung 17) and ‘MD-2’ pineapples cultured in vitro was investigated. Plantlets regenerated from axillary buds of crown stems and meristematic globular bodies were used in this study.
The result showed that there were significant differences in leaf and root numbers of ‘TN17’ plantlets regenerated from axillary buds of crown stems among treatments. The lowest leaf and root numbers were obtained under infrared light (9IR) treatment. The density of stomata of ‘TN17’ plantlets regenerated from axillary buds of crown stems in the blue light (9B) treatment was the highest (147/mm2). ‘TN17’ plantlets in the treatment of 3R4B2IR (Red 45%, Green 1%, Blue 43%, Infrared 11%) had the highest fresh weight, dry weight and chlorophyll contents. The lowest chlorophyll a, chlorophyll b and total chlorophyll contents and stomatal density were obtained in the 9IR treatment of ‘MD-2’ plantlets. ‘TN17’ and ‘MD-2’ plantlets regenerated from meristematic globular bodies had significant differences in chlorophyll contents. Plantlets under 9IR treatment had the lowest chlorophyll contents in both ‘TN17’ and ‘MD-2’ cultivars. ‘TN17’ plantlets regenerated from meristematic globular bodies in 9B treatment had the lowest stomatal density. The stomatal density in CW treatments were the highest and that in 9IR treatment was the lowest in ‘MD-2’ plantlets regenerated from meristematic globular bodies.
In summary, different LED light sources had significant effects on growth and morphogenesis of ‘TN17’ and ‘MD-2’ pineapples. Red, blue and white light were more effective than IR light on promoting growth and morphogenesis of ‘TN17’ and ‘MD-2’ pineapples cultured in vitro.
中文摘要 i
Abstract ii
Table of Contents iii
List of Tables iv
List of Figures vi
Introduction 1
Review of literature 2
Propagation of pineapple 2
Effect of light on plant growth and development 2
Application of light-emitted diode (LED) lighting in Horticulture 4
Materials and methods 6
A. Materials and treatments 6
Experiment 1. Growth of axillary buds of ‘TN17’ pineapple crowns 6
Experiment 2. Growth of ‘TN17’ and ‘MD-2’ pineapple plantlets 6
Experiment 3. Growth of meristematic globular bodies (MGB) of ‘TN17’ and ‘MD-2’ pineapples 7
B. Measurement and analysis 8
C. Statistical analysis 8
Results 9
Experiment 1. Growth of axillary buds of ‘TN17’ pineapple crowns 9
Experiment 2. Growth of ‘TN17’ and ‘MD-2’ pineapple plantlets 16
Experiment 3. Growth of meristematic globular bodies (MGB) of ‘TN17’ and ‘MD-2’ pineapples 28
Discussion 36
References 39
Akbar, M. A., B. K. Karmakar and S. K. Roy. 2003. Callus induction and high-frequency plant regeneration of pineapple (Ananas comosus (L.) Merr.). Plant Tissue Culture 13: 109-116.
Akoyunoglou, G. and H. Anni. 1984. Blue light effect on chloroplast development in higher plants. pp. 397-406. In: Senger, H. (ed.). Blue light effects in biological systems. Springer, Berlin, Heidelberg.
Arnon, D. L. 1949. Copper enzyme in isolated chloroplast polyphenol oxidase in Bata vulgaris. Plant Physiology 24: 1-15.
Baraldi, R., G. Cristoferi, O. Facini and B. Lercari. 1992. The effect of light quality in Prunus cerasus. I. Photoreceptors involved in internode elongation and leaf expansion in juvenile plant. Photochemistry and Photobiology 56: 541-544.
Bartholomew, D. P. and S. B. Kadzimin. 1977. Pineapple. pp. 113-156. In: Alvim, P. D. T. and T. T. Kozlowski (eds.). Ecophysiology of Tropical Crops. Academic Press, Bahia.
Bourget, C. M. 2008. An introduction to light-emitting diodes. HortScience 43: 1944-1946.
Britz, S. J. and Sager J. S. 1990. Photomorphogenesis and photoassimilation in soybean and sorghum grown under broad spectrum or blue-deficient light sources. Plant Physiology 94: 448-454.
Brown, C. S., A. C. Schuerger and J. C. Sager. 1995. Growth and photomorphogenesis of pepper under red light-emitting diodes with supplemental blue or far-red lighting. Journal of the American Society for Horticultural Science 120: 808-813.
Bubenheim, D. L., B. Bugbee and F.B. Salis bury. 1988. Radiation in controlled environments: Influence of lamp type and filter material. Journal of the American Society for Horticultural Science 113: 468-474.
Bula, R. J., R. C. Morrow, T. W. Tibbitts, D. J. Barta, R. W. Ingnatius and T. S. Martin. 1991. Light-emitting diodes as a radiation source for plants. HortScience 26: 203-205.
Chée, R. 1986. In vitro culture of Vitis: the effects of light spectrum, manganese sulfate and potassium iodide on morphogenesis. Plant Cell, Tissue and Organ Culture 1:121-134.
Chée, R. and R. M. Pool. 1982. The effect of growth substances and photoperiod on the development of shoot apices of Vitis cultured in vitro. Scientia Horticulturae 16:17-27.
Deitzer, G. F., R. Hayes and M. Jabben. 1979. Kinetics and time dependence of the effect of far red light in the photoperiodic induction of flowering in Wintex barley. Plant Physiology 64: 1015-1021.
Down, R. J. 1956. Photoreversibility of flower initiation. Plant Physiology 31: 279-284.
Economou, A. S. and P. E. Read. 1987. Light treatments to improve efficiency of in vitro propagation system. HortScience 22: 751-754.
Erdei, N., C. Barta, É. Hideg and B. Böddi. 2005. Light-induced wilting and its molecular mechanism in epicotys of dark-germinated pea (Pism sativum L.) seedling. Plant and Cell Physiology 46: 185-191.
Escalona, M. L., J. C. Gonzalez, B. M. Daquinta, J. L. González, Y. Desjardins and C. G. Borroto. 1999. Pineapple (Ananas comosos L. Merr) micropropagation in temporary immersion systems. Plant Cell Reports 18: 743-748.
Fang, W. and R. C. Jao. 1996. Simulation of light environment with fluorescent lamps and design of a movable light-mounting fixture in a growing room. Acta Horticulturae 440: 181-186.
Fitchet, M. 1985. Tissue culture of pineapples. Information Bulletin Citrus and Subtropical Fruit Research Institute 149: 1–2.
Goins, G. D., N. C. Yorio, M. M. Sanwo and C. S. Brown. 1997. Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LED) with and without supplemental blue lighting. Journal of Experimental Botany 48: 1407-1413.
Gupta, S. D. and B. Jatothu. 2013. Fundamentals and applications of light-emitting diodes (LEDs) in in vitro plant growth and morphogenesis. Plant Biotechnology Reports 7: 211-220.
Gyulai, G., J. Janovszky, E. Kiss, L. Lelik, A. Csillag, and L.E. Heszky. 1992. Callus initiation and plant regeneration from inflorescence primordia of the intergeneric hybrid Agropyron repens (L.) Beauv. x Bromus inermis Leyss. cv. nanus on a modified nutritive medium. Plant Cell Reports 11: 266-269.
Hahn, E. J., T. Kozai and K. Y. Paek. 2000. Blue and red light-emitting diodes with or without sucrose and ventilation affect in vitro growth of Rehmannia glutinosa plantlets. Journal of Plant Biology 43: 247-250.
Hedtrich, C. M. 1977. Differentiation of leaf discs of Prunus mahaleb. Acta Horticulturae 78: 177-183.
Hepton, A. 2003. Cultural system. pp. 109-142. In: Bartholomew, D. P., R. E. Pauli and K. G. Rohrbach (eds.). The pineapple: botany, production and uses. CAB International, Wallingford.
Heo, J., C. Lee, D. Chakrabarty and K. Paek. 2002. Growth responses of marigold and salvia bedding plants as affected by monochromic or mixture radiation provided by a light-emitting diode (LED). Plant Growth Regulation 38: 225-230.
Heo, J. W., K. S. Shin, S. K. Kim and K. Y. Peak. 2006. Light quality affects in vitro growth of grape ‘Teleki 5BB7’. Journal of Plant Biology 49: 276-280.
Hoenecke, M., R. J. Bula and T. W. Tibbitts. 1992. Importance of ‘blue’ photon levels for lettuce seedlings grown under red light-emitting diodes. HortScience 27: 427-430.
Huges, K. W. 1981. In vitro ecology: exogenous factor effecting growth and morphogenesis in plant culture system. Environmental and Experimental Botany 21: 281-288.
Ika, R. T. and I. Mariska. 2003. In vitro culture of pineapple by organogenesis and somatic embryogenesis: Its Utilization and Prospect. Buletin AgroBio 6: 34-40.
Ikeda, A., Y. Tanimura, K. Esaki, Y. Kawaai and S. Nakayama. 1992. Lighting design of plant cultivation system suing fluorescent lamps. Acta Horticulturae 319: 463-468.
Johnson, C. F., C. S. Brown, R. M. Wheeler, J. C. Sager, D. K. Chapman and G. F. Deitzer. 1996. Infrared light-emitting diode radiation causes gravitropic and morphological effects in dark-grown oat seedlings. Photochemistry and Photobiology 63: 238-242.
Kasperbauer, M. J. and D. E. Peaslee. 1973. Morphology and photosynthetic efficiency of tobacco leaves that received end-of-day red or far red light during development. Plant Physiology 52: 440-442.
Kim, H. H., G. D. Goins, R. M. Wheeler and J. C. Sager. 2004a. Green light supplementation for enhanced lettuce growth under red and blue light emitting diodes. HortScience 39: 1617-1622.
Kim, H. H., G. D. Goins, R. M. Wheeler and J. C. Sager. 2004b. Stomatal conductance of lettuce grown under or exposed to different light qualities. Annals of Botany 94: 691-697.
Kim, S. J., E. J. Hahn, J. W. Heo and K. Y. PaeK. 2004. Effects of LEDs on net photosynthetic rate, growth and leaf stomata of Chrysanthemum plantlets in vitro. Scientia Horticulturae 101: 143-151.
Kiss, J., L.E. Heszky, E. Kiss, and G. Gyulai. 1992. High efficiency adventive embryogenesis on somatic embryos of anther, filament and immature proembryo origin in horse-chestnut (Aesculus hippocastanum L.) tissue culture. Plant Cell, Tissue and Organ Culture 30: 59-64.
Krauss, B. H. 1949. Anatomy of the vegetative organs of the pineapple, Ananus comosus (L.) Merr. II. The leaf. Botanical Gazette (Chicago). 110: 333-404.
Larkin, P. J. and W. R. Scowcroft. 1981. Somaclonal variation a novel source of variability from cell culture for plant improvement. Theoretical and Applied Genetics 60: 197-214.
Lee, N., R. K. Tewari, E. J. Hahn and K. Y. Peak. 2007. Photon flux density and light quality induce changes in growth, stomatal development, photosynthesis and transpiration of Withania somnifera (L.) Dunal. Plantlets. Plant Cell, Tissue and Organ Culture 90: 141-151.
Li, H., Z. Xu and C. Tang. 2010. Effect of light emitting diodes on growth and morphogenesis of upland cotton (Gossypium hirsutum L.) plantlets in vitro. Plant Cell, Tissue and Organ Culture 103: 155-163.
Li, Q. and C. Kubota. 2009. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environmental and Experimental Botany 67: 59-64.
Lin, K. H., M. Y. Huang, W. D. Huang, M. H. Hsu. Z. W. Yang and C. M. Yang. 2013. The effect of red, blue, and white light-emitting diodes on the growth, development and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Scientia Horticulturae 150: 86-91.
Maas, F. M. 1992. Photomorphogenesis in roses. Thermo- and photomorphogenesis. Acta Horticulturae 305: 109-112.
Malézieux, E., F. Côte and D. P. Bartholomew. 2003. Crop environment, plant growth and physiology. pp. 69-107. In: Bartholomew, D. P., R. E. Pauli and K. G. Rohrbach (eds.). The pineapple: botany, production and uses. CAB International, Wallingford.
Massa, G. D., H. H. Kim, R.M. Wheeler and C.A. Mitchell. 2008. Plant productivity in response to LED lighting. HortScience 43: 1951-1956.
Marks, T. R. and S. E. Simpson. 1999. Effect of irradiance on shoot development in vitro. Plant Growth Regulation 28: 133-142.
Mapes, M.O. 1973. Tissue culture of bromeliads. Combined Proceedings International Plant Propagators Society 3: 47-55.
Mathews, V.H., T.S. Rangan, and S. Narayanaswamy. 1976. Micro-propagation of Ananas sativus in vitro. Zeitschrift für Pflanzenphysiologie 79: 450-454.
Mayak, S., T. Tirosh, A. llan, A. Duvdevani and E. Khayat. 1998. Growth and development of pineapple (Ananas comosus L.) plantlets cultured in vitro at enriched and ambient CO2 environments. Acta Horticulturae 461: 225-229.
Mizuno, T., W. Amaki and H. Watanabe. 2011. Effects of monochromatic light irradiation by LED on the growth and anthocyanin contents in leaves of cabbage seedlings. Acta Horticulturae 907: 179-184.
Moon, H. K., S. K. Park, Y. W. Kim and C. S. Kim. 2006. Growth of Tsuru-rindo (Tripterospermum japonicum) cultured in vitro under various sources of light-emitting diodes (LED) irradiation. Journal of Plant Biology 49: 174-179.
Morgan, D. C. and H. Smith. 1979. A systematic relationship between phytochrome-controlled development and species habitat, for plant grown in simulated natural irradiation. Planta 145: 253-258.
Morrow, R.C. 2008. LED lighting in horticulture. HortScience 43: 1947-1950.
Muleo, R. and S. Morini. 1990. Effect of light quality on regeneration from callus of Actinidia deliciosa. Acta Horticulturae 280: 155-158.
Nhut, D. T. and N. B. Nam. 2010. Light-emitting diodes (LEDs): an artificial lighting source for biological studies. pp. 134-139. In: Van, T. V. and T. Q. D. Khoa (eds.). The Third International Conference on the Development of Biomedical Engineering in Vietnam. Springer, Berlin, Heidelberg.
Noè, N., T. Eccher, E. Del Signore and A. Montoldi. 1998. Growth and proliferation in vitro of Vaccinium corymbosum under different irradiance and radiation spectral composition. Biologia Plantarum 41: 161-167.
Norton, C. R., M. E. Norton and T. Herrington. 1988. Light quality and the control of shoot length in woody ornamental plant grown in vitro. Acta Horticulturae 227: 453-456.
Olle, M. and A. Viršilė. 2013. The effect of light-emitting diode lighting on greenhouse plant growth and quality. Agricultural and Food Science 22: 223-234.
Pinker, I., K. Zoglauer and H. Goring. 1989. Influence of light on adventitious root formation in birch shoot cultures in vitro. Biologia Plantarum 31: 254-260.
Rangan, T. S. 1984. Pineapple. pp. 373-382. In: P. V. Ammirato, D. A. Evans, W. R. Sharp and Y. Yamada (eds.). Handbook of plant cell culture, Crop species. Macmillan, New York.
Rao, N. K. S., R. D. Swamy and E. K. Chacko. 1981. Differentiation of plantlets in hybrid embryo callus of pineapple. Scientia Horticulturae 15: 235-238.
Richter, G., A. Dudel, R. Einspanier, I. Danhauer and W. Hüsemann. 1987. Blue-light control of mRNA level and trascription during chloroplat differentation in photomixotrophic and photoautotrophic cell cultures (Chenopodium rubrum L.). Planta 172: 79-87.
Rousseaux, M. C., C. L. Ballare, E. T. Jordan and R. D. Vierstra. 1997. Directed overexpression of PHYA locally suppresses stem elongation and leaf senescence responses to far-red radiation. Plant, Cell and Environment 20: 1551-1558.
Sǽbǿ, A., T. Krekling and M. Appelgren. 1995. Light quality affects photosynthesis and leaf anatomy of brich plantlets in vitro. Plant Cell, Tissue and Organ Culture 41: 177-85.
Samuoliene, G., A. Brazaityte, A. Urbonaviciute, G. Sabajeviene and P. Duchovskis. 2010. The effect of red and blue light component on the growth and development of frigo strawberries. Zemdirbyste-Agriculture 97: 99-104.
Sha Valli Khan, P. S., E. Prakash and K. R. Rao. 2002. Callus induction and plantlet regeneration in Bixa orellana L., an annatto-yielding tree. In Vitro Cellular and Developmental Biology-Plant 38: 186-190.
Schuerger, A.C., C.S. Brown and E.C. Stryjewski. 1997. Anatomical features of pepper plants (Capsicum annuum L.) grown under red light-emitting diodes supplemented with blue or far-red light. Annals of Botany 79: 273-282.
Senger, H. 1982. The effect of blue light on plants and microorganisms. Photochemistry and Photobiology 35: 911-20.
Seow, K. K. and Y. C. Wee. 1970. The leaf bud method of vegetative propagation in pineapple. Malaysian Agricultural Journal 47: 499-507.
Shin, S. K., N. H. Murthy, W. J. Heo, J. E. Hahn and Y. K. Paek. 2008. The effect of light quality on the growth and development of in vitro cultured Doritaenopsis plants. Acta Physiologiae Plantarum 30: 339-343.
Sita, L. G., R. Sing, and C. P. A. Iyer. 1974. Plantlets through shoot tip cultures in pineapple. Current Science 45: 724-725.
Skirvin, R.M. 1981. Fruit crops, In: B.V. Conger (ed.). Cloning agricultural plants via in vitro techniques. Chemical Rubber Co. Press, Inc., Boca Raton, Florida 51-139.
Stefano, M. and M. Rosario. 2003. Effects of light quality on micropropagation of woody species. pp. 3-35. In: Jain, S. M. and K. Ishii (eds.). Micropropagation of woody trees and fruits. Kluwer Academic Publishers, Netherland.
Tanaka, M., T. Takamura, H. Watanabe, M. Endo, T. Yanagi and K. Okamoto. 1998. In vitro growth of cymbidium plantlets cultured under super bright and blue light-emitting diodes (LEDs). The Journal of Horticultural Science and Biotechnology 73(1): 39-44.
Tazawa, S. 1999. Effects of various radiant source on plant growth (Part 1). Japan Agricultural Research Quarterly 33: 163-176.
Tennessen, D. J., Singsaas E. L. and Sharkey T. D. 1994. Light-emitting diodes as a light source for photosynthesis research. Photosynthesis Research 39: 85-92.
Tibbitts, T. W., D. C. Morgan and J. J. Warrington. 1983. Growth of lettuce, spinach, mustard and wheat plants under four combinations of high-pressure sodium, metal halide and tungsten halogen lamp at equal PPFD. Journal of the American Society for Horticultural Science 108: 622-630.
Tripathy, B. C. and C. S. Brown. 1995. Root-shoot interaction in the greening of wheat seedlings grown under red light. Plant Physiology 107: 407-411.
Usami, T., N. Mochizuki, M. Kondo, M. Nishimura and A. Nagatani. 2004. Cryptochromes and phytochromes synergistically regulate Arabidopsis root greening under blue light. Plant and Cell Physiology 45: 1798-1808.
Usman, I. S., S. G. Ado and S. Y. Ng. 2011. Media appraisal for somatic embryo genesis of elite inbred lines of maize. Journal of Life Sciences 5: 360-363.
Usman, I. S., M. M. Abdulmalik, L. A. Sani and A. N. Muhammad. 2013. Development of an efficient protocol for micropropagation of pineapple (Ananas comosus L. var. smooth cayenne). African Journal of Agricultural Research 8: 2053-2056.
Van, T. K., W. T. Haller, G. Bowes and L. A. Garrard. 1997. Effect of light quality on growth and chlorophyll composition in Hydrilla. Journal of Aquatic Plant Management 15: 29-31.
Wee, Y. C. 1979. Mass propagation of pineapple planting materials. Singapore Journal of Primary Industries 7: 24-26.
Wu, M. C., C. Y. Hou, C. M. Jiang, Y. T. Wang, C. Y. Wang, H. H. Chen and H. M. Chan. 2007. A novel approach of LED light radiation improves the antioxidant activity of pea seedling. Food Chemistry 101: 1753-1758.
Xiaoying, L., G. Shirong, C. Taotao, X. Zhigang and T. Tezuka. 2012. Regulation of the growth and photosynthesis of cherry tomato seedlings by different light irradiations of light emitting diodes (LED). African Journal of Biotechnology 11: 6169-6177.
Yanagi, T., K. Okamoto and S. Takita. 1996b. Effect of blue, red and blue/red lights of two different PPF levels on growth and morphogenesis of lettuce plants. Acta Horticulturae 440: 117-122.
Yeh, H. and J. P. Chung. 2009. High-brightness LEDs-energy efficient lighting sources and their potential in indoor plant cultivation. Renewable and Sustainable Energy Reviews 13: 2175-2180.
Zepeda, C. and Y. Sangawa. 1981. In vitro propagation of pineapple. HortScience 16: 495-496.
Zuraida, A. R., A. H. Nurul Shahnadz, A. Harteeni, S. Roowi, C. M. Z. Che Radziah, and S. Sreeramanan. 2011. A novel approach for rapid micropropagation of maspine pineapple (Ananas comosus L.) shoot using liquid shake culture system. African Journal of Biotechnology 10: 3859-3866.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊