跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/01/16 05:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊佳晏
研究生(外文):Chia-Yen Yang
論文名稱:稻稈替代育苗介質對甘藍及番茄穴盤苗之影響
論文名稱(外文):Effect of Rice Straw as Alternative Subtrates on Plug Seedling of Cabbage (Brassica oleraceae L. var. Capitata) and Tomato (Solanum lycopersicum)
指導教授:黃三光黃三光引用關係
口試委員:林慧玲莊老達
口試日期:2017-07-06
學位類別:碩士
校院名稱:國立中興大學
系所名稱:園藝學系所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:88
中文關鍵詞:稻稈稻稈生物炭育苗介質介質理化性質
外文關鍵詞:Rice strawRice straw biocharSeedling substratePhysical and chemical properties
相關次數:
  • 被引用被引用:3
  • 點閱點閱:333
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:1
本研究探討稻稈或稻稈生物炭與泥炭土混合之介質是否可供作甘藍與番茄作物育苗之用,期望能將農產廢棄物之一的稻稈再利用並減緩蔬菜育苗業者對進口泥炭土之依賴。
在以不同比例碎化稻稈(0%、5%、25%和50%)與泥炭土混合後作為甘藍與番茄穴盤苗栽培介質之試驗中,介質原料之化學性質分析顯示碎化稻稈之酸鹼度偏鹼性,電導度(0.21-0.26 dS m-1)則略低於商用育苗介質,物理性質分析顯示碎化稻稈之添加可增加介質的總孔隙度。發芽試驗結果顯示,甘藍與番茄種子於添加碎化稻稈之介質濾液中之發芽率與對照組無顯著差異,說明碎化稻稈對甘藍與番茄種子之發芽並無抑制作用。在甘藍及番茄之育苗試驗中,甘藍幼苗之狀苗指數與絕對長速率在碎化稻稈含量為5%之混合介質處理與對照組相較無顯著差異,顯示碎化稻稈可取代5%泥炭土作為甘藍育苗介質之用,而應用於番茄育苗介質時則可取代高達25%之泥炭土比例。
在以理想粒徑之稻稈與泥炭土混合後作為甘藍與番茄穴盤苗栽培介質之試驗中,先將稻稈碎化區分為兩種不同之理想粒徑,再分別以不同比例(0%、5%、15%和25%)與商用育苗介質混合作為試驗用之育苗介質。結果顯示混合介質在物化性質上均符合理想的商業栽培育苗介質之要求,育苗試驗結果發現兩種不同理想粒徑之碎化稻稈混合介質對於甘藍及番茄幼苗之生長有相似的影響,具體而言之,應用含15%任一理想粒徑稻稈之混合介質與泥炭土所培育之甘藍或番茄幼苗在大部分的生育性狀、狀苗指數和絕對生長速率皆無顯著差異,兩種理想粒徑之碎化稻稈替代泥炭土作為甘藍或番茄育苗介質之比例均可達到15%。
在以不同比例稻稈生物炭(0%、5%、25%和50%)與泥炭土混合後作為甘藍與番茄穴盤苗栽培介質之試驗中,介質的物理性質分析顯示含不同比例稻稈生物炭混合介質之物理性質與泥炭土之物理性質均很相似,而介質原料之化學性質分析顯示稻稈生物炭之酸鹼度偏鹼性。發芽試驗結果顯示,甘藍與番茄種子於添加稻稈生物炭混合介質濾液中之發芽率與對照組無顯著差異,說明稻稈生物炭對甘藍與番茄種子發芽並無抑制作用。在甘藍或番茄之育苗試驗中,分別含25%或50%稻稈生物炭之混合介質所培育幼苗之狀苗指數與絕對生長速率與對照組相較無顯著差異,顯示稻稈生物炭分別可取代25%或50%泥炭土作為甘藍或番茄育苗介質之用。
In this study, rice straw was used as a growth substrate to partially replace peat moss for vegetable transplants cultivation. The reutilization of rice straw not only reduces agricultural residues but diminishes the reliance of vegetable growers on peat moss. First of all, shredded rice straw was mixed with a commercial growing medium (peat moss) in different proportions (0%, 5%, 25%, and 50%, by volume). Chemical analysis of the shredded rice staw indicated that it is a weak base, and the electrical conductivity of the shredded rice straw is lower than peat moss. The application of the shredded rice straw in growth substrate increased the total porosity of the substrate. There was no significant difference in seed germination rate between filtrates of rice straw containing substrates and peat moss, suggesting that rice straw had no inhibitory effect on seed germination. Analysis of cabbage seedling growth revealed that substrate containing 5% rice straw produced transplants with similar seedling index and absolute growth rate relative to the control, and similar results were observed in the substrate containing 25% rice straw for tomato transplant production. These results showed that rice straw may replace 5% peat moss as a cabbage transplant growing medium, while 25% peat moss may be replaced by rice straw as the tomato transplant growing medium.
Secondly, rice straw was prepared into two different ideal particle sizes to be mixed with peat moss as growth substrate for cabbage and tomato transplant production. Our results indicated that the physical properties of the mixed growth substrate is suitable for seedling growth. In this case, rice straw with ideal particle size was mixed with a commercial growing medium (peat moss) in different proportions (0%, 5%, 15%, and 25%, by volume). Analysis of cabbage and tomato seedling growth revealed that substrate containing 15% rice straw with ideal particle sizes produced transplants with similar seedling index and absolute growth rate relative to those of the control. These results showed that rice straw with ideal particle size may replace peat moss up to 15% as a vegetable transplant growing medium.
Thirdly, rice straw was turned into biochar and then mixed with a commercial growing medium (peat moss) in different proportions (0%, 5%, 25%, and 50%, by volume). Chemical analysis of rice staw biochar indicated that it is a weak base. Interestingly, analysis of physical properties of the rice straw biochar containing substrates revealed that they were similar to those of peat moss. No significant difference in seed germination rate was noticed between treatments with filtrates of various rice straw biochar containing substrates and that of peat moss, suggesting that rice straw biochar had no inhibitory effect on seed germination.
Analysis of cabbage or tomato seedling growth revealed that substrate containing 25% or 50% rice straw biochar produced transplants with similar seedling index and absolute growth rate relative to the control, respectively. These results suggested that rice straw biochar may replace 25% or 50% peat moss as a cabbage or tomato transplant growing medium, respectively.
目錄
中文摘要..........................................i
Abstract.........................................ii
表目次............................................v
圖目次...........................................vii
壹、前言..........................................1
貳、前人研究.......................................2
一、蔬菜育苗栽培之介紹..............................2
二、常用栽培介質與理想之栽培介質特性.................3
三、水稻副產物再利用之現況..........................7
四、生物炭之特性及利用..............................9
參、材料方法.......................................13
試驗一、介質原料物理與化學性質分析...................13
試驗二、碎化稻稈混合介質應用於甘藍及番茄育苗試驗......16
試驗三、理想粒徑之稻稈混合介質應用於甘藍及番茄育苗試驗...19
試驗四、稻稈生物炭混合介質應用於甘藍及番茄育苗試驗.....20
肆、結果...........................................21
試驗一、介質原料物理與化學性質分析...................21
試驗二、碎化稻稈混合介質應用於甘藍及番茄育苗試驗.......22
試驗三、理想粒徑之稻稈混合介質應用於甘藍及番茄育苗試驗...25
試驗四、稻稈生物炭混合介質應用於甘藍及番茄育苗試驗.....29
伍、討論...........................................64
試驗一、介質物理與化學性質分析.......................64
試驗二、介質發芽試驗................................71
試驗三、介質育苗試驗................................72
陸、結論...........................................75
柒、參考文獻.......................................76
附錄...............................................84

表目次
表1. 碎化稻稈混合介質試驗各介質處理代號及混合比例之說明.....16
表2. 理想粒徑之稻稈混合介質試驗各介質處理代號及混合比例之說明.....................................................19
表3. 稻稈生物炭混合介質試驗各介質處理代號及混合比例之說明...20
表4. 介質之物理性質.....................................33
表5. 介質之酸鹼值(pH)、電導度(EC)、總碳含量(C)、總酚含量(TPC)及陽離子交換能力(CEC)...................................34
表6. 介質之大量營養元素含量..............................34
表7. 介質之微量營養元素含量..............................34
表8. 泥炭土、碎化稻稈及泥炭土與碎化稻稈混合介質之物理性質...35
表9. 泥炭土、碎化稻稈及泥炭土與碎化稻稈混合介質之酸鹼值(pH)、電導度(EC)、總碳含量(C)及總酚含量(TPC)...................36
表10. 泥炭土、碎化稻稈及泥炭土與碎化稻稈混合介質之大量營養元素含量.....................................................37
表11. 泥炭土、碎化稻稈及泥炭土與碎化稻稈混合介質之微量營養元素含量...................................................37
表12. 碎化稻稈與泥炭土混合介質之粒徑分布..................38
表13. 泥炭土、碎化稻稈及泥炭土與碎化稻稈混合介質對甘藍及番茄種子發芽影響..............................................39
表14. 碎化稻稈與泥炭土混合介質對甘藍苗生長之影響...........40
表15. 碎化稻稈與泥炭土混合介質對甘藍苗狀苗指數與絕對生長速率之影響...................................................40
表16. 碎化稻稈與泥炭土混合介質對甘藍及番茄苗之碳水化合物含量之影響...................................................41
表17. 碎化稻稈與泥炭土混合介質對番茄苗生長之影響...........42
表18. 碎化稻稈與泥炭土混合介質對番茄苗狀苗指數與絕對生長速率之影響...................................................42
表19. 泥炭土、理想粒徑之稻稈及泥炭土與理想粒徑之稻稈混合介質之物理性質................................................45
表20. 泥炭土、理想粒徑之稻稈及泥炭土與理想粒徑之稻稈混合介質之酸鹼值(pH)、電導度(EC)、總碳含量(C)及總酚含量(TPC)........46
表21. 泥炭土、理想粒徑之稻稈及泥炭土與理想粒徑之稻稈混合介質之大量營養元素含量........................................47
表22. 泥炭土、理想粒徑之稻稈及泥炭土與理想粒徑之稻稈混合介質之微量營養元素含量........................................47
表23. 理想粒徑之稻稈與泥炭土混合介質之粒徑分布.............48
表24. 理想粒徑之稻稈與泥炭土混合介質對甘藍及番茄種子發芽影響.....................................................49
表25. 理想粒徑之稻稈與泥炭土混合介質對甘藍苗生長之影響.....50
表26. 理想粒徑之稻稈與泥炭土混合介質對甘藍苗狀苗指數與絕對生長速率之影響..............................................51
表27. 理想粒徑之稻稈與泥炭土混合介質對甘藍及番茄苗之碳水化合物含量之影響..............................................52
表28. 理想粒徑之稻稈與泥炭土混合介質對番茄苗生長之影響.....53
表29. 理想粒徑之稻稈與泥炭土混合介質對番茄苗狀苗指數與絕對生長速率之影響..............................................54
表30. 稻稈生物炭及稻稈生物炭與泥炭土混合介質之物理性質.....57
表31. 稻稈生物炭及稻稈生物炭與泥炭土混合介質之酸鹼值(pH)、電導度(EC)、總碳含量(C)及總酚含量(TPC).......................58
表32. 稻稈生物炭及稻稈生物炭與泥炭土混合介質之大量營養元素含量.....................................................58
表33. 稻稈生物炭及稻稈生物炭與泥炭土混合介質之微量營養元素含量.....................................................58
表34. 稻稈生物炭與泥炭土混合介質之粒徑分布................59
表35. 稻稈生物炭與泥炭土混合介質對甘藍及番茄種子發芽影響....59
表36. 稻稈生物炭與泥炭土混合介質對甘藍苗生長之影響.........60
表37. 稻稈生物炭與泥炭土混合介質對甘藍苗狀苗指數與絕對生長速率之影響.................................................60
表38. 稻稈生物炭與泥炭土混合介質對甘藍及番茄苗之碳水化合物含量之影響.................................................61
表39. 稻稈生物炭與泥炭土混合介質對番茄苗生長之影響.........62
表40. 稻稈生物炭與泥炭土混合介質對番茄苗狀苗指數與絕對生長速率之影響.................................................62

圖目錄
圖1. 介質之三相分布.....................................33
圖2. 泥炭土、碎化稻稈及泥炭土與碎化稻稈混合介質之三相分布...35
圖3a. 種植於碎化稻稈與泥炭土混合介質四週後之甘藍苗.........43
圖3b. 種植於碎化稻稈與泥炭土混合介質四週後之甘藍苗.........43
圖4a. 種植於碎化稻稈與泥炭土混合介質四週後之番茄苗.........44
圖4b. 種植於碎化稻稈與泥炭土混合介質四週後之番茄苗.........44
圖5. 泥炭土、理想粒徑之稻稈及泥炭土與理想粒徑之稻稈混合介質之三相分布................................................45
圖6a. 種植於理想粒徑之稻稈與泥炭土混合介質四週後之甘藍苗....55
圖6b. 種植於理想粒徑之稻稈與泥炭土混合介質四週後之甘藍苗....55
圖7a. 種植於理想粒徑之稻稈與泥炭土混合介質四週後之番茄苗....56
圖7b. 種植於理想粒徑之稻稈與泥炭土混合介質四週後之番茄苗....56
圖8. 稻稈生物炭及稻稈生物炭與泥炭土混合介質之三相分布......57
圖9. 種植於稻稈生物炭與泥炭土混合介質四週後之甘藍苗........63
圖10. 種植於稻稈生物炭與泥炭土混合介質四週後之番茄苗.......63
1.王才義。1989。理想栽培介質之調製。第二屈設施園藝研討會專集 pp.65-75。
2.王才義。1990。栽培介質理化性之測定。興大園藝15:21-28。
3.王仕賢、王仁晃、鄭安秀、陳文雄。1999。小果番茄栽培管理。臺南區農業改良場技術專刊 96:1-22。
4.王佩瑾、黃振文。2000。香菇太空包堆肥抑制胡瓜猝倒病發生的特性。植物病理學會刊 9:137-144。
5.王恩姮、趙雨森、陳祥偉。2009。基於土壤三相的廣義土壤結構的定量化表達。生態學報 29:2067-2072。
6.方怡丹、張武男。2007。‘銘星’甜椒壯苗指數與苗株性狀之相關性分析植物種苗。9:29-46。
7.行政院農業委員會。2015。台灣農業統計年報。http://agrstat.coa.gov.tw/sdweb/public/inquiry/InquireAdvance.aspx
8.安志裝、王校常、施衛明、嚴蔚東、曹志洪。2002。重金屬與營養元素交互作用的植物生理效應。土壤與環境 11:392-396。
9.任廣躍、毛志懷、李棟。2004。秸稈飼用處理及其有效利用的研究進展。糧食與飼料工業 7:29-30。
10.吳正宗。1997。非土壤介質與農業生產。興大農業 23:17-20。
11.吳錫家。2003。稻草應用為水稻育苗介質之研究。國立中興大學農藝系碩士論文。台中。
12.李超運。1997。稻田收穫後稻草掩埋好處多。花蓮區農業改良場農技報導 33:1-3。
13.李超運、侯福分。2002。珍惜農業資源-做好稻草掩埋處理。豐年52:30-33。
14.李瑋崧、呂昀陞、陳美杏。2012。稻草在秀珍菇栽培之應用。台灣農業研究 61:90-99。
15.林瑞松。1989。穴盤育苗系統之介紹。第二屆設施園藝研討會專輯 pp. 83-92。
16.林景和。1993。利用廢棄菇類栽培介質製作堆肥之研究。臺中區農業改良場研究彙報 39:17-27。
17.林俊義、郭益全、蔡清榮。1996。燃燒稻草之省思-稻草處理與利用。技術服務 7:7-9。
18.林妙娟。2003。從休閒農業談日本稻草應用之文化。花蓮區農業專訊 43:10-13。
19.林晉卿、黃鵬戎。2004。稻稈是一種很好的有機質材料。台南區農業改良場農業技術 97:5。
20.林祐生、李文乾。2009。生質酒精。行政院國家科學委員會。科學發展 433:20-25。
21.林經偉、林晉卿。2010。番茄合理化施肥。臺中區農業改良場特刊 100:177-179。
22.武春成、李天來、曹霞、張勇勇、楊麗娟。2014。添加生物炭對連作營養基質理化性質及黃瓜生長的影響。核農學報 28:1534-1539。
23.徐華盛。1993。農業廢棄物堆肥對甘藍之生長及土壤肥力之影響。桃園區農業改良場研究彙報 14:29-37。
24.孫文章、謝桑煙。1998。甘藍穴盤育苗技術。臺南區農業改良場技術專刊 76:2-11。
25.張簡秀容、張武男。1994。親水性聚合物對甘藍及甜椒穴盤苗葉片水分含量及斷水處理後之影響。農林學報 43:13-19。
26.張明暉、簡宣裕、劉禎祺。2005。有機質肥料介紹。行政院農委會農業試驗所合理化施肥專刊 p. 255-266。
27.聖良學、黃道友、汪立剛、賀喜全、夏海鰲。2005。稻草異茬還田配施化肥對春王米生產力的效應。西北農業學報 14:59-62。
28.崔秀敏、王秀峰。2001。蔬菜育苗基質及其研究進展。天津農業科學 7:37-42。
29.郭孚燿。2002。番茄栽培。臺中區農業專訊 38:12-18。
30.陳芹、陳長紅、李浩波。2009。秸稈還田技術探討。現代農業科技 2009:245-245。
31.陳任芳。2010。日本環境友善農耕操作技術之發展。花蓮區農業專訊 74:11-14。
32.黃錦河、張武男、林深林。1993。數種本土化介質物理性與化學性分析。興大園藝 18:73-88。
33.黃錦河。1995。本土化蔬菜穴盤育苗介質之開發利用。國立中興大學園藝系碩士論文。台中。
34.黃玉梅、王小華。1994。溫度與苗齡對蔬菜穴盤苗生育之影響。種苗科技專訊 8:7-8。
35.黃泮宮、李美娟。1996。蔬菜穴盤育苗技術。蔬菜自動化育苗技術研討會 pp. 161-179。
36.黃祥益、朱雅玲、胡智傑。2015。簡易設施下蔬菜立體栽培體系之建立。高雄區農業改良場年報 pp. 95-97。
37.葛曉光。1987。果菜壯苗指標研究的概況。中國蔬菜 1:87。
38.楊素絲。2014。宜蘭地區青蔥有機栽培簡介。花蓮區農業專訊 89:18-20。
39.廖靖華、李清華、方信雄、洪基恩。2012。廢稻草回收產醣及產醇之研究。科學與工程技術期刊 8:21-26。
40.廖勁穎、張繼中、黃文益。2014。炭化稻殼在水稻有機栽培上的應用。臺東區農業專訊 87:8-10。
41.劉英德。1988。種子的萌發。種子生理。五洲出版社。台北。p.76~185。
42.劉悅上、馬金芝、張樂森。2010。作物秸稈還田應用技術探討。現代農業科技 2010:296-297。
43.蔡宜峰、陳清文。1993。施用牛糞堆肥對一般作物及土壤特性之影響效應。台中區農業改良場研究彙報 40:9-16。
44.蔡宜?、高德錚。2002。本土化蔬菜有機介質配方之開發。臺中區農業改良場專訊 38:4-11。
45.薛佑光、李文汕、張武男。2000。介質對番茄台中亞蔬四號穴盤苗及其定植後初期生育之影響。興大園藝 25:59-72。
46.戴振洋、蔡宜峰、郭孚燿。1996。肥料對不同品種甘藍穴盤苗生長之影響。臺中區農業改良場研究彙報 50:11-20。
47.戴振洋。2000。蔬菜育苗穴盤之探討。臺中區農業專訊 31:12-15。
48.魏雲霞、魯劍巍、李小坤、薛欣欣、王素萍。2013。秸稈及綠肥浸提液對萵苣種子的化感作用。中國蔬菜 p. 60-64。

49.Abad, M., P. Noguera, and S. Burés. 2001. National inventory of organic wastes for use as growing media for ornamental potted plant production: case study in Spain. Bioresour. Technol. 77:197-200.
50.Adams, F. 1966. Calcium deficiency as a causal agent of ammonium phosphate injury to cotton seedlings. Soil Sci. Soc. Am. J. 30:485-488.
51.Alscher, R.G., N. Erturk, and L.S. Heath. 2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. 53:1331–1341.
52.Al-Wabel, M.I., A. Al-Omran, A.H. El-Naggar, M. Nadeem, and A.R. Usman. 2013. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour. Technol. 131:374-379.
53.Amer, A.M. 2012. Water flow and conductivity into capillary and non-capillary pores of soils. J. Soil Sci. Plant Nutr. 12:99-112.
54.Amonette, J.E., and S. Joseph. 2009. Characteristics of biochar: Microchemical properties. In: Lehmann, J., Joseph, S. (Eds.), Biochar for Environmental Management: Science and Technology. Earthscan, United Kingdom, pp. 33–52.
55.Antal, M.J., and M. Gr?nli. 2003. The art, science, and technology of charcoal production. Ind. Eng. Chem. Res. 42:1619-1640.
56.Arnon, D. I. and C.M. Johnson. 1942. Influence of hydrogen ion concentration on the growth of higher plants under controlled conditions. Plant Physiol. 17:525.
57.Ayers, A.D. 1952. Seed germination as affected by soil moisture and salinity. Agron. J. 44:82-84.
58.Baldock, J.A. and R.J. Smernik. 2002. Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood. Org. Geochem. 33:1093-109.
59.Beardsell, D.V., D.G. Nichols, and D.L. Jones. 1979. Physical properties of nursery potting-mixtures. Sci. Hortic. 11:1-8.
60.Benito, M., A. Masaguer, A. Moliner, and R. De Antonio, 2006. Chemical and physical properties of pruning waste compost and their seasonal variability. Bioresour. Technol. 97:2071-2076.
61.Borchard, N., K. Spokas, K. Prost, and J. Siemens. 2014. Greenhouse gas production in mixtures of soil with composted and noncomposted biochars is governed by char-associated organic compounds. J. Environ. Qual. 43:971-979.
62.Bruckman, V.J., T. Terada, B.B. Uzun, E. Apaydın-Varol, and J. Liu. 2015. Biochar for climate change mitigation: tracing the in-situ priming effect on a forest site. Energy Procedia 76:381-387.
63.Bunt, A. C. 1983. Physical properties of mixtures of peats and minerals of different particle size and bulk density for potting substrates. Acta Hortic. 150:143-153.
64.Bunt, A.C. 1991. The relationship of oxygen diffusion rate to the air-filled porosity of potting substrates. Acta Hortic. 294: 215-224.
65.Cao, X., L. Ma, Y. Liang, B. Gao, and W. Harris. 2011. Simultaneous Immobilization of Lead and Atrazine in Contaminated Soils Using Dairy-Manure Biochar. Environ. Sci. Technol. 45:4884-4889.
66.Carter, S., S. Shackley, S. Sohi, T.B. Suy, and S. Haefele. 2013. The impact of biochar application on soil properties and plant growth of pot grown lettuce (Lactuca sativa) and cabbage (Brassica chinensis) Agronomy 3:404-418.
67.Charbonneau, J., A. Gosselin, and M.J. Trudel. 1988. Effect of electric-conductivity of the nutrient solution on growth and development of greenhouse tomato cultivated with or without supplementary lighting. Can. J. Plant Sci. 68:267-276.
68.Chong, C. 2005. Experiences with wastes and composts in nursery substrates. HortTechnology 15:739–747.
69.Cunniff, P. 1995. Official methods of analysis of AOAC international. 16th ed. p. 1141. Aoac Intl. Arlington, USA.
70.Dai, X, T.W. Boutton, B. Glaser, R.J. Ansley, and W. Zech. 2005. Black carbon in temperate mixed-grass savanna. Soil Biol. Biochem. 37:1879–1881.
71.DeLuca T.H., M.D. MacKenzie, M.J. Gundale and W.E. Holben. 2006. Wildfire-produced charcoal directly influences nitrogen cycling in Ponderosa pine forests. Soil Sci. Soc. Am. J. 70:448–453.
72.Demirbaş, A. 2000. Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Conversion Manage. 41:633-646.
73.Demirbas, A. 2005. Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Progr. Energy Combust. Sci. 31:171-192.
74.Drzal, M.S., D. Keith Cassel, and W.C. Fonteno. 1999. Pore fraction analysis: a new tool for substrate testing. Acta Hort. 481:43-54.
75.DuBois, M., K.A. Gilles, J.K. Hamilton, P.T. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Analyt. Chem. 28:350-356.
76.Dumroese, R.K., J. Heiskanen, K. Englund, and A. Tervahauta. 2011. Pelleted biochar: chemical and physical properties show potential use as a substrate in container nurseries. Biomass Bioenergy 35:2018-2027.
77.Fan, R.Q., J. Luo, S.H. Yan, Y.L. Zhou, and Z.H. Zhang. 2015. Effects of biochar and super absorbent polymer on substrate properties and water spinach growth. Pedosphere 25:737-748.
78.Farhangi-Abriz, S. and S. Torabian. 2017. Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress. Ecotoxicol. Environ. Saf. 137:64-70.
79.Fonteno, W.C. and T.E. Bilderback. 1993. Impact of hydrogel on physical properties of coarse-structured horticultural substrates. J. Amer. Soc. Hort. Sci. 118:217-222.
80.Fontes, R.L. and F.R. Cox. 1998. Iron deficiency and zinc toxicity in soybean grown in nutrient solution with different levels of sulfur. J. Plant Nutr. 21:1715-1722.
81.Gilbert, P., C. Ryu, V. Sharifi, J. Swithenbank. 2009. Effect of process parameters onpelletisation of herbaceous crops. Fuel 88:1491-1497.
82.Goldberg, S. and R. A. Glaubig. 1987. Effect of saturating cation, pH, and aluminum and iron oxide on the flocculation of kaolinite and montmorillonite. Clays Clay Miner. 35:220-7.
83.Graber, E.R., Y.M. Harel, M. Kolton, E. Cytryn, A. Silber, D.R. David, L. Tsechansky, M. Borenshtein, and Y. Elad. 2010. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil 337:481-496.
84.Gruda, N. 2010. Sustainable peat alternative growing media. Acta Hortic. 927:973-979.
85.Gruda, N., and W. H. Schnitzler. 2004. Suitability of wood fiber substrate for production of vegetable transplants: I. Physical properties of wood fiber substrates. Sci. Hortic. 100:309-322.
86.Handreck, K.A. 1983. Particle size and the physical properties of growing media for containers. Commun. Soil Sci. Plant Anal. 14:209-222.
87.Hu, W., J. Yang, Y. Meng, Y. Wang, B. Chen, W. Zhao, D.M. Oosterhuis, and Z. Zhou. 2015. Potassium application affects carbohydrate metabolism in the leaf subtending the cotton (Gossypium hirsutum L.) boll and its relationship with boll biomass. Field Crops Res. 179:120-131.
88.Jayasinghe, G.Y., 2010. Sugarcane bagasses sewage sludge compost as a plant growth substrate and an option for waste management. Clean Technol. Environ. Policy 14:625-632.
89.Jayasinghe, G.Y., 2012. Synthetic soil aggregates as a potting medium for ornamental plant production. J. Plant Nutr. 35:1441-1456.
90.Jenana, R.K.B., R. Haouala, M.A. Triki, J.J. Godon, K. Hibar, M.B. Khedher, and B. Henchi. 2009. Composts, compost extracts and bacterial suppressive action on Pythium aphanidermatum in tomato. Pakistan J. Bot. 41:315-327.
91.Katerji, N., J.W. Van Hoorn, A. Hamdy, and M. Mastrorilli. 2001. Salt tolerance of crops according to three classification methods and examination of some hypothesis about salt tolerance. Agric. Water Manage. 47:1-8.
92.Katerji, N., J.W. Van Hoorn, A. Hamdy, and M. Mastrorilli. 1998. Response of tomatoes, a crop of indeterminate growth, to soil salinity. Agric. Water Manage. 38:59-68.
93.Kim, S., and B.E. Dale. 2004. Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26:361-375.
94.Knicker, H. 2010. “Black nitrogen”–an important fraction in determining the recalcitrance of charcoal. Org. Geochem. 41:947-950.
95.Knicker, H., A. Hilscher, F. J. González-Vila, and G. Almendros. 2008. A new conceptual model for the structural properties of char produced during vegetation fires. Org. Geochem. 39:935-939.
96.Körner, C. 2003. Carbon limitation in trees. J. Ecol. 91:4-17.
97.Kuisma, E., P. Palonen, and M. Yli-Halla. 2014. Reed canary grass straw as a substrate in soilless cultivation of strawberry. Sci. Hortic. 178:217-223.
98.Liang, B., J. Lehmann, D. Solomon, J. Kinyangi, J. Grossman, B. O’Neill, J.O. Skjemstad, J. Thies, F.J. Luiz˜o, J. Petersen, and E.G. Neves. 2006. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 70:1719-1730.
99.Liu, J., Y. Ma, F. Lv, J. Chen, Z. Zhou, Y. Wang, A. Abudurezike, and D.M. Oosterhuis. 2013. Changes of sucrose metabolism in leaf subtending to cotton boll under cool temperature due to late planting. Field Crops Res. 144:200-211.
100.Loewe, A., W. Einig, L. Shi, P. Dizengremel, and R. Hampp, 2000. Mycorrhiza formation and elevated CO2 both increase the capacity for sucrose synthesis in source leaves of spruce and aspen. New Phytol. 145:565-574.
101.Lu, K., X. Yang, J. Shen, B. Robinson, H. Huang, D. Liu, N. Bolane, J. Peib and H. Wang. 2014. Effect of bamboo and rice straw biochars on the bioavailability of Cd, Cu, Pb and Zn to Sedum plumbizincicola. Agric. Ecosyst. Environ. 191:124-132.
102.Lua. A.C., and T. Yang. 2004. Effects of vacuum pyrolysis conditions on the characteristics of activated carbons derived from pistachio-nut shells. J. Colloid. Interface Sci. 276:364-372.
103.Ludwig, F., D.M. Fernandes, P.R. Mota, and R.L.V. Bôas. 2013. Electrical conductivity and pH of the substrate solution in gerbera cultivars under fertigation. Hortic. Brasileira 31:356-360.
104.Marr, C.W. and M. Jirak. 1990. Holding tomato transplants in plug trays. HortScience 25:173-176.
105.Marshall, J. D. 1985. Carbohydrate status as a measure of seedling quality. p. 49-58. In: M.L. Duryea (eds.). Evaluating Seedling Quality: principles, procedures and predictive abilities of major tests. Forest Research Laboratory, Oregon State University
106.Medina, E., C. Paredes, M.A. Bustamante, R. Moral, and J. Moreno-Caselles. 2012. Relationships between soil physico-chemical, chemical and biological properties in a soil amended with spent mushroom substrate. Geoderma 173-174:152-161.
107.Méndez, A., J. Paz-Ferreiro, E. Gil, and G. Gascó. 2015. The effect of paper sludge and biochar addition on brown peat and coir based growing media properties. Sci. Hortic. 193:225-230.
108.Mollitor, H., A. Faber, R. Marutzky, and S. Springer. 2004. Peat substitute on the basis of recycled wood chipboard. Acta Hortic. 644: 123-130.
109.Moncayo, F.H.O. 2006. Oxygen transport in waterlogged soils, Part II. Diffusion Coefficients. Invited Presentations, College on Soil Physics, 282-297.
110.Mukherjee, A., A. R. Zimmerman, and W. Harris. 2011. Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 163:247-255.
111.Nelson, D.W. and L. Sommers. 1982. Total carbon, organic carbon, and organic matter. p. 539-579. Methods of soil analysis. 2nd ed. Amer. Soc. Agron. Inc. Publ.
112.Oguntunde, P. G., M. Fosu, A.E. Ajayi, and N. van de Giesen. 2004. Effects of charcoal production on maize yield, chemical properties and texture of soil. Biol. Fertil. Soils, 39:295-299.
113.Ortega, M.C., M.T. Moreno, J. Ordovas, and M.T. Aguado. 1996. Behaviour of different horticultural species in phytotoxicity bioassays of bark substrates. Sci. Hortic. 66:125-132.
114.Ostos, J.C., R. López-Garrido, J.M. Murillo and R. López. 2008. Substitution of peat for municipal solid waste-and sewage sludge-based composts in nursery growing media: effects on growth and nutrition of the native shrub Pistacia lentiscus L. Bioresour. Technol. 99:1793-1800.
115.Poel, L.W. 1960. The estimation of oxygen diffusion rates in soils. J. Ecol. p. 165-173.
116.Postma, J., F. Clematis, E.H. Nijhuis, and E. Someus. 2013. Efficacy of four phosphate-mobilizing bacteria applied with an animal bone charcoal formulation in controlling Pythium aphanidermatum and Fusarium oxysporum f. sp. radicis lycopersici in tomato. Biol. Control 67:284-291.
117.Prasad, M., and M.J. Maher. 1993. Physical and chemical properties of fractionated peat. Acta Hortic. 342:257-264.
118.Qiao, H.L., X.J. Liu, W.Q. Li, W. Huang. 2006. Effects of straw deep mulching on soil moisture infiltration and evaporation. Sci. Soil Water Conserv. 4:34-38.
119.Quin, P.R., A.L. Cowie, R.J. Flavel, B.P. Keen, L.M. Macdonald, S.G. Morris, B.P. Singh, I.M. Young, and L.V. Zwieten. 2014. Oil mallee biochar improves soil structural properties—A study with x-ray micro-CT. Agric. Ecosyst. Environ. 191:142-149.
120.Raveendran, K., A. Ganesh, and K.C. Khilar. 1996. Pyrolysis characteristics of biomass and biomass components. Fuel. 75:987-998.
121.Raviv, M., Y. Chen, and Y. Inbar. 1986. Peat and peat substitutes as growth media for container-grown plants. p. 257-287. In: Y. Chen and Y. Avnimelech (eds.). The Role of Organic Matter in Modern Agriculture. Martinus Nijhoff, Dordrecht, Netherlands.
122.Ritchie, G.S.P. 1989. The chemical behaviour of aluminium, hydrogen and manganese in acid soils. In: Robson AD (ed) Soil Acidity and Plant Growth pp. 1–60. Academic Press, San Diego.
123.Rogovska, N., D.A. Laird, S.J. Rathke, and D.L. Karlen. 2014. Biochar impact on Midwestern Mollisols and maize nutrient availability. Geoderma 230-231:340-347.
124.Rondon M.A., J. Lehmann, J. Ramirez, M. Hurtado. 2007. Biological nitrogen fixation by common beans (Phaseolus vulgaris L) increases with bio-char additions. Biol. Fertil. Soils 43:699–708.
125.Sanchis, A., F. Botell, J. Costa, and F. Nuez. 1991. Relation between yield components and salinity tolerance in tomato. Tomato Genet. Cooperative 41:43.
126.Scheer, C., P.R. Grace, D.W. Rowlings, S. Kimber, and L. Van Zwieten. 2011. Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern New South Wales, Australia. Plant Soil 345:47-58.
127.Schmidt, M.W.I., and A.G. Noack. 2000. Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Glob. Biogeochem. Cycles. 14:777-793.
128.Shin, J.H. and J.E. Son. 2015. Changes in electrical conductivity and moisture content of substrate and their subsequent effects on transpiration rate, water use efficiency, and plant growth in the soilless culture of paprika (Capsicum annuum L.). Hortic. Environ. Biotechnol. 56:178-185.
129.Shin, J.S. and Y.H. Shin. 1975. The effect of long-term organic matter addition on the physico-chemical properties of paddy soil. Korean J. Soil Sci. Fert. 8:19-23.
130.Sohi, S.P. 2012. Carbon storage with benefits. Sci. 338:1034-1035.
131.Thies, J.E. and M.C. Rillig. 2009. Characteristics of biochar: biological properties. Biochar for environmental management: Science and technology. p. 85-105.
132.Tian, Y., X.Y. Sun, S.Y. Li, H.Y. Wang, L.Z. Wang, J.X. Cao, and L. Zhang. 2012. Biochar made from green waste as peat substitute in growth media for Calathea rotundifola cv. Fasciata. Sci. Hortic. 143:15-18.
133.Van Zwieten, L., S. Kimber, S. Morris, K.Y. Chan, A. Downie, J. Rust, S. Joseph, and A. Cowie. 2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327:235-246.
134.Vaughn, S.F., J.A. Kenar, A.R. Thompson, and S.C. Peterson. 2013. Comparison of biochars derived from wood pellets and pelletized wheat straw as replacements for peat in potting substrates. Ind. Crops Prod. 51:437-443.
135.Verdonck, O. 1988. Composts from organic waste materials as substitutes for the usual horticultural substrates. Biol. Wastes 26:325-330.
136.Verdonck, O., D. de Vleeschauwer, and M. de Boodt. 1982. The influence of the substrate to plant growth. Acta Hortic. 126:251-258.
137.Wang, W., D.Y.F. Lai, C. Wang, T. Pan, and C. Zeng. 2015. Effects of rice straw incorporation on active soil organic carbon pools in a subtropical paddy field. Soil Tillage Res. 152:8-16.
138.Wang, Y., F.G. Pan, G. Wang, Y. Zhang, X. Wang, Chen, and Z. Mao. 2014. Effects of biochar on photosynthesis and antioxidative system of Malus hupehensis Rehd. seedlings under replant conditions. Sci. Hortic. 175:9-15.
139.Wang, Y.P., S.X. Chai, Y.Z. Chen, C.G. Yang, L. Chang, K.M. Tan, H.B. Cheng, C.X. Huang, and L. Pang. 2014. Effect of different treatments with straw returning on soil water content in arid field. Res. Soil Water Conserv. 21:164-170.
140.Woolf, D., J.E. Amonette, F.A. Street-Perrott, J. Lehmann, and S. Joseph. 2010. Sustainable biochar to mitigate global climate change. Nat. Commun. 1:56.
141.Xu, R.K., A.Z. Zhao, J.H. Yuan, and J. Jiang. 2012. pH buffering capacity of acid soils from tropical and subtropical regions of China as influenced by incorporation of crop straw biochars. J. Soils Sediments 12:494-502.
142.Yang, H., J. Feng, S. Zhai, Y. Dai, M. Xu, J. Wu, M. Shen, X. Bian, R. T. Koide, and J. Liu. 2016. Long-term ditch-buried straw return alters soil water potential, temperature, and microbial communities in a rice-wheat rotation system. Soil Tillage Res. 163:21-31.
143.Yeager, T., C. Gilliam, T.E. Bilderback, D. Fare, A. Niemiera, and K. Tilt. 1997. Best management practices, Guide For Producing Container-grown Plants. Southern Nursery Association, Atlanta, Georgia.
144.Yin, Y.F., X.H. He, R. Gao, H.L. Ma, and Y.S. Yang. 2014. Effects of rice straw and its biochar addition on soil labile carbon and soil organic carbon. J. Integr. Agric. 13:491-498.
145.Yu, X.Y., G.G. Ying, and R.S. Kookana. 2006. Sorption and desorption behaviors of diuron in soils amended with charcoal. J. Agric. Food Chem. 54:8545-8550.
146.Yuan, J. H., R. K. Xu, and H. Zhang. 2011. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour. Technol. 102:3488-3497.
147.Zhang, A., R. Bian, G. Pan, L. Cuia, Q. Hussain, L. Li, J. Zheng, J. Zheng, X. Zhang, X. Han, X. Yu. 2012. Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: a field study of 2 consecutive rice growing cycles. Field Crops Res. 127:153-160.
148.Zhang, R.H., Z.Q. Duan, and Z.G. Li. 2012. Use of spent mushroom substrate as growing media for tomato and cucumber seedlings. Pedosphere 22:333-342.
149.Zheng, H., Z. Wang, X. Deng, S. Herbert, and B. Xing. 2013. Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil. Geoderma 206:32-39.
150.Zhou, X. and F. Wu. 2012. Effects of amendments of ferulic acid on soil microbial communities in the rhizosphere of cucumber (Cucumis sativus L.). Eur. J. Soil Biol. 50:191-197.
151.Zhu, Q.H., X.H. Peng, T.Q. Huang, Z.B. Xie, N.M. Holden. 2014. Effect of biochar addition on maize growth and nitrogen use efficiency in acidic red soils. Pedosphere 24: 699-708.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top