跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/01/16 06:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張立詳
研究生(外文):Li-Xiang Zhang
論文名稱:臺灣綠化樹木醣類含量年變化研究—以樟樹和楓香為例
論文名稱(外文):Annual Variations of Carbohydrate Content Dynamics in Taiwanese Urban Trees —A Case Study of Camphor and Sweetgum Trees
指導教授:劉東啟劉東啟引用關係
指導教授(外文):Tung-Chi Liu
口試委員:方偉達鄭百佑
口試日期:2017-07-25
學位類別:碩士
校院名稱:國立中興大學
系所名稱:園藝學系所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:85
中文關鍵詞:醣類楓香樟樹儲藏物質亞熱帶
外文關鍵詞:carbohydrateFormosa sweetgumcamphor treereservessubtropics
相關次數:
  • 被引用被引用:7
  • 點閱點閱:365
  • 評分評分:
  • 下載下載:51
  • 收藏至我的研究室書目清單書目收藏:0
醣類是植物生理研究發展近百年的指標,因為身為自營生物的植物唯一能量來源就是光合產物,也就是葡萄糖,既是植物呼吸作用的燃料,又是建造樹木身體與製造抗病物質的材料,因此醣類含量在植物體內不同部位的變動,顯示植物將光合產物分配至何處,也就是在不同環境下,植物如何生存的策略。而保育樹木最佳的方式,就是理解樹木的生理,並按照其生理特性去維護管理。因此本研究選擇醣類含量變動做為指標,研究臺灣亞熱帶氣候下景觀樹種與環境的互動,以供景觀樹種維護管理參考。
本研究選擇臺灣原生樹種楓香(Liquidambar formosana (Hance))和樟樹(Cinnamomum camphora (L.))為試驗材料,試驗地點位於臺灣臺中市中興大學校園。兩種樹種各有6株樹木,每月採樣葉枝根各3重複,自2016年3月開始到2017年2月。使用苯酚硫酸法測定樣品中總可溶性糖(Total Soluble Sugar, TSS)和澱粉(starch)含量,然後比較其含量逐月變化,與季節變化比較,探究楓香與樟樹如何與臺灣氣候狀況互動。
試驗結果顯示兩種樹種的醣類含量變化與季節變化有高度關聯。兩種樹種葉枝根總可溶性糖與澱粉從深冬進入春天時,均有降低的趨勢,表示此時一部分醣類供給要在冬季期間葉與花芽的分化,以預備春天萌發;並有另一部分供給地上部轉化成可溶性糖來適應冬季寒冷與乾旱,因此可觀察到葉與枝冬季總可溶性糖含量上升。
另外,兩種樹種葉與枝的醣類年變化相似,僅根部不同,顯示在臺灣氣候下生長的楓香與樟樹,其落葉與常綠醣類利用模式間的差別,可能不像溫帶那樣分明。樟樹根部澱粉雖與楓香一樣有兩個高峰,且波動時間相似,但波動量比楓香還低,顯示樟樹可能傾向將光合產物儲存於地上部,以供全年生長新葉使用。
Carbohydrate is an index that has been developed for near a hundred years in plant physiology. As an autotroph, plants depend on photosynthate, or glucose, as their only source of energy. Carbohydrate also serves as materials of respiration, wood building, and defensive chemicals production. Owing to aforementioned reasons, carbohydrate content dynamics in different parts of plants show how plants distribute photosynthate and how they survive under various environments. Also, the best preserving way of trees in human cognition is to understand physiology of trees, and to maintain trees based on their physiological properties. Therefore, this study was used carbohydrate content dynamics as a physiological index to observe how urban trees have been interacted with the subtropical environment of Taiwan, and then providing suggestions of urban trees maintenances.
This study has been taken two native species: Formosa sweetgum (Liquidambar formosana) and camphor tree (Cinnamomum camphora) for examples at campus of National Chung Hsing University in Taichung City, Taiwan. Each species has been detected for 6 individual trees. Triplicate sample collection were used for leaves, branches, and root which collected once per month from March 2016 to February 2017. Total Soluble Sugar (TSS) and starch content in samples were determined by phenol-sulfuric acid method. Then this approach was compared carbohydrate content dynamics of two species with the factors of season changing, exploring how these two species to be detected to interact with the subtropical environment of Taiwan.
The results were shown that carbohydrate content dynamics of both species has higher correlation with seasonal changes. Their TSS and starch content in leaves, branches, and roots was detected to be lower from the middle of winter to spring, which means that a fraction of carbohydrates offered for differentiation of leaf and flower bud during winter, preparing for the bud break in spring. The other fraction of carbohydrates turned into soluble sugars for the aboveground part of trees to adopt to coldness and drought during winter. Thus, TSS increased in leaves and branches.
Besides, the carbohydrate content dynamics of leaves and branches were similar in both species, while dynamics of roots were different. This means that the differences of carbohydrate utilization models between deciduous and evergreen trees might be ambiguous under subtropical climate compared with temperate climate. Furthermore, starch content of roots of camphor trees and Formosa sweetgum both had two peaks in one year, and the time of peaks were similar. However, the degree of fluctuation of camphor trees was less than that of Formosa sweetgums, which means camphor trees might tend to store photosynthate in aboveground part in order to grow new leaves continuously throughout every season.
目錄
致謝…………………………………………………………………………………i
摘要……………………………………………………………………..ii
Abstract……………………………………………………………………………………..iii
目錄……………………………………………………………………………………...v
表目錄…………………………………………………………………………………..vi
圖目錄………………………………………………………………………………….vii
前言…………………………………. ………………………………………………….1
一、研究動機…………………………………. ……………………………………1
二、研究目的…………………………………. ……………………………………2
三、研究目標…………………………………. ……………………………………2
四、研究限制…………………………………. ……………………………………3
文獻回顧…………………………………. …………………………………………….4
一、樟樹與楓香生理特性…………………………………………………………..4
(一) 樟樹…………………………………. ……………………………………...4
(二) 楓香…………………………………. ……………………………………...5
(三) 樟樹與楓香生理特性比較………………………………………………….7
二、醣類測定方法…………………………………………………………………..10
三、醣類生理學……………………………………………………………………..12
(一) 植物醣類種類…………………………………………………………….12
(二) 儲藏物質(reserve)定義、分布與功能……………………………………...12
(三) 常綠與落葉儲藏物質利用模式比較……………………………………...16
材料與方法……………………………………………………………………………23
一、試驗材料……………………………………………………………………..23
二、氣象資料收集方法…………………………………………………………….24
三、醣類含量測定方法…………………………………………………………….24
(一) 採樣與樣品處理…………………………………………………………...24
(二) 醣類測定步驟……………………………………………………………25
結果與討論…………………………………………………………………………….27
一、楓香葉枝根醣類含量年變化…………………………………………………..27
(一) 葉片………………………………………………………………………..27
(二) 枝條………………………………………………………………………...28
(三) 根部………………………………………………………………………...28
(四) 葉枝根比較………………………………………………………………..29
二、樟樹葉枝根醣類含量年變化………………………………………………….31
(一) 葉片………………………………………………………………………...31
(二) 枝條………………………………………………………………………...31
(三) 根部………………………………………………………………………...32
(四) 葉枝根比較………………………………………………………………...32
三、楓香與樟樹醣類利用模式比較……………………………………………….34
總結與建議…………………………………………………………………………….52
一、總結…………………………………………………………………………….52
二、未來研究與應用建議…………………………………………………………53
參考文獻……………………………………………………………………………….54
附錄…………………………………………………………………………………….61
附錄一 試驗期間侵臺颱風日期與強度…………………………………………...61
附錄二 樣區環境照片……………………………………………………………..62
附錄三 文獻回顧重要資料整理…………………….……………………………..64
附錄四 原始數據…………………………………………………………………...74

表目錄

表1 樟樹與楓香生理特性比較………………………………………………………...9
表2 植物體內常見醣類………………………………………………………………14
表3 落葉與常綠樹種醣類含量年變化比較………………………………………….21
表4 試驗樹木編號與位置…………………………………………………………….23
表5 總可溶性糖與澱粉標準溶液配置方法…………………………………………26
表6 試驗期間節氣與季節……………………………………………………………36
附表 1 試驗期間發過警報之侵臺颱風……………………………………………...61
附表2 醣類測定方法整理……………………………………………………………64
附表3 醣類研究項目、測定部位與測定糖類種類整理……………………………70

圖目錄

圖 1 植物體內醣類的分類與關係圖………………………………………………...10
圖 2 光合產物分配到樹體各部位的比重順序……………………………………...16
圖 3 胡桃(pecan)枝條與細根醣類含量年變化……………………………………18
圖 4 奇異果枝條醣類含量年變化…………………………………………………...19
圖 5 糖楓(Acer saccharum)根部澱粉含量年變化示意圖…………………………...19
圖 6 冬青櫟(Quercus ilex)和板栗(Castanea crenata)主幹與根部非結構性醣含量年變化………………………………………………………………………………20
圖 7 山羊耳(Symplocos glauca)以及水木(Swida controversa)木質部與韌皮部醣類含量年變化差異……………………………………………………………………20
圖 8 試驗樹木分布圖…………………………………………………………….......23
圖 9 試驗開始前半年至試驗結束之雨量與氣溫資料……………………………...36
圖 10 楓香葉片總可溶性糖含量年變化…………………………………………….37
圖 11 楓香葉片澱粉含量年變化 …………………………………………………….37
圖 12 楓香葉片總可溶性糖與澱粉含量年變化之比較…………………………….38
圖 13楓香枝條總可溶性糖含量年變化……………………………………………..39
圖 14 楓香枝條澱粉含量年變化…………………………………………………….39
圖 15 楓香枝條總可溶性糖與澱粉含量年變化之比較…………………………….40
圖 16 楓香根部總可溶性糖含量年變化…………………………………………….41
圖 17 楓香根部澱粉含量年變化…………………………………………………….41
圖 18 楓香根部總可溶性糖與澱粉含量年變化之比較…………………………….42
圖 19 楓香葉枝根醣類含量年變化之比較………………………………………….43
圖 20 樟樹葉片總可溶性糖含量年變化…………………………………………….44
圖 21 樟樹葉片澱粉含量年變化…………………………………………………….44
圖 22 樟樹葉片總可溶性糖與澱粉含量年變化比較……………………………….45
圖 23 樟樹枝條總可溶性糖含量年變化…………………………………………….46
圖 24 樟樹枝條澱粉含量年變化…………………………………………………….46
圖 25 樟樹枝條總可溶性糖與澱粉含量年變化之比較…………………………….47
圖 26 樟樹根部總可溶性糖含量年變化…………………………………………….48
圖 27 樟樹根部澱粉含量年變化…………………………………………………….48
圖 28 樟樹根部總可溶性糖與澱粉含量年變化之比較…………………………….49
圖 29 樟樹葉枝根醣類含量年變化之比較………………………………………….50
圖 30 楓香與樟樹葉枝根醣類含量年變化之比較………………………………….51
附圖 1 樟樹A樣區環境……………………………………………………………..62
附圖 2 樟樹B樣區環境……………………………………………………………..62
附圖 3 楓香A樣區環境……………………………………………………………..63
附圖 4 楓香B樣區環境……………………………………………………………..63
一、中文文獻

何冠琳, 許博行. (2001). 二氧化碳濃度與溫度對樟樹苗木之形質生長參數與葉綠素螢光反應之影響. 林業研究季刊 23(3): 1-20.
林君如, 許博行. (2003). 二氧化碳濃度和氮肥對樟樹苗木生長與光合作用之影響. 林業研究季刊 25: 1-14.
施正雄. (2012). 儀器分析原理與應用. 五南.
柳榗, 林彩雲. (1975). 臺灣常見林木簡介. 臺灣省林業試驗所.
胡生輝, 劉君良, 徐國祺. (2017). 樟樹葉提取物對木材腐敗菌的抑菌性研究. 林業科技通訊 5: 76-79.
徐鎮暉, 廖天賜, 翁仁憲. (2005). 不同海拔臺灣二葉松光合作用、同化產物累積、形成層活動之季節變化及針葉生長期之差異. 中華林學季刊 38(3): 291-303.
張淑賢, 李峰憲, 吳婉麗. (1987). 氣溫與降雨量對本省主要椪柑產區之果實品質與柑樹營養狀況之影響. 中華農業研究 36(1): 75-86.
梁耀竹, 曾喜育, 邱清安, 曾彥學. (2011). 臺灣西部惡地之植群調查. 林業研究季刊 33(3): 23-36.
許原瑞, 洪富文, 陳永修, 張乃航. (2001). 原生闊葉樹種在六龜瘠劣地的栽植表現. 臺灣林業科學 16(2): 115-124.
許博行, 張安瑮. (2001). 二氧化碳濃度與溫度對樟樹苗木生長及光合作用之影響. 臺灣林業科學 16(1): 11-23.
郭志誠. (1993). 楓香及烏心石苗木對水分供給之反應. 國立中興大學森林學系碩士論文.
郭耀綸, 范開翔, 黃慈薇, 李彥屏, 吳惠綸, 蔡瑞芬. (2004). 台灣三十種闊葉樹陽葉氣體交換潛力之研究. 台灣林業科學 19(4): 375-386.
郭耀綸, 陳家儀, 李芳胤, 仲崇毅. (2008). 二氧化硫短期燻氣對十七種樹苗葉部傷害及生理活性之影響. 作物、環境與生物資訊 5(2): 113-126.
郭耀綸, 陳海琳, 楊雅萍, 江雅惠, 潘瑋婷, 蔡國鐘. (2012). 臺灣低海拔原生樹種光合作用特性及生育環境資料之建立. 行政院農業委員會林務局保育研究系列 100-37 號.
陳右人. (1981). 檬果樹體碳水化合物與氮含量之週年變化. 國立臺灣大學園藝學研究所碩士論文.
陳右人. (1996). 根溫對檬果根生長、開花及葉片中無機要素與碳水化合物含量之影響. 中國園藝 42(2): 131-141.
陳永修. (1996). 六龜地區多納溫泉溪上游集水區植群生態之研究. 臺灣林業科學11(3): 275-287.
陳忠義, 王亞男, 徐唯恩, 吳亭潔, 余瑞珠, 吳宗賢. (2012). 評估平地造林地之土肉桂、水黃皮及楓香的生長與CO2吸存量. 臺灣大學生物資源暨農學院實驗林研究報告 26(4): 251-260.
陳書憲, 蔡佳彬, 劉瓊霦. (2011). 不同光度處理對台灣三種原生闊葉樹苗木碳水化合物累積和分配的影響. 林業研究季刊 33(1): 65-76.
陳凌雲, 劉瓊霦. (2009). 升高二氧化碳濃度與水分缺乏對樟樹苗木形質生長及碳水化合物分配的影響. 林業研究季刊 31(3): 43-54.
陳崇禮. (1994). 水分逆境對椪柑樹體碳氮含量之影響. 國立中興大學園藝研究所碩士論文.
彭永良, 孫岩章, 張育森. (2008). 光線、溫度、水份等因子對楓香異戊二烯生成之研究. 中華民國環境保護學會學刊 31(1): 10-20.
曾喜育, 曾彥學, 何伊喬, 郭礎嘉, 邱清安, 呂金誠. (2011). 奧萬大楓林區辛樂克颱風後林木生長與存活研究. 林業研究季刊 33(4): 1-20.
馮豐隆, 李宣德. (2009). 台灣之樟樹資源現狀與展望. 生物科學 51(2): 37-51.
黃子彬. (1995). 間歇或連續性乾旱對柑桔果實水份及糖份轉變之影響. 花蓮區研究彙報 11: 51.
黃菊美, 杜清澤. (2017). 台灣東部地區三種闊葉樹人工林的細根生產量與周轉率. 中華林學季刊 50(1): 73-84.
溫宏治, 吳文哲. (2012). 以樟樹為例說明樹木害蟲管理. 林業研究專訊19(2): 30-34.
溫紹炳. (2004). 台灣樟腦產業與客家人社會地位提升之研究. 成功大學客家研究中心研究報告.
廖天賜, 翁仁憲. (2000). 臺灣常見數種作物、野草及林木之光合作用特性. 林業研究季刊 22(3): 15-26.
趙鐳, 楊海波, 王達力, 張娜, 王希華. (2011). 浙江天童常見種幼苗的光合特性及非結構性碳水化合物儲存. 華東師範大學學報(自然科學版) 4: 35-44.
劉玉民, 劉亞敏, 李鵬霞. (2009). 楓香葉精油抑菌活性及抗氧化活性研究. 食品科學 (11): 134-137.
劉癸君, 林喻東. (2011). 都市林之生態價值與評估. 林業研究專訊 18(4): 55-58.
劉婉霞, 林金樹, 王亞男, 劉素玲. (2010). 樟樹徑向生長與生育地海拔及氣候因子的關係. 中華林學季刊 43(4): 557-568.
劉業經, 歐辰雄, 呂福原. (1994). 臺灣樹木誌. 南天書局.
歐陽明, 楊清培, 祁紅艷, 劉駿, 馬思琪, 宋慶妮. (2014). 亞熱帶落葉與常綠園林樹種非結構性碳水化合物的季節動態比較. 南京林業大學學報(自然科學版) 38(2): 105-110.
蔡志明, 孫岩章, 王亞男. (2005). 常見台北地區植物乾濕葉片與枝條滯塵效率的比較研究. 環境保護 28(1): 39-52.
蔡青園, 陳清義. (1991). 缺水對樟樹及楓香光合成作用及生理特性之影響. 中華林學季刊 24(2): 47-57.
謝瑞忠. (2003). 本樟樹葉與木材精油含量及其化學成分之研究. 臺灣林業科學 18(4): 317-327.
謝瑞忠. (2003). 芳樟樹葉與木材精油含量及其化學成分之研究. 臺灣林業科學 18(4): 329-338.
顏正平. (1972). 水土保持木本植物根系分佈類型研究. 中華水土保持學報 3(2): 179-204.

二、日文文獻

苅住曻. (1987). 樹木根系圖說. 誠光堂新文社.

三、英文文獻

Böhm, W. (1979). Methods of studying root systems. Springer.
Boyer, F. R. (2006). Concepts in biochemistry. 3rd edition. Wiley.
Cameron, S. H., G. Borst (1938). Starch in the avocado tree. Proceedings of the American Society for Horticutural Science 436:255-258.
Chien, C., J. H. Xiao, Y. H. Tseng, Y. H. Kuo, S. Y. Wang (2013). Composition and antifungal activity of balsam from Liquidambar formosana Hance. Holzforschung 67(3): 345-351.
Coleman, D. G. (1997). Seasonal vegetative storage proteins of poplar. United States Department of Agriculture Forest Service General Technical Report: 124-130.
Cranswick, A. M., D. A. Rook, J. A. Zabkiewicz (1987). Seasonal changes in carbohydrate concentration and composition of different tissue types of Pinus radiata trees. New Zealand Journal of Forest Science, 17, 229-245.
Davidson, J. L. (2000). Comparison between root and stem total nonstructural carbohydrate concentrations in three woody plant species. Master dissertation, Texas Tech University.
Davis, A. S., D. F. Jacobs (2005). Quantifying root system quality of nursery seedlings and relationship to outplanting performance. New Forests 30(2): 295-311.
Dickson, E. R. (1987). Diurnal changes in leaf chemical constituents and 14C partitioning in cottonwood. Tree Physiology 3(2): 157-171.
DuBois M., K. A. Gilles, J. K. Hamilton, P. T. Rebers, F. Smith (1956). Colorimetric method for determination of sugars and related substances. Analytical chemistry 28(3): 350-356.
Epron, D., E. Dreyer (1996). Starch and soluble carbohydrates in leaves of water-stressed oak saplings. Annales des sciences forestières 53(2-3): 263-268.
Gene, W. G., J. D. Frederick (1978). Urban Forestry. Wiley.
Gilman, E. F., D. G. Watson (1993). Liquidambar formosana Formosa Sweetgum. US Forest Service.
Grant, J. A. (1983). Influence of in-vine light environment on compounds of yield of kiwifruit. Master of Science thesis, University of California at Davis.
Grigová Kubeš, M., N. Drážná, T. Řezanka, H. M. Lipavská (2007). Storage lipid dynamics in somatic embryos of Norway spruce (Picea abies): histochemical and quantitative analyses. Tree physiology 27(11): 1533-1540.
Guo Geng Z., W. Zhang, J. Liang, C. Wang, Z. Deng, S. S. Du (2016). The Chemical Composition of Essential Oils from Cinnamomum camphora and Their Insecticidal Activity against the Stored Product Pests. International journal of molecular sciences 17(11): 18-36.
Hansen, J., I. B. M?ller (1975). Percolation of starch and soluble carbohydrates from plant tissue for quantitative determination with anthrone. Analytical biochemistry 68(1): 87-94.
Herold, A., P. H. McNeil (1979). Restoration of photosynthesis in pot-bound tobacco plants. Journal of Experimental Botany 30(6): 1187-1194.
Herold A. (1984) Biochemistry and physiology of synthesis of starch in leaves: autotrophic and heterotrophic chloroplasts. In Storage carbohydrates in vascular plants: 181-204. Cambridge University Press.
Hooker Jr., H. D. (1920). Seasonal changes in the chemical composition of apple spur. University of Missouri Agricultural Experiment Station Research Bulletin 40: 1-51.
IPCC. (2007). Fourth Assessment Report: Climate Change.
Kalra, Y. (Ed.). (1997). Handbook of reference methods for plant analysis. CRC press.
Jones, G., W. H. Outlaw, O. H. Lowry (1977). Enzymic assay of 10-7 to 10-14 moles of sucrose in plant tissues. Plant Physiology 60(3): 379-383.
Kozlowski, T. T. (1992). Carbohydrate sources and sinks in woody plants. The Botanical Review 58(2): 107-222.
Larcher, W. (2003). Physiological plant ecology: ecophysiology and stress physiology of functional groups. Springer Science & Business Media.
Loescher, W. H., T. McCamant, J. D. Keller (1990). Carbohydrate reserves, translocation, and storage in woody plant roots. HortScience, 25(3), 274-281.
Mishra, K., S. K. Dwivedi, N. Kishore, N. K. Dubey (1991). Fungistatic properties of essential oil of Cinnamomum camphora. International journal of pharmacognosy 29(4): 259-262.
Murneek, A. E. (1929). Hemicellulose as a storage carbohydrate in woody plants, with special reference to the apple. Plant physiology 4(2): 251.
Murneek, A. E. (1942). Quantitative distribution of nitrogen and carbohydrates in apple trees. University of Missouri Agricultural Experiment Station Research Bulletin 348: 1-27.
United Nations. (2014). World Urbanization Prospects 2014.
Newell, A., S. S. Mulkey, J. S. Wright (2002). Seasonal patterns of carbohydrate storage in four tropical tree species. Oecologia 131(3): 333-342.
Nielsen, S. S. (2010). Phenol-sulfuric acid method for total carbohydrates. In Food Analysis Laboratory Manual (pp. 47-53). Springer US.
Oliveira, C. M., C. A. Priestley (1988). Carbohydrate Reserves in Deciduous Fruit Trees. Horticultural Reviews 10: 403-430.
Ouyang, X., S. Yi, H. Lu, S. Wu, H. Zhao (2016). Liquidambar formosana Hance: A Mini-review of Chemical Constituents and Pharmacology. European Journal of Medicinal Plants 17: 1-11.
Pallardy W. (2008). Physiology of Woody Plants. 3rd edition. Elsivier Inc.
Priestley, C. A. (1970). Carbohydrate storage and utilization. In Physiology of Tree Crops (pp. 113-125). Academic Press.
Regier N., S. Streb, S. C. Zeeman, B. Frey (2010). Seasonal changes in starch and sugar content of poplar (Populus deltoides×nigra cv. Dorskamp) and the impact of stem girdling on carbohydrate allocation to roots. Tree physiology 30(8): 979-987.
Requejo-Tapia, C., A. B. Woolf, G. Roughan, R. Schroeder, H. Young, A. L. White (1999). Seasonal changes in lipid content and fatty acid composition of‘Hass’ avocados. Avocado Postharvest Research 99: 1-29.
Rosenzweig, C., G. Casassa, D. J. Karoly, A. Imeson, C. Liu, A. Menzel, S. Rawlins, T. L. Root, B. Seguin, P. Tryjanowski (2007). Assessment of observed changes and responses in natural and managed systems. In Climate Change 2007: Impacts, Adaptation and Vulnerability (pp 79).
Ryugo K. (1988). Fruit Culture: It’s Science and Art. J. Wiley & Sons.
Scholefield, P. B., M. Sedgley, D. M. Alexander (1985). Carbohydrate cycling in relation to shoot growth, floral initiation and development and yield in the avocado. Scientia horticulturae 25(2): 99-110.
Sheen J. (1990). Metabolic repression of transcription in higher plants. The Plant Cell Online 2(10): 1027-1038.
Shigo, A., G. Gregory, R. Campana, K. Dudzik, D. Zimel (1986). Patterns of starch reserves in healthy and diseased American elms. Canadian Journal of Forest Research 16(2): 204-210.
Sinnott, E. W. (1918). Factors determining character and distribution of food reserve in woody plants. Botanical Gazette 66(2): 162-175.
Wang, K., Y. M. Pan, H. S. Wang. Y. Zhang, Q. Lei, Z. R. Zhu, H. Y. Li, M. Liang (2010). Antioxidant activities of Liquidambar formosana Hance leaf extracts. Medicinal chemistry research 19(2): 166-176.
Wargo, P. M. (1979). Strach storage and radial growth in woody roots of sugar maple. Canadian Journal of Forest Research 9(1): 49-56.
Waring, R. (1987). Characteristics of Trees Predisposed to Die. Bioscience 37(8): 569-574.
Waring R. H., Schlesinger W. H. (1985). Forest Ecosystems: Concepts and Management. Orlando, FL: Academic Press.
Worley R. E. (1979). Fall defoliation date and seasonal carbohydrate concentration of pecan wood tissue. Journal American Society for Horticultural Science 104: 195-199.
Zhou Ren, J., Z. H. Li (2017). Antibacterial activity and mechanism of pinoresinol from Cinnamomum camphora leaves against food-related bacteria. Food Control, 79: 192-199.
Zuo Wang, B., B. Ying, L. Zhou, R. Z. Zhang (2017). Monoterpene emissions contribute to thermotolerance in Cinnamomum camphora. Trees: 1-13.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 何冠琳, 許博行. (2001). 二氧化碳濃度與溫度對樟樹苗木之形質生長參數與葉綠素螢光反應之影響. 林業研究季刊 23(3): 1-20.
2. 林君如, 許博行. (2003). 二氧化碳濃度和氮肥對樟樹苗木生長與光合作用之影響. 林業研究季刊 25: 1-14.
3. 徐鎮暉, 廖天賜, 翁仁憲. (2005). 不同海拔臺灣二葉松光合作用、同化產物累積、形成層活動之季節變化及針葉生長期之差異. 中華林學季刊 38(3): 291-303.
4. 張淑賢, 李峰憲, 吳婉麗. (1987). 氣溫與降雨量對本省主要椪柑產區之果實品質與柑樹營養狀況之影響. 中華農業研究 36(1): 75-86.
5. 梁耀竹, 曾喜育, 邱清安, 曾彥學. (2011). 臺灣西部惡地之植群調查. 林業研究季刊 33(3): 23-36.
6. 許原瑞, 洪富文, 陳永修, 張乃航. (2001). 原生闊葉樹種在六龜瘠劣地的栽植表現. 臺灣林業科學 16(2): 115-124.
7. 許博行, 張安瑮. (2001). 二氧化碳濃度與溫度對樟樹苗木生長及光合作用之影響. 臺灣林業科學 16(1): 11-23.
8. 陳右人. (1996). 根溫對檬果根生長、開花及葉片中無機要素與碳水化合物含量之影響. 中國園藝 42(2): 131-141.
9. 陳永修. (1996). 六龜地區多納溫泉溪上游集水區植群生態之研究. 臺灣林業科學11(3): 275-287.
10. 陳書憲, 蔡佳彬, 劉瓊霦. (2011). 不同光度處理對台灣三種原生闊葉樹苗木碳水化合物累積和分配的影響. 林業研究季刊 33(1): 65-76.
11. 陳凌雲, 劉瓊霦. (2009). 升高二氧化碳濃度與水分缺乏對樟樹苗木形質生長及碳水化合物分配的影響. 林業研究季刊 31(3): 43-54.
12. 彭永良, 孫岩章, 張育森. (2008). 光線、溫度、水份等因子對楓香異戊二烯生成之研究. 中華民國環境保護學會學刊 31(1): 10-20.
13. 曾喜育, 曾彥學, 何伊喬, 郭礎嘉, 邱清安, 呂金誠. (2011). 奧萬大楓林區辛樂克颱風後林木生長與存活研究. 林業研究季刊 33(4): 1-20.
14. 黃菊美, 杜清澤. (2017). 台灣東部地區三種闊葉樹人工林的細根生產量與周轉率. 中華林學季刊 50(1): 73-84.
15. 溫宏治, 吳文哲. (2012). 以樟樹為例說明樹木害蟲管理. 林業研究專訊19(2): 30-34.