林經偉。青花菜栽培之土壤及施肥管理。2013。臺南區農業專訊85: 13-17。薛?、李勝、馬紹英、劉浩、羅麗媛、方艷。2010。不同光質對西蘭花癒傷組織及蘿蔔硫素含量的影響。甘肅農業大學學報 45(4): 95-99。
Andreasson, E., J. Taipalensuu, L. Rask, and J. Meijer, 1999. Age-dependent wound induction of a myrosinase-associated protein from oilseed rape (Brassica napus). Plant Molecular Biology 41: 171-180.
Andréasson, E., L. B. Jörgensen, A. Höglund, L. Rask, and J. Meijer. 2001. Different Myrosinase and Idioblast Distribution in Arabidopsis and Brassica napus. Plant Physiol. 127: 1750-1763.
Boddupalli, S., J. R. Mein, S. Lakkanna, and D. R. James. 2012. Induction of phase 2 antioxidant enzymes by broccoli sulforaphane: perspectives in maintaining the antioxidant activity of vitamins A, C, and E. Front. Genet. 3:7.
Bones, A. M. and J. T. Rossiter. 1996. The myrosinase-glucosinolate system: its organization and biochemistry. Physiologia Plantarum 97: 194-208.
Campas-Baypolia, O. N., D. I. Sánchez-Machadoa, C. Bueno-Solanoa, B. Ramírez-Wongb, and J. López-Cervantesa. 2010. HPLC method validation for measurement of sulforaphane level in broccoli by-products. Biomed. Chromatogr. 24: 387-392.
Chen, S. and E. Andreasson. 2001. Update on glucosinolate metabolism and transport. Plant Physiol. Biochem. 39(9): 743-758.
Esfandiari, A., A. Saei, M. J. McKenzie, A. J. Matich, M. Babalar, and D. A. Hunter. 2017. Preferentially enhancing anti-cancer isothiocyanates over glucosinolates in broccoli sprouts: How NaCl and salicylic acid affect their formation. Plant Physiol. Biochem. 115: 343-353.
Fahey, J. W., A. T. Zalcmann, and P. Talalay. 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochem. 56(1): 5-51.
Fahey, J. W., S. L. Wehage, W. D. Holtzclaw, T. W. Kensler, P. A. Egner, T. A. Shapiro, and P. Talalay. 2012. Protection of humans by plant glucosinolates: Efficiency of conversion of glucosinolates to isothiocyanates by the gastrointestinal microflora. Cancer Prev. Res. 5(4): 603-611.
Falk, A., B. Ek, and L. Rask. 1995. Characterization of a new myrosinase in Brassica napus. Plant Molecular Biology 27: 863-874.
Falk, K. L. J. G. Tokuhisa, and J. Gershenzon. 2007. The effect of sulfur nutrition on plant glucosinolate content: physiology and molecular mechanisms. Plant Biol. 9(5): 573–581.
Foo, H. L., L. M. Gronning, L. Goodenough, A. M. Bones, B. Danielsen, D. A. Whiting, and J. T. Rossiter. 2000. Purification andcharacterisationof epithiospecifier proteinfrom Brassica napus: enzymic intramolecular sulphur addition within alkenyl thiohydroximates derived from alkenyl glucosinolate hydrolysis. FEBS Lett. 468: 243-246.
Guo, L., R. Yang, Y. Zhou, and Z. Gu. 2016. Heat and hypoxia stresses enhance the accumulation of aliphatic glucosinolates and sulforaphane in broccoli sprouts. Eur. Food Res. Technol. 242(1): 107-116.
Guo, R., G. Yuan, and Q. Wang. 2013. Effect of NaCl treatments on glucosinolate metabolism in broccoli sprouts. J. Univ-Sci. B. 14(2): 124-131.
Iamtham, S. and A. Day. 2000. Removal of antibiotic resistance genes from transgenic tobacco plastids. Nat. Biotechnol. 18: 1172-1176.
Jones, R. B., C. L. Frisina, S. Winkler, M. Imsic, and R. B. Tomkins. 2010. Cooking method significantly effects glucosinolate content and sulforaphane production in broccoli florets. Food Chem. 123(2): 237-242.
Jones, R. B., J. D. Faragher, and S. Winkler. 2006. A review of the influence of postharvest treatments on quality and glucosinolate content in broccoli (Brassica oleracea var. italica) heads. Postharvest Biol. Technol. 41(1):1-8.
Khan, M. A. M., C. Ulrichs, and I. Mewis. 2011. Water stress alters aphid-induced glucosinolate response in Brassica oleracea var. italica differently. Chemoecology 21(4): 235-242.
Kissen, R., J. T. Rossiter, and A. M. Bones. 2009. The ‘mustard oil bomb’: not so easy to assemble?! Localization, expression and distribution of the components of the myrosinase enzyme system. Phytochemistry Reviews 8: 69-86.
Kliebenstein, D. J., J. Kroymann, and T. Mitchell-Olds. 2005. The glucosinolate-myrosinase system in an ecological and evolutionary context. Curr. Opin. Plant Biol. 8: 264-271.
Kobayashi, A., M. I. Kang, H. Okawa, M. Ohtsuji, Y. Zenke, T. Chiba, K. Igarashi, and M. Yamamoto. 2004. Oxidative Stress Sensor Keap1 Functions as an Adaptor for Cul3-Based E3 Ligase To Regulate Proteasomal Degradation of Nrf2. Mol. Cell Biol. 24:7130-7139.
Kopsell, D. A. and C. E. Sams. 2013. Increases in shoot tissue pigments, glucosinolates, and mineral elements in sprouting broccoli after exposure to short-duration blue light from light emitting diodes. J. Amer. Soci. Horti. Sci. 138(1): 31-37.
Ku, K. M., J. H. Choi, H. S. Kim, M. M. Kushad, E. H. Jeffery, et al. 2013. Methyl jasmonate and 1-methylcyclopropene treatment effects on quinone reductase inducing activity and post-harvest quality of broccoli. PLoS ONE 8(10): e77127. doi:10.1371/journal.pone.0077127.
Lambrix, V., M. Reichelt, T. Mitchell-Olds, D. J. Kliebenstein, and J. Gershenzon. 2001. The Arabidopsis epithiospecifier protein promotes the hydrolysis of glucosinolates to nitriles and influences Trichoplusia ni herbivory. Plant Cell 13(12): 2793-2807.
Liang, H., Q. Yuan, and Q. Xiao. 2006. Effects of metal ions on myrosinase activity and the formation of sulforaphane in broccoli seed. J. Mol. Catal. B Enzym. 43: 19-22.
Maliga, P. 2003. Progress towards commercialization of plastid transformation technology. Trends in Biotech. 21(1): 20-28.
Maliga, P. 2014. Chloroplast Biotechnology: Methods and Protocols. Methods in Molecular Biology. Vol. 1132. Springer, New York York, Humana Press.
Matusheski, N. V., R. Swarup, J. A. Juvik, R. Mithen, M. Bennett, and E. H. Jeffery. 2006. Epithiospecifier protein from broccoli (Brassica oleracea L. ssp. Italic) inhibits formation of the anticancer agent sulforaphane. J. Agri. Food Chem. 54: 2069-2076.
Matusheski, N. V., J. A. Juvik, and E. H. Jeffery. 2004. Heating decreases epithiospecifier protein activity and increases sulforaphane formation in broccoli. Phytochem. 65: 1273-1281.
Padilla, G., M. E. Cartea, P.Velasco, A. Haro, and A. Ordás. 2007. Variation of glucosinolates in vegetable crops of Brassica rapa. Phytochem. 68(4): 536-545.
Park, J.-H., S.-J. Lee, B.-R. Kim, E.-T. Woo, J.-S. Lee, E.-H. Han, Y.-H. Lee, and Y.-D.Park. 2011. Isolation of myrosinase and glutathione S-transferase genes and gransformation of ghese genes to develop phenylethylisothiocyanate enriching Chinese cabbage. Kor. J. Hort. Sci. Technol. 29(6): 623-632.
Pérez-Balibrea, S, D. A. Moreno, and C. García-Viguera. 2008. Influence of light on health-promoting phytochemicals of broccoli sprouts. J. Sci. Food Agri. 88 (5): 904-910.
Pérez-Balibrea, S, D. A. Moreno, and C. García-Viguera. 2011. Improving the phytochemical composition of broccoli sprouts by elicitation. Food Chem. 129 (1): 35-44.
Prakash, O., A. K. Rai, J. Singh, and P.M. Singh. 2013. Effect of heavy metal ions and carbohydrates on the activity of cauliflower (Brassica oleracea Var. botrytis) myrosinase. J. Stress Physiol. Biochem. 9: 108-117.
Rangkadilok, N., M. E. Nicolas, R. N. Bennett, R. R. Premier, D. R. Eagling, and P. W. J. Taylor. 2002. Developmental changes of sinigrin and glucoraphanin in three Brassica species (Brassica nigra, Brassica juncea and Brassica oleracea var. italica). Sci. Hort. 96: 11-26.
Rask, L., E. Andréasson, B. Ekbom, S. Eriksson, B. Pontoppidan, J. Meijer. 2000. Myrosinase: gene family evolution and herbivore defense in Brassicaceae. Plant Mole. Biol. 42: 93-113.
Razin, A. and J. Friedman. 1982. DNA Methylation and its Possible Biological Roles. Prog. Nucletic Acids Res. Mol. Biol. 25: 33-52.
Royston, K. J. and T. O. Tollefsbol. 2015. The epigenetic impact of cruciferous vegetables on cancer prevention. Curr. Pharmacol. Rep. 1(1): 46-51.
Rungapamestry, V., A. J. Duncan, Z. Fuller, and B. Ratckiffe. 2006. Changes in Glucosinolate Concentrations, Myrosinase Activity, and Production of Metabolites of Glucosinolates in Cabbage ( Brassica oleracea Var. capitata ) Cooked for Different Durations. J. Agric. Food Chem. 54: 7628-7634.
Scholl, C., B. D. Eshelman, D. M. Barnes, and P. R. Hanlon. 2011. Raphasatin is a more potent inducer of the detoxification enzymes than its degradation products. J. Food Sci. 76(3): 504-511.
Sivakumar, G., A. Aliboni, and L. Bacchetta. 2007. HPLC screening of anti-cancer sulforaphane from important European Brassica species. Food Chem. 104(4): 1761-1764.
Song, L. and P. J. Thornalley. 2007. Effect of storage, processing and cooking on glucosinolate content of Brassica vegetables. Food Chem. Toxicol. 45(2): 216-224.
Svab, Z., and P. Maliga. 1993. High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. P. Natl. Acad. Sci. USA. 90: 913-917.
Taipalensuu, J., E. Andreasson, S. Eriksson, and L. Rask L. 1997. Regulation of the wound-induced myrosinase-associated protein transcript in Brassica napus plants. Eur. J. Biochem. 247(3): 963-971.
Tilaar, W., S. Ashari, B. Yanuwiadi, and J. Polii-Mandang. 2012. Synthesis of sulforaphane during the formation of plantlets from broccoli (Brassica oleracea L. var. italica) in vitro. IJET-IJENS. 12(3):1-5.
Vaughn, S. F. and M. A Berhow. 2005. Glucosinolate hydrolysis products from various plant sources: pH effects, isolation, and purification. Ind. Crops Prod. 21(2): 193-202.
Wang, G. C., M. Farnham, and E. H. Jeffery. 2012. Impact of Thermal Processing on Sulforaphane Yield from Broccoli (Brassica oleracea L. ssp. italica). J. Agric. Food Chem. 60(27): 6743-6748.
Williams, D. J., C. Critchley, S. Pun, S. Nottingham, and T. J. O’Har. 2008. Epithiospecifier proteinactivity in broccoli: The link between terminal alkenyl glucosinolates and sulphoraphane nitrile. Phytochemistry 69: 2765-2773.
Williams, D. J., C. Critchley, S. Pun, M. Chaliha, and T. J. O’Har. 2010. Key Role of Fe2+ in Epithiospecifier Protein Activity. J. Agric. Food Chem. 58(15): 8512–8521.
Wittstock, U. and B. A. Halkier. 2002. Glucosinolate research in the Arabidopsis era. Trends Plant Sci. 7(6):263-270.
Wu, Q., J. Lin, K. Huang and M. Liu. 2013. Characterization and expression analysis of myrosinase for sulforaphane synthesis in broccoli. Int. J. Agric. Biol. 15: 83-89.
Xue, J., M. Jorgensen, U. Pihlgren, and L. Rask. 1995. The myrosinase gene family in Arabidopsis thaliana: gene organization, expression and evolution. Plant Mol. Biol. 27: 911-922.
Yuan, G. and Q. Wang. 2012. Function of epithiospecifier protein gene from broccoli. J. Zhejiang University Agric. & Life Sci. 38 (5): 529-534.
Yang, R., L. Guo, X. Jin, C. Shen, Y. Zhou, and Z. Gu. 2015. Enhancement of glucosinolate and sulforaphane formation of broccoli sprouts by zinc sulphate via its stress effect. J. Funct. Foods 13: 345-349.
Zhang, C., Z. Y. Su, T. O. Khor, L. Shu, and A. T. Kong. 2013. Sulforaphane enhances Nrf2 expression in prostate cancer TRAMP C1 cells through epigenetic regulation. Biochem. Pharmacol. 85(9): 1398-1404.
Zhang, Z. Y., J, A, Ober, and D. J. Kliebenstein. 2006, The gene controlling the quantitative trait locus EPITHIOSPECIFIER MODIFIER1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis. Plant Cell 18: 1524-1536.