跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/02 15:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳俊銘
研究生(外文):Choon Meng Tan
論文名稱:植物病原菌之致病蛋白XopD和SAP11致病機制與生化分析與其宿主交互作用之探討
論文名稱(外文):Virulence and biochemical characterizations of phytopathogen effectors, XopD and SAP11, in the role of plant-pathogen interactions
指導教授:楊俊逸
指導教授(外文):Jun-Yi Yang
口試委員:鍾光仁黃介辰林詩舜陳逸然
口試委員(外文):Kuang-Ren ChungChieh-Chen HuangShih-Shun LinYet-Ran Chen
口試日期:2017-05-25
學位類別:博士
校院名稱:國立中興大學
系所名稱:微生物基因體學博士學位學程
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:88
中文關鍵詞:植物病原菌XopDSAP11
外文關鍵詞:phytopathogenXopDSAP11
相關次數:
  • 被引用被引用:0
  • 點閱點閱:190
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
病原菌藉由分泌致病蛋白分子注入到植物細胞中造成植物感病,這往往造成農作物的產量下降。因此瞭解植物與病原菌相互作用機制有助於提高農作物的防禦能力。本論文主要探討十字花科黑腐病和植物菌質體病原菌的致病蛋白分子如何參與調控植物的防禦機制。
第一部分,XopDXcc8004是十字花科黑腐病的致病蛋白分子之一,且具有SUMO protease酵素活性。利用β-estrodiol誘導XVE::XopDXcc8004轉殖株表現XopDXcc8004,可以發現此株會呈現胚軸延長的白化苗和其葉面有局部壞死的外表型,利用qRT-PCR分析下,此株生物逆境基因的表現量如PR1、PR2和PR5等明顯的增加,且可以抑制Xcc8004的繁殖。此外,XopDXcc8004可以和光訊息傳導路徑的轉錄因子HFR1進行交互作用,且可以將HFR1進行desumoylation,推測HFR1也參與調控植物的防禦反應。因此利用hfr1突變株進行探討,藉由植物荷爾蒙水楊酸處理後,發現hfr1突變株的生物逆境基因表現量比野生型明顯增加,且在接種Xcc8004實驗中,在hfr1突變株所偵測到Xcc8004繁殖量比野生型植株少,此結果說明HFR1也參與調控植物的防禦系統,且扮演著負調控因子。本篇研究雖然沒有直接的證據說明XopDXcc8004可以在植物細胞中和HFR1進行交互作用,但依本研究的實驗結果可以瞭解到,HFR1除了參與植物光訊息傳遞路徑外,同時在植物的防禦反應傳導路徑中也扮演著重要的調控因子,且可以被XopDXcc8004所修飾。此外,也進一步證實植物的光訊息傳遞路徑和防禦機制之間是具有crosstalk現象。
第二部分,植物菌質體的傳播媒介主要以吸食性昆蟲如葉蟬和飛蝨等為主。其所分泌致病性蛋白SAP11可以抑制植物的茉莉酸的合成,增加吸食性昆蟲取食和產卵,提高植物菌質體的傳播。利用菸草(Nicotiana benthamiana)建立35S::SAP11CaPM轉植株,發現此轉殖株缺乏野生型菸草特有的氣味。與野生型菸草進行比對,35S::SAP11CaPM轉殖菸草中的揮發性化合物IBMP (2-isobuty-3-methoxypyrazine)明顯降低,而且葉子表面的茸毛(Trichomes)數量比野生型少許多。利用即時定量聚合酶鏈鎖反應(qRT-PCR)進行分析,發現35S::SAP11CaPM轉植菸草中的NbOMT1明顯減少。進一步分析NbOMT1蛋白酵素活性反應,發現NbOMT1可以藉由S-adenosyl-L-methionine (SAM)提供甲基團,將IBHP進行甲基化形成IBMP。由於已知IBMP可作為瓢蟲費洛蒙,能吸引瓢蟲聚集,因此利用野生型和35S::SAP11CaPM轉植菸草進行吸引瓢蟲動向實驗,結果發現野生型菸草更具吸引瓢蟲的能力。已知,植物菌質體可藉由半翅目昆蟲作為傳播和繁殖媒介,而瓢蟲為半翅目昆蟲的天敵,因此推測植物菌質體利用致病蛋白分子SAP11CaPM降低菸草中的IBMP是為了減少瓢蟲來到其感染的植物中取食其傳播媒介如葉蟬等,進而增加植物菌質體的傳播。
Phytopathogens cause a variety of diseases in economically important crops and lead to major losses of yields. The virulence of phytopathogens mainly depend on their effector proteins which are translocated or secreted into host cells in order to suppress plant immune responses. Therefore, understanding the mechanism of plant-pathogen interactions will be helpful to develop better strategies to against plant diseases. In this dissertation, the virulence functions of Xanthomonas XopD (part I) and phytoplasma SAP11 (part II) effectors will be characterized, and their roles in plant-pathogen interaction will be discussed.
Part I: XopDXcc8004 is a type III effector of Xanthomonas campestris pv. campestris (Xcc) 8004, which has been shown to possess a SUMO protease activity. Here, transgenic approach combined with inducible promoter was carried out to analyze the effects of XopDXcc8004 in plant immunity. The long hypocotyl and lesion-mimic phenotypes were observed in XVE::XopDXcc8004 transgenic Arabidopsis after treating with β-estradiol. XopDXcc8004 elicited the accumulation of host defense-response genes such as PR1, PR2 and PR5, that suppressed the growth of Xcc8004. Moreover, XopDXcc8004 was able to interact with HFR1, a basic helix-loop-helix transcription factor involved in photomorphogenesis, and desumoylated the sumoylated HFR1 through SUMO protease activity. Interestingly, the increased expression of host defense-response genes and displayed a resistance phenotype to Xcc8004 were observed in hfr1-201 mutant. These results suggest that HFR1 is potentially regulated by XopDXcc8004, and acts as a negative regulator in plant immunity. These findings not only indicate that HFR1 is required for the fine-tuning of plant immune responses, but also contribute to our knowledge of the crosstalk between light signaling pathway and immune response.
Part II: SAP11 is a secreted effector of phytoplasma, which has been shown to suppress JA synthesis and increase the proliferation of their insect vectors. In this study, Nicotiana benthamiana expressing SAP11 from Candidatus Phytoplasma mali (CaPM) was carried out. Interestingly, a dramatic reduction of tobacco odors was observed in 35S::SAP11CaPM transgenic tobacco. This altered aroma phenotype was correlated with the modification of glandular trichomes and the suppression of biosynthesis of a volatile organic compound 3-isobutyl-2-methoxypyrazine (IBMP). Furthermore, the absence of expression of NbOMT1 was found to be responsible for the loss of accumulation of IBMP in SAP11CaPM-transgenic plants. Enzyme activity characterizations demonstrated that NbOMT1 possesses an O-methyltransferase activity and is able to methylate IBHP and leads to the production of IBMP in the presence of SAM. Given the importance of IBMP as an aggregation pheromone between ladybird beetles, we showed that SAP11-transgenic plants loss the ability to attract ladybird beetles, Oenopia sauzeti and Lemnia biplagiata. Because ladybird beetles are one of the natural enemies of psyllids, we propose that psyllids, the insect vectors of phytoplasmas, may take advantage of a reduction in predators’ attacks and increase their fitness on phytoplasma-infected plants. Here, our study provides valuable insights into the molecular communication between plants and the associated community members in an ecological relevant context.
誌謝................................................... i
摘要................................................... ii
Abstract............................................... iv
Content................................................ vi

Chapter Ⅰ............................................. 1
Introduction........................................... 2
Plant Immune System.................................... 2
Hormones in the Plant Immune System.................... 3
Pathogenicity of Xanthomonas........................... 4
Pathogenicity of Phytoplasma........................... 5
References............................................. 8

Chapter Ⅱ............................................. 14
Arabidopsis HFR1 Is a Potential Nuclear Substrate Regulated by the Xanthomonas Type III Effector XopDXcc8004.......... 14
Abstract............................................... 15
Introduction........................................... 16
Materials and Methods.................................. 18
Plant materials and growth conditions.................. 18
Plasmid constructions.................................. 18
Arabidopsis transformations............................ 19
Trypan blue staining................................... 19
Quantitative reverse transcription-polymerase chain reaction (qRT-PCR).............................................. 19
Recombinant protein purifications and antibody production ........................................................19
Bacterial strains and inoculations..................... 20
Yeast two-hybrid assays................................ 20
Subcellular localization assays........................ 21
In vitro pull-down assays.............................. 21
In vitro sumoylation assays............................ 21
Primers................................................ 22
Results................................................ 23
Expression of XopDXcc8004 elicits a SA-mediated defense response in Arabidopsis................................ 23
Suppression of Xcc8004 growth by XopDXcc8004........... 24
XopDXcc8004-eliciting defense responses are mainly dependent on the SUMO protease activity............................. 24
XopDXcc8004 interacts with Arabidopsis HFR1............ 25
K72 in HFR1 is desumoylated by XopDXcc8004 in vitro.... 26
hfr1-201 increases resistance to Xcc8004............... 26
Discussion............................................. 28
References............................................. 30
Figure Legends......................................... 35
Figure 1 Salicylic acid-dependent defense responses were elicited by the expression of XopDXcc8004 in Arabidopsis.. ........................................................35
Figure 2 XopDXcc8004 suppresses the virulence of the Xcc8004 ........................................................36
Figure 3 XopDXcc8004(C355A) loses the activity for activating plant immunity......................................... 37
Figure 4 Expression of XopDXcc8004 induces a long hypocotyl phenotype in Arabidopsis............................... 38
Figure 5 hfr1-201 increases plant immunity against Xcc8004 spp.................................................... 39
Table 1 Primer sequences for plasmid constructions and qRT-PCR.................................................... 40
Appendixes............................................. 41
Figure A1 XopDXcc8004 interacts with HFR1............ 41
Figure A2 K72 in HFR1 is desumoylated by XopDXcc8004 in vitro ........................................................42
Table A1 Annotation of the differentially expressed genes (p < 0.001) involved in plant defense responses...........43

Chapter Ⅲ............................................. 44
Suppression of Biosynthesis of IBMP, a Volatile Compound Required for Aggregation of Ladybird Beetles, by Phytoplasma Effector SAP11CaPM..................................... 44
Abstract............................................... 45
Introduction........................................... 46
Materials and Methods.................................. 49
Plant materials and growth conditions.................. 49
Plasmid constructions.................................. 49
Generation of transgenic plants........................ 49
qRT-PCR................................................ 49
ddPCR.................................................. 50
Co-expression assays................................... 50
HS-SPME/GC-MS analyses................................. 50
In vitro O-methylation assays.......................... 51
Cryo-SEM............................................... 51
Phylogenetic analysis.................................. 52
VIGS (Virus-induced gene silencing) assays............. 52
Y-tube olfactometer assays............................. 52
Results................................................ 53
Expression of the phytoplasma SAP11CaPM causes morphological changes and attenuates the JA response pathway in N. benthamiana............................................ 53
Expression of the phytoplasma SAP11CaPM suppresses the accumulation of IBMP in N. benthamiana................. 53
Expression of the phytoplasma SAP11CaPM alters the phenotypes of glandular trichomes and blocks the expression of NbOMT1 in N. benthamiana......................................... 54
Down-regulation of NbOMT1 represses the biosynthesis of IBMP in N. benthamiana......................................... 56
NbOMT1 catalyzes the formation of IBMP in vivo and in vitro. ........................................................56
Functional similarities between SAP11CaPM and SAP11AYWB. ........................................................57
Behavioral responses of ladybird beetles to the SAP11CaPM-overexpressing N. benthamiana.......................... 58
Discussion............................................. 59
References............................................. 63
Figure Legends......................................... 72
Figure 1 Investigation of growth phenotypes altered by SAP11CaPM in N. benthamiana............................ 72
Figure 2 SAP11CaPM destabilizes class II TCPs and alters the transcript levels of the genes involved in the JA response pathway in N. benthamiana.............................. 73
Figure 3 Investigation of growth phenotypes and JA responses altered by SAP11CaPM in Arabidopsis.................... 74
Figure 4 GC-MS analysis of VOCs altered by SAP11CaPM in N. benthamiana............................................ 75
Figure 5 Investigation of IBMP production in WT and SAP11CaPM-transgenic Arabidopsis....................... 76
Figure 6 Comparison of transcript levels of potential genes required for the storage or biosynthesis of IBMP in leaves of WT and SAP11CaPM-transgenic N. benthamiana............. 77
Figure 7 Precise measurements of the transcript levels of genes in N. benthamiana by ddPCR....................... 78
Figure 8 Silencing of NbOMT1 by VIGS represses the production of IBMP in N. benthamiana.............................. 79
Figure 9 Examination of the activity of recombinant NbOMT1 in IBMP production ........................................ 80
Figure 10 NbOMT1 possesses the ability to catalyze the O-methylation of IBHP in E. coli and in vitro............ 81
Figure 11 SAP11AYWB alters leaf morphology and suppresses IBMP accumulation in N. benthamiana.................... 82
Figure 12 Investigation of behavioral responses of ladybird beetles altered by SAP11CaPM in N. benthamiana......... 83
Table1 Primer sequences for plasmid constructions, qRT-PCR, and ddPCR.............................................. 84
Appendixes............................................. 85
Figure A1 Comparison of trichome morphology in leaves of WT and SAP11CaPM-transgenic N. benthamiana................ 85
Figure A2 Sequence alignment of the deduced proteins of N. benthamiana OMTs (NbOMTs) with Vitis vinifera OMT3 (VvOMT3) ....................................................... 86
Figure A3 Phylogenetic analysis of N. benthamiana OMTs with other previously characterized plant OMTs (class II), COMTs (class I), and CCoAOMTs (class I)...................... 87
Figure A4 A working model to explain the role of phytoplasma SAP11 in plant-mediated interactions between pathogen and natural enemy of insect vector......................... 88
References
Bai, X., Zhang, J., Ewing, A., Miller, S.A., Jancso Radek, A., Shevchenko, D.V., Tsukerman, K., Walunas, T., Lapidus, A., Campbell, J.W., and Hogenhout, S.A. (2006). Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. Journal of Bacteriology 188, 3682-3696.
Bari, R., and Jones, J.D.G. (2009). Role of plant hormones in plant defence responses. Plant Molecular Biology 69, 473-488.
Bertamini, M., Grando, M.S., and Nedunchezhian, N. (2003). Effects of phytoplasma infection on pigments, chlorophyll-protein complex and photosynthetic activities in field grown apple leaves. Biologia Plantarum 47, 237-242.
Boller, T., and Felix, G. (2009). A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60, 379-406.
Buttner, D., Nennstiel, D., Klusener, B., and Bonas, U. (2002). Functional analysis of HrpF, a putative type III translocon protein from Xanthomonas campestris pv. vesicatoria. J Bacteriol 184, 2389-2398.
Canonne, J., Marino, D., Jauneau, A., Pouzet, C., Briere, C., Roby, D., and Rivas, S. (2011). The Xanthomonas type III effector XopD targets the Arabidopsis transcription factor MYB30 to suppress plant defense. Plant Cell 23, 3498-3511.
Chisholm, S.T., Coaker, G., Day, B., and Staskawicz, B.J. (2006). Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124, 803-814.
Comas, I., Moya, A., Azad, R.K., Lawrence, J.G., and Gonzalez-Candelas, F. (2006). The evolutionary origin of xanthomonadales genomes and the nature of the horizontal gene transfer process. Mol Biol Evol 23, 2049-2057.
Costa, T.R.D., Felisberto-Rodrigues, C., Meir, A., Prevost, M.S., Redzej, A., Trokter, M., and Waksman, G. (2015). Secretion systems in gram-negative bacteria: structural and mechanistic insights. Nat Rev Micro 13, 343-359.
Cui, J., Bahrami, A.K., Pringle, E.G., Hernandez-Guzman, G., Bender, C.L., Pierce, N.E., and Ausubel, F.M. (2005). Pseudomonas syringae manipulates systemic plant defenses against pathogens and herbivores. Proc Natl Acad Sci U S A 102, 1791-1796.
Dow, J.M., Scofield, G., Trafford, K., Turner, P.C., and Daniels, M.J. (1987). A gene-cluster in Xanthomonas campestris pv campestris required for pathogenicity controls the excretion of polygalacturonate lyase and other enzymes. Physiol Mol Plant P 31, 261-271.
FAO. (2017). The future of food and agriculture – Trends and challenges, Rome.
Felle, H.H. (1998). The apoplastic pH of the Zea mays root cortex as measured with pH-sensitive microelectrodes: aspects of regulation. J Exp Bot 49, 987-995.
Feng, F., Yang, F., Rong, W., Wu, X., Zhang, J., Chen, S., He, C., and Zhou, J.M. (2012). A Xanthomonas uridine 5'-monophosphate transferase inhibits plant immune kinases. Nature 485, 114-118.
Feys, B.J., Moisan, L.J., Newman, M.-A., and Parker, J.E. (2001). Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. The EMBO Journal 20, 5400-5411.
Feys, B.J.F., Benedetti, C.E., Penfold, C.N., and Turner, J.G. (1994). Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. The Plant Cell 6, 751-759.
Friedrich L, V.B., Gaffney T, Morse A, Ryals J. (1995). Characterization of tobacco plants expressing a bacterial salicylate hydroxylase gene. Plant Mol Biol.
Glazebrook, J., Rogers, E.E., and Ausubel, F.M. (1996). Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening. Genetics 143, 973-982.
Gomez-Gomez, L., and Boller, T. (2000). FLS2: An LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5, 1003-1011.
Grant, S.R., Fisher, E.J., Chang, J.H., Mole, B.M., and Dangl, J.L. (2006). Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria. Annu Rev Microbiol 60, 425-449.
Green, E.R., and Mecsas, J. (2016). Bacterial secretion systems – An overview. microbiology spectrum 4, 10.1128/microbiolspec.VMBF-0012-2015.
He, Y.Q., Zhang, L., Jiang, B.L., Zhang, Z.C., Xu, R.Q., Tang, D.J., Qin, J., Jiang, W., Zhang, X., Liao, J., Cao, J.R., Zhang, S.S., Wei, M.L., Liang, X.X., Lu, G.T., Feng, J.X., Chen, B., Cheng, J., and Tang, J.L. (2007). Comparative and functional genomics reveals genetic diversity and determinants of host specificity among reference strains and a large collection of chinese isolates of the phytopathogen Xanthomonas campestris pv. campestris. Genome Biol 8.
Hogenhout, S.A., Oshima, K., Ammar, E.-D., Kakizawa, S., Kingdom, H.N., and Namba, S. (2008). Phytoplasmas: bacteria that manipulate plants and insects. Molecular Plant Pathology 9, 403-423.
Hoshi, A., Oshima, K., Kakizawa, S., Ishii, Y., Ozeki, J., Hashimoto, M., Komatsu, K., Kagiwada, S., Yamaji, Y., and Namba, S. (2009). A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium. Proc Natl Acad Sci U S A 106, 6416-6421.
Huckelhoven, R. (2007). Cell wall-associated mechanisms of disease resistance and susceptibility. Annual Review of Phytopathology 45, 101-127.
Ing-Ming Lee, Robert E. Davis, and Gundersen-Rindal, D.E. (2000). Phytoplasma: phytopathogenic mollicutes. Annual Review of Microbiology 54, 221-255.
Ishii, K.J., Koyama, S., Nakagawa, A., Coban, C., and Akira, S. (2008). Host innate immune receptors and beyond: making sense of microbial infections. Cell Host Microbe 3, 352-363.
Ishikawa, K., Yamaguchi, K., Sakamoto, K., Yoshimura, S., Inoue, K., Tsuge, S., Kojima, C., and Kawasaki, T. (2014). Bacterial effector modulation of host E3 ligase activity suppresses PAMP-triggered immunity in rice. Nature Communications 5, 5430.
Jha, G., Rajeshwari, R., and Sonti, R.V. (2005a). Bacterial type two secretion system secreted proteins: double-edged swords for plant pathogens. Mol Plant Microbe Interact 18, 891-898.
Jones, J.D.G., and Dangl, J.L. (2006). The plant immune system. Nature 444, 323-329.
Kakizawa, S., Oshima, K., Nishigawa, H., Jung, H.-Y., Wei, W., Suzuki, S., Tanaka, M., Miyata, S.-i., Ugaki, M., and Namba, S. (2004). Secretion of immunodominant membrane protein from onion yellows phytoplasma through the Sec protein-translocation system in Escherichia coli. Microbiology 150, 135-142.
Kim, J.G., Stork, W., and Mudgett, M.B. (2013). Xanthomonas type III effector XopD desumoylates tomato transcription factor SlERF4 to suppress ethylene responses and promote pathogen growth. Cell Host Microbe 13, 143-154.
Laurie-Berry, N., Joardar, V., Street, I.H., and Kunkel, B.N. (2006). The Arabidopsis thaliana JASMONATE INSENSITIVE 1 gene is required for suppression of salicylic acid-dependent defenses during infection by Pseudomonas syringae. Mol Plant Microbe In 19, 789-800.
Lee, A.H., Middleton, M.A., Guttman, D.S., and Desveaux, D. (2013). Phytopathogen type III effectors as probes of biological systems. Microb Biotechnol 6, 230-240.
Lee, I.M., Klopmeyer, M., Bartoszyk, I.M., Gundersen-Rindal, D.E., Chou, T.S., Thomson, K.L., and Eisenreich, R. (1997). Phytoplasma induced free-branching in commercial poinsettia cultivars. Nat Biotechnol 15, 178-182.
Lindeberg, M., Myers, C.R., Collmer, A., and Schneider, D.J. (2008). Roadmap to new virulence determinants in Pseudomonas syringae: insights from comparative genomics and genome organization. Mol Plant Microbe Interact 21, 685-700.
Lu, Y.-T., Li, M.-Y., Cheng, K.-T., Tan, C.M., Su, L.-W., Lin, W.-Y., Shih, H.-T., Chiou, T.-J., and Yang, J.-Y. (2014). Transgenic plants that express the phytoplasma effector SAP11 show altered phosphate starvation and defense responses. Plant Physiol 164, 1456-1469.
MacLean, A.M., Orlovskis, Z., Kowitwanich, K., Zdziarska, A.M., Angenent, G.C., Immink, R.G., and Hogenhout, S.A. (2014). Phytoplasma effector SAP54 hijacks plant reproduction by degrading MADS-box proteins and promotes insect colonization in a RAD23-dependent manner. PLoS Biol 12, e1001835.
MacLean, A.M., Sugio, A., Makarova, O.V., Findlay, K.C., Grieve, V.M., Toth, R., Nicolaisen, M., and Hogenhout, S.A. (2011). Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants. Plant Physiol 157, 831-841.
Maejima, K., Kitazawa, Y., Tomomitsu, T., Yusa, A., Neriya, Y., Himeno, M., Yamaji, Y., Oshima, K., and Namba, S. (2015). Degradation of class E MADS-domain transcription factors in Arabidopsis by a phytoplasmal effector, phyllogen. Plant Signal Behav 10, e1042635.
Maejima, K., Iwai, R., Himeno, M., Komatsu, K., Kitazawa, Y., Fujita, N., Ishikawa, K., Fukuoka, M., Minato, N., Yamaji, Y., Oshima, K., and Namba, S. (2014). Recognition of floral homeotic MADS domain transcription factors by a phytoplasmal effector, phyllogen, induces phyllody. Plant J 78, 541-554.
Melotto, M., Underwood, W., Koczan, J., Nomura, K., and He, S.Y. (2006). Plant stomata function in innate immunity against bacterial invasion. Cell 126, 969-980.
Minato, N., Himeno, M., Hoshi, A., Maejima, K., Komatsu, K., Takebayashi, Y., Kasahara, H., Yusa, A., Yamaji, Y., Oshima, K., Kamiya, Y., and Namba, S. (2014). The phytoplasmal virulence factor TENGU causes plant sterility by downregulating of the jasmonic acid and auxin pathways. Sci Rep 4, 7399.
Nurnberger, T., Brunner, F., Kemmerling, B., and Piater, L. (2004). Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev 198, 249-266.
Pieterse, C.M.J., and van Loon, L.C. (1999). Salicylic acid-independent plant defence pathways. Trends in Plant Science 4, 52-58.
Rao, M.V., Lee, H.-i., Creelman, R.A., Mullet, J.E., and Davis, K.R. (2000). Jasmonic acid signaling modulates ozone-induced hypersensitive cell death. The Plant Cell 12, 1633-1647.
Ryan, R.P., Vorholter, F.J., Potnis, N., Jones, J.B., Van Sluys, M.A., Bogdanove, A.J., and Dow, J.M. (2011). Pathogenomics of Xanthomonas: understanding bacterium-plant interactions. Nat Rev Microbiol 9, 344-355.
Sandkvist, M. (2001). Biology of type II secretion. Mol Microbiol 40, 271-283.
Segonzac, C., and Zipfel, C. (2011). Activation of plant pattern-recognition receptors by bacteria. Curr Opin Microbiol 14, 54-61.
Shah, J., Kachroo, P., and Klessig, D.F. (1999). The Arabidopsis ssi1 mutation restores pathogenesis-related gene expression in npr1 plants and renders defensin geneexpression salicylic acid dependent. The Plant Cell 11, 191-206.
Stintzi, A., Weber, H., Reymond, P., Browse, J., and Farmer, E.E. (2001). Plant defense in the absence of jasmonic acid: the role of cyclopentenones. P Natl Acad Sci USA 98, 12837-12842.
Sugawara, K., Honma, Y., Komatsu, K., Himeno, M., Oshima, K., and Namba, S. (2013). The alteration of plant morphology by small peptides released from the proteolytic processing of the bacterial peptide TENGU. Plant Physiol 162, 2005-2014.
Sugio, A., Kingdom, H.N., MacLean, A.M., Grieve, V.M., and Hogenhout, S.A. (2011). Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proc Natl Acad Sci U S A 108, E1254-1263.
Szczesny, R., Jordan, M., Schramm, C., Schulz, S., Cogez, V., Bonas, U., and Buttner, D. (2010). Functional characterization of the Xcs and Xps type II secretion systems from the plant pathogenic bacterium Xanthomonas campestris pv vesicatoria. New Phytol 187, 983-1002.
Thomma, B.P.H.J., Eggermont, K., Tierens, K.F.M.J., and Broekaert, W.F. (1999). Requirement of functional ethylene-insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol 121, 1093-1101.
Tsuda, K., Sato, M., Stoddard, T., Glazebrook, J., and Katagiri, F. (2009). Network properties of robust immunity in plants. PLoS Genet 5, e1000772.
Üstün, S., Bartetzko, V., and Börnke, F. (2013). The Xanthomonas campestris Type III effector XopJ targets the host cell proteasome to suppress salicylic-acid mediated plant defence. Plos Pathog 9, e1003427.
Whitmarsh, J., and Govindjee. (1999). The photosynthetic process. In concepts in photobiology: photosynthesis and photomorphogenesis, G.S. Singhal, G. Renger, S.K. Sopory, K.D. Irrgang, and Govindjee, eds (Dordrecht: Springer Netherlands), pp. 11-51.
Wildermuth, M.C., Dewdney, J., Wu, G., and Ausubel, F.M. (2001). Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414, 562-565.
Willmann, R., Lajunen, H.M., Erbs, G., Newman, M.A., Kolb, D., Tsuda, K., Katagiri, F., Fliegmann, J., Bono, J.J., Cullimore, J.V., Jehle, A.K., Gotz, F., Kulik, A., Molinaro, A., Lipka, V., Gust, A.A., and Nurnberger, T. (2011). Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proc Natl Acad Sci USA 108, 19824-19829.
Yang, B., Sugio, A., and White, F.F. (2006). Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proc Natl Acad Sci USA 103, 10503-10508.

Ballare, C.L., Mazza, C.A., Austin, A.T., and Pierik, R. (2012). Canopy light and plant health. Plant Physiology 160, 145-155.
Canonne, J., Marino, D., Jauneau, A., Pouzet, C., Briere, C., Roby, D., and Rivas, S. (2011). The Xanthomonas type III effector XopD targets the Arabidopsis transcription factor MYB30 to suppress plant defense. Plant Cell 23, 3498-3511.
Canonne, J., Marino, D., Noel, L.D., Arechaga, I., Pichereaux, C., Rossignol, M., Roby, D., and Rivas, S. (2010). Detection and functional characterization of a 215 amino acid N-terminal extension in the Xanthomonas Type III effector XopD. Plos One 5.
Cheong, M.S., Park, H.C., Hong, M.J., Lee, J., Choi, W., Jin, J.B., Bohnert, H.J., Lee, S.Y., Bressan, R.A., and Yun, D.J. (2009). Specific domain structures control abscisic acid-, salicylic acid-, and stress-mediated SIZ1 phenotypes. Plant Physiol 151, 1930-1942.
Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16, 735-743.
Colby, T., Matthai, A., Boeckelmann, A., and Stuible, H.P. (2006). SUMO-conjugating and SUMO-deconjugating enzymes from Arabidopsis. Plant Physiology 142, 318-332.
Deslandes, L., and Rivas, S. (2012). Catch me if you can: bacterial effectors and plant targets. Trends Plant Sci 17, 644-655.
Desveaux, D., Singer, A.U., and Dangl, J.L. (2006). Type III effector proteins: doppelgangers of bacterial virulence. Curr Opin Plant Biol 9, 376-382.
Dodds, P.N., and Rathjen, J.P. (2010). Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 11, 539-548.
Duek, P.D., Elmer, M.V., van Oosten, V.R., and Fankhauser, C. (2004). The degradation of HFR1, a putative bHLH class transcription factor involved in light signaling, is regulated by phosphorylation and requires COP1. Curr Biol 14, 2296-2301.
Faigon-Soverna, A., Harmon, F.G., Storani, L., Karayekov, E., Staneloni, R.J., Gassmann, W., Mas, P., Casal, J.J., Kay, S.A., and Yanovsky, M.J. (2006). A constitutive shade-avoidance mutant implicates TIR-NBS-LRR proteins in Arabidopsis photomorphogenic development. Plant Cell 18, 2919-2928.
Genoud, T., Buchala, A.J., Chua, N.H., and Metraux, J.P. (2002). Phytochrome signalling modulates the SA-perceptive pathway in Arabidopsis. Plant J 31, 87-95.
Gietz, R.D., and Woods, R.A. (2002). Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350, 87-96.
Gohre, V., and Robatzek, S. (2008). Breaking the barriers: Microbial effector molecules subvert plant immunity. Annu Rev Phytopathol 46, 189-215.
Grant, S.R., Fisher, E.J., Chang, J.H., Mole, B.M., and Dangl, J.L. (2006). Subterfuge and manipulation: Type III effector proteins of phytopathogenic bacteria. Annual Review of Microbiology 60, 425-449.
Ho, Y.P., Tan, C.M., Li, M.Y., Lin, H., Deng, W.L., and Yang, J.Y. (2013). The AvrB_AvrC domain of AvrXccC of Xanthomonas campestris pv. campestris is required to elicit plant defense responses and manipulate ABA homeostasis. Molecular Plant-Microbe Interactions 26, 419-430.
Hotson, A., and Mudgett, M.B. (2004). Cysteine proteases in phytopathogenic bacteria: identification of plant targets and activation of innate immunity. Curr Opin Plant Biol 7, 384-390.
Hotson, A., Chosed, R., Shu, H.J., Orth, K., and Mudgett, M.B. (2003). Xanthomonas type III effector XopD targets SUMO-conjugated proteins in planta. Mol Microbiol 50, 377-389.
Jang, I.C., Yang, J.Y., Seo, H.S., and Chua, N.H. (2005). HFR1 is targeted by COP1 E3 ligase for post-translational proteolysis during phytochrome A signaling. Genes & Development 19, 593-602.
Jang, I.C., Niu, Q.W., Deng, S., Zhao, P., and Chua, N.H. (2012). Enhancing protein stability with retained biological function in transgenic plants. Plant J 72, 345-354.
Kangasjarvi, S., Neukermans, J., Li, S.C., Aro, E.M., and Noctor, G. (2012). Photosynthesis, photorespiration, and light signalling in defence responses. Journal of Experimental Botany 63, 1619-1636.
Kim, J.G., Taylor, K.W., and Mudgett, M.B. (2011). Comparative analysis of the XopD type III secretion (T3S) effector family in plant pathogenic bacteria. Mol Plant Pathol 12, 715-730.
Kim, J.G., Stork, W., and Mudgett, M.B. (2013a). Xanthomonas Type III effector XopD desumoylates tomato transcription factor SlERF4 to suppress ethylene responses and promote pathogen growth. Cell Host Microbe 13, 143-154.
Kim, M., Chen, Z., Shim, M.S., Lee, M.S., Kim, J.E., Kwon, Y.E., Yoo, T.J., Kim, J.Y., Bang, J.Y., Carlson, B.A., Seol, J.H., Hatfield, D.L., and Lee, B.J. (2013b). SUMO modification of NZFP mediates transcriptional repression through TBP binding. Mol Cells 35, 70-78.
Kim, Y.M., Woo, J.C., Song, P.S., and Soh, M.S. (2002). HFR1, a phytochrome A-signalling component, acts in a separate pathway from HY5, downstream of COP1 in Arabidopsis thaliana. Plant J 30, 711-719.
Lee, A.H.Y., Middleton, M.A., Guttman, D.S., and Desveaux, D. (2013). Phytopathogen type III effectors as probes of biological systems. Microb Biotechnol 6, 230-240.
Lee, J., Nam, J., Park, H.C., Na, G., Miura, K., Jin, J.B., Yoo, C.Y., Baek, D., Kim, D.H., Jeong, J.C., Kim, D., Lee, S.Y., Salt, D.E., Mengiste, T., Gong, Q.Q., Ma, S.S., Bohnert, H.J., Kwak, S.S., Bressan, R.A., Hasegawa, P.M., and Yun, D.J. (2007). Salicylic acid-mediated innate immunity in Arabidopsis is regulated by SIZ1 SUMO E3 ligase. Plant J 49, 79-90.
Lin, D.Y., Huang, Y.S., Jeng, J.C., Kuo, H.Y., Chang, C.C., Chao, T.T., Ho, C.C., Chen, Y.C., Lin, T.P., Fang, H.I., Hung, C.C., Suen, C.S., Hwang, M.J., Chang, K.S., Maul, G.G., and Shih, H.M. (2006). Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Mol Cell 24, 341-354.
Lu, H. (2009). Dissection of salicylic acid-mediated defense signaling networks. Plant Signal Behav 4, 713-717.
Moreno, J.E., Tao, Y., Chory, J., and Ballare, C.L. (2009). Ecological modulation of plant defense via phytochrome control of jasmonate sensitivity. Proc Natl Acad Sci USA 106, 4935-4940.
Nishino, H., Ishibashi, T., and Nakamura, H. (1994). Preparation method of highly-purified antibodies from antisera by using polyvinylidene difluoride membrane. Application to fatty acid binding protein in rat liver. Biochem Mol Biol Int 34, 409-417.
Okada, S., Nagabuchi, M., Takamura, Y., Nakagawa, T., Shinmyozu, K., Nakayama, J., and Tanaka, K. (2009). Reconstitution of Arabidopsis thaliana SUMO pathways in E-coli: functional evaluation of SUMO machinery proteins and mapping of SUMOylation Sites by Mass Spectrometry. Plant Cell Physiol 50, 1049-1061.
Park, B.S., Song, J.T., and Seo, H.S. (2011a). Arabidopsis nitrate reductase activity is stimulated by the E3 SUMO ligase AtSIZ1. Nat Commun 2.
Park, H.J., Kim, W.Y., Park, H.C., Lee, S.Y., Bohnert, H.J., and Yun, D.J. (2011b). SUMO and SUMOylation in plants. Mol Cells 32, 305-316.
Perdomo, J., Verger, A., Turner, J., and Crossley, M. (2005). Role for SUMO modification in facilitating transcriptional repression by BKLF. Mol Cell Biol 25, 1549-1559.
Ribet, D., and Cossart, P. (2010). Post-translational modifications in host cells during bacterial infection. Febs Lett 584, 2748-2758.
Rohira, A.D., Chen, C.Y., Allen, J.R., and Johnson, D.L. (2013). Covalent small ubiquitin-like modifier (SUMO) modification of Maf1 protein controls RNA polymerase III-dependent transcription repression. J Biol Chem 288, 19288-19295.
Schafer, A., Tauch, A., Jager, W., Kalinowski, J., Thierbach, G., and Puhler, A. (1994). Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145, 69-73.
Stulemeijer, I.J.E., and Joosten, M.H.A.J. (2008). Post-translational modification of host proteins in pathogen-triggered defence signalling in plants. Mol Plant Pathol 9, 545-560.
Tan, C.M., Li, M.-Y., Yang, P.-Y., Chang, S.H., Ho, Y.-P., Lin, H., Deng, W.-L., and Yang, J.-Y. (2015). Arabidopsis HFR1 is a potential nuclear substrate regulated by the Xanthomonas Type III effector XopDXcc8004. Plos One 10, e0117067.
Tan, L., Rong, W., Luo, H., Chen, Y., and He, C. (2014). The Xanthomonas campestris effector protein XopDXcc8004 triggers plant disease tolerance by targeting DELLA proteins. New Phytol 204, 595-608.
Vaghchhipawala, Z., Rojas, C.M., Senthil-Kumar, M., and Mysore, K.S. (2011). Agroinoculation and agroinfiltration: simple tools for complex gene function analyses. Methods Mol Biol 678, 65-76.
van den Burg, H.A., and Takken, F.L. (2010). SUMO-, MAPK-, and resistance protein-signaling converge at transcription complexes that regulate plant innate immunity. Plant Signal Behav 5, 1597-1601.
van den Burg, H.A., Kini, R.K., Schuurink, R.C., and Takken, F.L.W. (2010). Arabidopsis small ubiquitin-like modifier paralogs have distinct functions in development and defense. Plant Cell 22, 1998-2016.
Wang, Y., Rao, V.K., Kok, W.K., Roy, D.N., Sethi, S., Ling, B.M., Lee, M.B., and Taneja, R. (2012). SUMO modification of Stra13 is required for repression of cyclin D1 expression and cellular growth arrest. PLoS One 7, e43137.
Wise, A.A., Liu, Z., and Binns, A.N. (2006). Three methods for the introduction of foreign DNA into Agrobacterium. Methods Mol Biol 343, 43-53.
Xin, X.F., and He, S.Y. (2013). Pseudomonas syringae pv. tomato DC3000: a model pathogen for probing disease susceptibility and hormone signaling in plants. Annu Rev Phytopathol 51, 473-498.
Yang, J., Lin, R., Sullivan, J., Hoecker, U., Liu, B., Xu, L., Deng, X.W., and Wang, H. (2005). Light regulates COP1-mediated degradation of HFR1, a transcription factor essential for light signaling in Arabidopsis. Plant Cell 17, 804-821.
Zuo, J.R., Niu, Q.W., and Chua, N.H. (2000). An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J 24, 265-273.
Aguilar Martinez, J.A., and Sinha, N.R. (2013). Analysis of the role of Arabidopsis class I TCP genes AtTCP7, AtTCP8, AtTCP22 and AtTCP23 in leaf development. Frontiers in Plant Science 4.
Al Abassi, S., Birkett, M.A., Pettersson, J., Pickett, J.A., and Woodcock, C.M. (1998). Ladybird beetle odour identified and found to be responsible for attraction between adults. CMLS, Cell. Mol. Life Sci. 54, 876-879.
Bai, X., Correa, V.R., Toruño, T.Y., Ammar, E.-D., Kamoun, S., and Hogenhout, S.A. (2008). AY-WB phytoplasma secretes a protein that targets plant cell nuclei. Molecular Plant-Microbe Interactions 22, 18-30.
Bai, X., Zhang, J., Ewing, A., Miller, S., Radek, A., Shevchenko, D., Tsukerman, K., Walunas, T., Lapidus, A., Campbell, J., and Hogenhout, S. (2006). Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. J Bacteriol 188, 3682 - 3696.
Barakat, A., Choi, A., Yassin, N.B.M., Park, J.S., Sun, Z., and Carlson, J.E. (2011). Comparative genomics and evolutionary analyses of the O-methyltransferase gene family in Populus. Gene 479, 37-46.
Botezatu, A.I., Kotseridis, Y., Inglis, D., and Pickering, G.J. (2013). Occurrence and contribution of alkyl methoxypyrazines in wine tainted by Harmonia axyridis and Coccinella septempunctata. Journal of the Science of Food and Agriculture 93, 803-810.
Buttery, R.G., Seifert, R.M., Guadagni, D.G., and Ling, L.C. (1969). Characterization of some volatile constituents of bell peppers. Journal of Agricultural and Food Chemistry 17, 1322-1327.
Cai, L., Koziel, J.A., and O’Neal, M.E. (2007). Determination of characteristic odorants from Harmonia axyridis beetles using in vivo solid-phase microextraction and multidimensional gas chromatography–mass spectrometry–olfactometry. Journal of Chromatography A 1147, 66-78.
Chen, W., Li, Y., Wang, Q., Wang, N., and Wu, Y. (2014). Comparative genome analysis of Wheat Blue Dwarf Phytoplasma, an obligate pathogen that causes Wheat Blue Dwarf disease in China. PLoS ONE 9, e96436.
Cheng, T.B., Reineccius, G.A., Bjorklund, J.A., and Leete, E. (1991). Biosynthesis of 2-methoxy-3-isopropylpyrazine in Pseudomonas perolens. Journal of Agricultural and Food Chemistry 39, 1009-1012.
Christensen, S.A., Nemchenko, A., Borrego, E., Murray, I., Sobhy, I.S., Bosak, L., DeBlasio, S., Erb, M., Robert, C.A.M., Vaughn, K.A., Herrfurth, C., Tumlinson, J., Feussner, I., Jackson, D., Turlings, T.C.J., Engelberth, J., Nansen, C., Meeley, R., and Kolomiets, M.V. (2013). The maize lipoxygenase, ZmLOX10, mediates green leaf volatile, jasmonate and herbivore-induced plant volatile production for defense against insect attack. The Plant Journal 74, 59-73.
Chung, W.-C., Chen, L.-L., Lo, W.-S., Lin, C.-P., and Kuo, C.-H. (2013). Comparative analysis of the Peanut Witches'-Broom Phytoplasma genome reveals horizontal transfer of potential mobile units and effectors. PLoS ONE 8, e62770.
Dai, X., Wang, G., Yang, D.S., Tang, Y., Broun, P., Marks, M.D., Sumner, L.W., Dixon, R.A., and Zhao, P.X. (2010). TrichOME: a comparative omics database for plant trichomes. Plant Physiology 152, 44-54.
Dunlevy, J., Soole, K., Perkins, M., Dennis, E., Keyzers, R., Kalua, C., and Boss, P. (2010). Two O-methyltransferases involved in the biosynthesis of methoxypyrazines: grape-derived aroma compounds important to wine flavour. Plant Mol Biol 74, 77-89.
Dunlevy, J.D., Dennis, E.G., Soole, K.L., Perkins, M.V., Davies, C., and Boss, P.K. (2013). A methyltransferase essential for the methoxypyrazine-derived flavour of wine. The Plant Journal 75, 606-617.
Ebeler, S.E., and Thorngate, J.H. (2009). Wine chemistry and flavor: looking into the crystal glass. Journal of Agricultural and Food Chemistry 57, 8098-8108.
Efroni, I., Blum, E., Goldshmidt, A., and Eshed, Y. (2008). A protracted and dynamic maturation schedule underlies Arabidopsis leaf development. Plant Cell 20, 2293-2306.
Feng, F., Yang, F., Rong, W., Wu, X., Zhang, J., Chen, S., He, C., and Zhou, J.M. (2012). A Xanthomonas uridine 5'-monophosphate transferase inhibits plant immune kinases. Nature 485, 114-118.
Flint, M.L., Dreistadt, S.H., and Clark, J.K. Natural enemies handbook : the illustrated guide to biological pest control. (Oakland, Calif. : Berkeley: UC Division of Agriculture and Natural Sciences ; University of California Press).
Frisinghelli, C., Delaiti, L., Grando, M.S., Forti, D., and Vindimian, M.E. (2000). Cacopsylla costalis (Flor 1861), as a vector of apple proliferation in Trentino. Journal of Phytopathology 148, 425-431.
Galvan, T.L., Kells, S., and Hutchison, W.D. (2008). Determination of 3-Alkyl-2-methoxypyrazines in lady beetle-infested wine by solid-phase microextraction headspace sampling. Journal of Agricultural and Food Chemistry 56, 1065-1071.
Glas, J., Schimmel, B., Alba, J., Escobar-Bravo, R., Schuurink, R., and Kant, M. (2012). Plant glandular trichomes as targets for breeding or engineering of resistance to herbivores. International Journal of Molecular Sciences 13, 17077-17103.
Glover, B.J., and Whitney, H.M. (2010). Structural colour and iridescence in plants: the poorly studied relations of pigment colour. Annals of Botany 105, 505-511.
Guillaumie, S., Ilg, A., Réty, S., Brette, M., Trossat-Magnin, C., Decroocq, S., Léon, C., Keime, C., Ye, T., Baltenweck-Guyot, R., Claudel, P., Bordenave, L., Vanbrabant, S., Duchêne, E., Delrot, S., Darriet, P., Hugueney, P., and Gomès, E. (2013). Genetic analysis of the biosynthesis of 2-methoxy-3-isobutylpyrazine, a major grape-derived aroma compound impacting wine quality. Plant Physiology 162, 604-615.
Halitschke, R., Ziegler, J., Keinänen, M., and Baldwin, I.T. (2004). Silencing of hydroperoxide lyase and allene oxide synthase reveals substrate and defense signaling crosstalk in Nicotiana attenuata. The Plant Journal 40, 35-46.
Hall, B.G. (2013). Building phylogenetic trees from molecular data with MEGA. Molecular Biology and Evolution 30, 1229-1235.
Handley, R., Ekbom, B., and Ågren, J. (2005). Variation in trichome density and resistance against a specialist insect herbivore in natural populations of Arabidopsis thaliana. Ecological Entomology 30, 284-292.
Hao, J., Tu, L., Hu, H., Tan, J., Deng, F., Tang, W., Nie, Y., and Zhang, X. (2012). GbTCP, a cotton TCP transcription factor, confers fibre elongation and root hair development by a complex regulating system. Journal of Experimental Botany 63, 6267-6281.
Hashizume, K., Tozawa, K., Hiraga, Y., and Aramaki, I. (2001). Purification and characterization of a O-methyltransferase capable of methylating 2-hydroxy-3-alkylpyrazine from Vitis vinifera L. (cv. Cabernet Sauvignon). Bioscience, Biotechnology, and Biochemistry 65, 2213-2219.
Hauser, M.-T. (2014). Molecular basis of natural variation and environmental control of trichome patterning. Frontiers in Plant Science 5.
Horsch, R., Fry, J., Hoffmann, N., Eichholtz, D., Rogers, S., and Fraley, R. (1985). A simple and general method for transferring genes into plants. Science 227, 1229-1231.
Hoshi, A., Oshima, K., Kakizawa, S., Ishii, Y., Ozeki, J., Hashimoto, M., Komatsu, K., Kagiwada, S., Yamaji, Y., and Namba, S. (2009). A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium. Proceedings of the National Academy of Sciences 106, 6416-6421.
Jiu, M., Zhou, X.-P., Tong, L., Xu, J., Yang, X., Wan, F.-H., and Liu, S.-S. (2007). Vector-virus mutualism accelerates population increase of an invasive whitefly. PLoS ONE 2, e182.
Kang, J.-H., Shi, F., Jones, A.D., Marks, M.D., and Howe, G.A. (2010a). Distortion of trichome morphology by the hairless mutation of tomato affects leaf surface chemistry. Journal of Experimental Botany 61, 1053-1064.
Kang, J.-H., Liu, G., Shi, F., Jones, A.D., Beaudry, R.M., and Howe, G.A. (2010b). The tomato odorless-2 mutant is defective in trichome-based production of diverse specialized metabolites and broad-spectrum resistance to insect herbivores. Plant Physiology 154, 262-272.
Kube, M., Schneider, B., Kuhl, H., Dandekar, T., Heitmann, K., Migdoll, A., Reinhardt, R., and Seemuller, E. (2008). The linear chromosome of the plant-pathogenic mycoplasma 'Candidatus Phytoplasma mali'. BMC Genomics 9, 306.
Kube, M., Siewert, C., Migdoll, A.M., Duduk, B., Holz, S., Rabus, R., Seemüller, E., Mitrovic, J., Müller, I., Büttner, C., and Reinhardt, R. (2014). Analysis of the complete genomes of Acholeplasma brassicae, A. palmae and A. laidlawii and their comparison to the obligate parasites from ‘Candidatus Phytoplasma'. Journal of Molecular Microbiology and Biotechnology 24, 19-36.
Lam, K.C., Ibrahim, R.K., Behdad, B., and Dayanandan, S. (2007). Structure, function, and evolution of plant O-methyltransferases. Genome 50, 1001-1013.
Lee, I.-M., Davis, R.E., and Gundersen-Rindal, D.E. (2000). Phytoplasma: phytopathogenic mollicutes. Annual Review of Microbiology 54, 221-255.
Leuzinger, K., Dent, M., Hurtado, J., Stahnke, J., Lai, H., Zhou, X., and Chen, Q. (2013). Efficient agroinfiltration of plants for high-level transient expression of recombinant proteins, e50521.
Li, R., Weldegergis, B.T., Li, J., Jung, C., Qu, J., Sun, Y., Qian, H., Tee, C., van Loon, J.J.A., Dicke, M., Chua, N.-H., Liu, S.-S., and Ye, J. (2014). Virulence factors of geminivirus interact with MYC2 to subvert plant resistance and promote vector performance. The Plant Cell Online.
Li, Z.-Y., Li, B., and Dong, A.-W. (2012). The Arabidopsis transcription factor AtTCP15 regulates endoreduplication by modulating expression of key cell-cycle genes. Molecular Plant 5, 270-280.
Lu, Y.-T., Li, M.-Y., Cheng, K.-T., Tan, C.M., Su, L.-W., Lin, W.-Y., Shih, H.-T., Chiou, T.-J., and Yang, J.-Y. (2014). Transgenic plants that express the phytoplasma effector SAP11 show altered phosphate starvation and defense responses. Plant Physiol 164, 1456-1469
MacLean, A.M., Orlovskis, Z., Kowitwanich, K., Zdziarska, A.M., Angenent, G.C., Immink, R.G.H., and Hogenhout, S.A. (2014). Phytoplasma effector SAP54 hijacks plant reproduction by degrading MADS-box proteins and promotes insect colonization in a RAD23-dependent Manner. PLoS Biol 12, e1001835.
MacLean, A.M., Sugio, A., Makarova, O.V., Findlay, K.C., Grieve, V.M., Tóth, R., Nicolaisen, M., and Hogenhout, S.A. (2011). Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants. Plant Physiology 157, 831-841.
Maejima, K., Iwai, R., Himeno, M., Komatsu, K., Kitazawa, Y., Fujita, N., Ishikawa, K., Fukuoka, M., Minato, N., Yamaji, Y., Oshima, K., and Namba, S. (2014). Recognition of floral homeotic MADS domain transcription factors by a phytoplasmal effector, phyllogen, induces phyllody. The Plant Journal 78, 541-554.
Manassero, N., Viola, I., Welchen, E., and Gonzalez, D. (2013). TCP transcription factors: architectures of plant form. Biomol Concepts 4, 111-127.
Martini, X., Pelz-Stelinski, K.S., and Stelinski, L.L. (2014). Plant pathogen-induced volatiles attract parasitoids to increase parasitism of an insect vector. Frontiers in Ecology and Evolution 2.
Martín-Trillo, M., and Cubas, P. (2010). TCP genes: a family snapshot ten years later. Trends in Plant Science 15, 31-39.
Mauck, K.E., De Moraes, C.M., and Mescher, M.C. (2010). Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. Proceedings of the National Academy of Sciences 107, 3600-3605.
Mayer, C., Vilcinskas, A., and Gross, J. (2008a). Pathogen-induced release of plant allomone manipulates vector insect behavior. J Chem Ecol 34, 1518-1522.
Mayer, C., Vilcinskas, A., and Gross, J. (2008b). Phytopathogen Lures its Insect vector by altering host plant odor. J Chem Ecol 34, 1045-1049.
Michaud, J.P. (2001). Numerical response of olla v-nigrum (Coleoptera: Coccinellidae) to infestations of Asian citrus psyllid, (Hemiptera: Psyllidae) in Florida. The Florida Entomologist 84, 608-612.
Michaud, J.P., and Olsen, L.E. (2004). Suitability of Asian citrus psyllid, Diaphorina citri, as prey for ladybeetles. BioControl 49, 417-431.
Moore, B., Brown, W.V., and Rothschild, M. (1990). Methylalkylpyrazines in aposematic insects, their hostplants and mimics. Chemoecology 1, 43-51.
Murray, K.E., Shipton, J., and Whitfield, F.B. (1970). 2-methoxypyrazines and flavour of green peas (Pisum sativum). Chem. Ind. 27, 897-898.
Nath, U., Crawford, B.C.W., Carpenter, R., and Coen, E. (2003). Genetic control of surface curvature. Science 299, 1404-1407.
Ori, N., Cohen, A.R., Etzioni, A., Brand, A., Yanai, O., Shleizer, S., Menda, N., Amsellem, Z., Efroni, I., Pekker, I., Alvarez, J.P., Blum, E., Zamir, D., and Eshed, Y. (2007). Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nat Genet 39, 787-791.
Oshima, K., Kakizawa, S., Nishigawa, H., Jung, H., Wei, W., Suzuki, S., Arashida, R., Nakata, D., Miyata, S., Ugaki, M., and Namba, S. (2004). Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nature Genetics 36, 27 - 29.
Qureshi, J.A., and Stansly, P.A. (2011). Three homopteran pests of citrus as prey for the convergent lady beetle: suitability and preference. Environmental Entomology 40, 1503-1510.
Rothschild, M., Moore, B.P., and Brown, W.V. (1984). Pyrazines as warning odour components in the Monarch butterfly, Danaus plexippus, and in moths of the genera Zygaena and Amata (Lepidoptera). Biological Journal of the Linnean Society 23, 375-380.
Ruiz, M.T., Voinnet, O., and Baulcombe, D.C. (1998). Initiation and maintenance of virus-induced gene silencing. The Plant Cell Online 10, 937-946.
Savchenko, T., Pearse, I.S., Ignatia, L., Karban, R., and Dehesh, K. (2013). Insect herbivores selectively suppress the HPL branch of the oxylipin pathway in host plants. The Plant Journal 73, 653-662.
Seemuller, E., and Schneider, B. (2004). 'Candidatus Phytoplasma mali', 'Candidatus Phytoplasma pyri' and 'Candidatus Phytoplasma prunorum', the causal agents of apple proliferation, pear decline and European stone fruit yellows, respectively. Int J Syst Evol Microbiol 54, 1217 - 1226.
Shapiro, L., De Moraes, C.M., Stephenson, A.G., and Mescher, M.C. (2012). Pathogen effects on vegetative and floral odours mediate vector attraction and host exposure in a complex pathosystem. Ecology Letters 15, 1430-1438.
Sidhu, D., Lund, J., Kotseridis, Y., and Saucier, C. (2013). Methoxypyrazine analysis and influence of viticultural and enological procedures on their levels in Grapes, Musts, and Wines. Critical Reviews in Food Science and Nutrition 55, 485-502.
Siewert, C., Luge, T., Duduk, B., Seemüller, E., Büttner, C., Sauer, S., and Kube, M. (2014). Analysis of expressed genes of the bacterium ‘Candidatus Phytoplasma Mali’ highlights key features of virulence and metabolism. PLoS ONE 9, e94391.
Sletvold, N., Huttunen, P., Handley, R., Kärkkäinen, K., and Ågren, J. (2010). Cost of trichome production and resistance to a specialist insect herbivore in Arabidopsis lyrata. Evol Ecol 24, 1307-1319.
Su, L.-W., Chang, S.H., Li, M.-Y., Huang, H.-Y., Jane, W.-N., and Yang, J.-Y. (2013). Purification and biochemical characterization of Arabidopsis At-NEET, an ancient iron-sulfur protein, reveals a conserved cleavage motif for subcellular localization. Plant Science 213, 46-54.
Sugio, A., Kingdom, H.N., MacLean, A.M., Grieve, V.M., and Hogenhout, S.A. (2011). Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proceedings of the National Academy of Sciences 108, E1254–E1263.
Susset, E., Ramon-Portugal, F., Hemptinne, J.-L., Dewhirst, S., Birkett, M., and Magro, A. (2013). The role of semiochemicals in short-range location of aggregation sites in Adalia bipunctata (Coleoptera, Coccinellidae). J Chem Ecol 39, 591-601.
Tan, C.M., Li, C.-H., Tsao, N.-W., Su, L.-W., Lu, Y.-T., Chang, S.H., Lin, Y.Y., Liou, J.-C., Hsieh, L.-C., Yu, J.-Z., Sheue, C.-R., Wang, S.-Y., Lee, C.-F., and Yang, J.-Y. (2016). Phytoplasma SAP11 alters 3-isobutyl-2-methoxypyrazine biosynthesis in Nicotiana benthamiana by suppressing NbOMT1. J Exp Bot 67, 4415-4425.
Tissier, A. (2012). Glandular trichomes: what comes after expressed sequence tags? The Plant Journal 70, 51-68.
Tran-Nguyen, L.T.T., Kube, M., Schneider, B., Reinhardt, R., and Gibb, K.S. (2008). Comparative genome analysis of “Candidatus Phytoplasma australiense” (Subgroup tuf-Australia I; rp-A) and “Ca. Phytoplasma asteris” Strains OY-M and AY-WB. Journal of Bacteriology 190, 3979-3991.
Wang, M.-Y., Zhao, P.-M., Cheng, H.-Q., Han, L.-B., Wu, X.-M., Gao, P., Wang, H.-Y., Yang, C.-L., Zhong, N.-Q., Zuo, J.-R., and Xia, G.-X. (2013). The cotton transcription factor TCP14 functions in auxin-mediated epidermal cell differentiation and elongation. Plant Physiology 162, 1669-1680.
War, A.R., Paulraj, M.G., Ahmad, T., Buhroo, A.A., Hussain, B., Ignacimuthu, S., and Sharma, H.C. (2012). Mechanisms of plant defense against insect herbivores. Plant Signaling & Behavior 7, 1306-1320.
Weintraub, P.G., and Beanland, L. (2006). INSECT VECTORS OF PHYTOPLASMAS. Annual Review of Entomology 51, 91-111.
Wheeler, C., and Cardé, R. (2013). Defensive allomones function as aggregation pheromones in diapausing ladybird beetles, Hippodamia convergens. J Chem Ecol 39, 723-732.
Yang, J.-Y., Iwasaki, M., Machida, C., Machida, Y., Zhou, X., and Chua, N.-H. (2008). βC1, the pathogenicity factor of TYLCCNV, interacts with AS1 to alter leaf development and suppress selective jasmonic acid responses. Genes & Development 22, 2564-2577.
Ziebell, H., Murphy, A.M., Groen, S.C., Tungadi, T., Westwood, J.H., Lewsey, M.G., Moulin, M., Kleczkowski, A., Smith, A.G., Stevens, M., Powell, G., and Carr, J.P. (2011). Cucumber mosaic virus and its 2b RNA silencing suppressor modify plant-aphid interactions in tobacco. Sci. Rep. 1.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top