|
[1].V. Barnett and T. Lewis, Outliers in statistical data, 3rd ed. Chichester [u.a.]: Wiley, 1994. [2].V. Chandola, A. Banerjee and V. Kumar, "Anomaly detection", ACM Computing Surveys, vol. 41, no. 3, pp. 1-58, 2009. [3].E. Knorr and R. Ng, "Algorithms for mining distancebased outliers in large datasets", in Proceedings of the International Conference on Very Large Data Bases, pp. 392-403, 1998. [4].E. Knorr, R. Ng and V. Tucakov, "Distance-based outliers: algorithms and applications", The VLDB Journal The International Journal on Very Large Data Bases, vol. 8, no. 3-4, pp. 237-253, 2000. [5].S. Ramaswamy, R. Rastogi and K. Shim, "Efficient algorithms for mining outliers from large data sets", ACM SIGMOD Record, vol. 29, no. 2, pp. 427-438, 2000. [6].M. Breunig, H. Kriegel, R. Ng and J. Sander, "LOF", ACM SIGMOD Record, vol. 29, no. 2, pp. 93-104, 2000. [7].R. Momtaz, N. Mohssen and M. Gowayyed, "DWOF: A Robust Density-Based Outlier Detection Approach", in Pattern Recognition and Image Analysis, Berlin, Heidelberg, pp. 517-525, 2013. [8].H. Fan, O. Zaïane, A. Foss and J. Wu, "Resolution-based outlier factor: detecting the top-n most outlying data points in engineering data", Knowledge and Information Systems, vol. 19, no. 1, pp. 31-51, 2008. [9].E. Schubert, A. Koos, T. Emrich, A. Zufle, K. A. Schmid, and ぴ A. Zimek, “A framework for clustering uncertain data,” Proc. of the VLDB Endowment, vol. 8, no. 12, pp. 1976–1979, 2015. [10].L. Fu and E. Medico, "FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data", BMC Bioinformatics, vol. 8, no. 1, p. 3, 2007. [11].G. Markus, "Unsupervised Anomaly Detection Benchmark - Unsupervised Anomaly Detection Dataverse", Dataverse.harvard.edu, 2015. [Online]. Available: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/OPQMVF. [12].S. Rayana, "ODDS Library", Odds.cs.stonybrook.edu, 2016. [Online]. Available: http://odds.cs.stonybrook.edu. [13].Wikipedia contributors, “Normal distribution”, Wikipedia.org, 2016. [Online]. Available: https://en.wikipedia.org/wiki/Normal_distribution. [14].E. Schubert, A. Zimek and H. Kriegel, "Local outlier detection reconsidered: a generalized view on locality with applications to spatial, video, and network outlier detection", Data Mining and Knowledge Discovery, vol. 28, no. 1, pp. 190-237, 2012. [15].W. Jin, A. K. H. Tung, and J. Han. “Mining top-n local outliers in large databases.” In KDD ’01: Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, pages 293–298, 2001. [16].K. Zhang, M. Hutter, and H. Jin. “A new local distance-based outlier detection approach for scattered real-world data.” Proceedings of the 13th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, pages 813–822, 2009
|