資料載入處理中...
跳到主要內容
臺灣博碩士論文加值系統
:::
網站導覽
|
首頁
|
關於本站
|
聯絡我們
|
國圖首頁
|
常見問題
|
操作說明
English
|
FB 專頁
|
Mobile
免費會員
登入
|
註冊
切換版面粉紅色
切換版面綠色
切換版面橘色
切換版面淡藍色
切換版面黃色
切換版面藍色
功能切換導覽列
(18.97.9.169) 您好!臺灣時間:2025/01/25 08:51
字體大小:
字級大小SCRIPT,如您的瀏覽器不支援,IE6請利用鍵盤按住ALT鍵 + V → X → (G)最大(L)較大(M)中(S)較小(A)小,來選擇適合您的文字大小,如為IE7或Firefoxy瀏覽器則可利用鍵盤 Ctrl + (+)放大 (-)縮小來改變字型大小。
字體大小變更功能,需開啟瀏覽器的JAVASCRIPT功能
:::
詳目顯示
recordfocus
第 1 筆 / 共 1 筆
/1
頁
論文基本資料
摘要
外文摘要
目次
參考文獻
論文連結
QR Code
本論文永久網址
:
複製永久網址
Twitter
研究生:
林育廷
研究生(外文):
Yu-Ting Lin
論文名稱:
狗鼻紋影像基準點定位
論文名稱(外文):
Pivot Point Location of Dog Nose Printimage
指導教授:
楊朝成
、
詹永寬
口試委員:
喻石生
、
王圳木
、
杜翌群
口試日期:
2017-07-12
學位類別:
碩士
校院名稱:
國立中興大學
系所名稱:
資訊管理學系所
學門:
電算機學門
學類:
電算機一般學類
論文種類:
學術論文
論文出版年:
2017
畢業學年度:
105
語文別:
英文
論文頁數:
58
中文關鍵詞:
影像切割
、
影像基準點定位
、
狗鼻紋辨識系統
、
犬隻管理
外文關鍵詞:
image segmentation
、
pivot point location
、
dog nose pattern recognition system
、
dog management
相關次數:
被引用:0
點閱:1859
評分:
下載:0
書目收藏:0
在現今社會中,隨著人口結構以及生活型態的改變,飼養寵物的風氣越來越盛行,根據行政院農委會截至105年的統計資料顯示,在台灣的寵物犬數量大約有171萬隻。隨著飼養犬隻的比例提升,表示飼主的責任日益重要,儘管目前有著嚴謹的法律規定和罰金之規範,民眾棄養寵物的情況依然存在,而此問題也反映在流浪狗的議題上,它是造成流浪狗氾濫的主要原因之一,其餘則包括家犬走失、流浪狗的自然繁殖以及非法繁殖場的大量丟棄。當流浪狗的數量不斷增加時,會產生像是疾病傳染、公共衛生、咬人、交通意外等社會問題。
為了解決流浪狗所衍生出的社會問題,除了相關的法律規範之外,若要能有效地管理犬隻,就必須識別犬隻的身份。目前辨識犬隻的方式主要有兩種:寵物晶片以及寵物項圈,其各自皆有明顯的優缺點,像是前者的優點有:晶片的不易竊取性和提高對犬隻的追蹤性,而缺點則包含掃描的靈敏度、讀取器的相容性以及晶片對犬隻的健康疑慮;至於後者的優點有:免於犬隻承受植入晶片的疼痛,但卻有容易弄丟和被竊取的缺點存在。
因此本研究利用狗鼻紋紋路的唯一性,結合影像處理的技術,來建立一套狗鼻紋辨識系統,藉此解決上述方式所遇到的困難。狗鼻紋辨識系統主要分成兩個部分:狗鼻子影像切割及狗鼻紋影像辨識,本篇研究主要著墨於狗鼻紋影像辨識前的處理,其中包含狗鼻紋的紋路切割以及狗鼻紋影像的基準點定位兩大主軸。
本研究共使用61張狗鼻紋影像來進行實驗,分別來自24隻不同的犬隻,其實驗結果顯示整體的基準點定位準確率可以達81.98%。而在未來研究中,期望能改善本研究中所遇到的難題,並藉由同一犬隻不同影像間所尋找出的對應區塊來進行後續的犬隻辨識動作,讓此套狗鼻紋辨識系統的功能可以更加完整和完善。
With the change of the population structure and lifestyle, keeping pets is becoming more and more popular in today’s society. According to the statistics of the Council of Agriculture by 2016, the number of pet dogs in Taiwan is about 1.71 million. With the proportion of keeping dogs rise, the responsibility of the owners is more important. Although there are rigorous legal rules and fines at present, the situation of pet abandonment still exists. However, it is reflected in the problem of stray dogs, because it is one of the main reasons of the spread of stray dogs. The remaining reasons include the loss of the pet dogs and the natural propagation of stray dogs. When stray dogs increase continuously, it will lead to many social problems such as diseases, public health, bites, traffic accidents and so on. To solve the above-mentioned problems, the method of effective management for the dogs is identifying them. Currently, the main way to identify dogs is pet microchip and pet collar, but each of them has its own disadvantages. The shortcomings of the former include the sensitivity of the scan, reader’s compatibility and dog's health, while the latter is easy to lose or be stolen.
Because of these disadvantages, we want to develop a system which combines the unique dog nose prints and image processing. The system consists of two parts: nose image segmentation and nose prints recognition. In this study, we mainly focus on the processing before recognizing nose prints, including the segmentation of the dog nose prints and pivot point location of dog nose printimage. And in this paper, we use a total of 61 images that are respectively from 24 different dogs to conduct experiment. In experimental results, the accuracy of pivot point location is 81.98%. In the future work, it is expected to improve the difficulties encountering in this study, and use the different images belonging to the same dog to find out the corresponding block to identify each dog, so that the function of the dog nose pattern recognition system can be more completed and perfect.
摘要 i
Abstract ii
Table of Contents iv
List of Tables vi
List of Figures vii
Chapter 1 Introduction 1
Chapter 2 Related Works 5
2.1. Histogram Equalization 5
2.2. Gamma Correction 6
2.3. Run-Length 6
2.4. Multi-Scale Line Detector Method 8
2.5. Otsu’s Method 9
2.6. Mathematical Morphology 11
2.6.1. Dilation and Erosion 11
2.6.2. Closing 12
2.6.3. Thinning and Trimming Spurs 13
2.7. Region Labeling 14
Chapter 3 Segmentation of Dog Nose Pattern 18
3.1. Pre-processing 19
3.1.1. Convert the Original RGB Image to the Grayscale Image 20
3.1.2. Histogram Equalization 21
3.1.3. Localized Gamma Correction 21
3.1.4. Median Filter 23
3.1.5. Run-Length 24
3.2. Image Segmentation 24
3.2.1. Multi-Scale Line Detector Method 25
3.2.2. Hysteresis Thresholding 27
3.2.3. Closing 29
3.2.4. Thinning 29
3.2.5. Trimming Spurs 30
3.3. Adjustment after Image Segmentation 31
Chapter 4 Pivot Point Location of Dog Nose Image 33
4.1. Calculate the Center Point and the Nostrils’Distance 33
4.2. The Method of Region Search of Scale Resizing 34
4.3. Feature Matching Based on Genetic Algorithm 39
4.3.1. The Using Features 39
4.3.2. The Distance Algorithm 41
4.3.3. Genetic Algorithm Based Parameter Adjustment 42
Chapter 5 Experimental Results and Discussion 46
5.1. The Samples of Experiment 46
5.2. The Results of Experiment 47
5.2.1. Weight Values, Power Values and the Tolerance of Angle 47
5.2.2. The Label and Distance of the Blocks with Minimum Distance 48
5.2.3. The Accuracy of Proposed Method 49
5.3. The Challenges of Experiment and Discussion 51
5.3.1. The Angle of Shooting 51
5.3.2. The Quality of Shooting 51
5.3.3. The Error of Locating 52
Chapter 6 Conclusion and Future Work 54
References 56
[1] 行政院農委會畜牧處“10年內國人飼養毛小孩激增近百萬 飼主責任重要”
http://www.coa.gov.tw/theme_data.php?theme=news&sub_theme=agri&id=5503&print=Y
[2] J. McGrath. How Pet Microchipping Works. Available: http://science.howstuffworks.com/innovation/everyday-innovations/pet-microchip.htm
[3] L. T. Dickert. Dogs Noseprints Can be Used to Prove Identity, Just Like Fingerprints. Available:
http://www.allpetnews.com/dogs-noseprints-can-be-used-to-prove-identity-just-like-fingerprints
[4] N. Coldea. "Nose prints as a method of identification in dogs." Veterinary Quarterly 16.sup1 (1994): 60-60.
[5] K. S. Sim, C. P. Tso, and Y. Y. Tan. "Recursive sub-image histogram equalization applied to gray scale images." Pattern Recognition Letters 28.10 (2007): 1209-1221.
[6] P. Shanmugavadivu and K. Balasubramanian. "Particle swarm optimized multi-objective histogram equalization for image enhancement." Optics & Laser Technology 57 (2014): 243-251.
[7] X. Guan, S. Jian, P. Hongda, Z. Zhiguo, and G.Haibin. "An image enhancement method based on gamma correction." Computational Intelligence and Design, 2009. ISCID'09. Second International Symposium on. Vol. 1. IEEE (2009): 60-63.
[8] Z. Dongni, P. Won-Jae, L. Seung-Jun, A. C. Kang, and K. Sung-Jea. "Histogram partition based gamma correction for image contrast enhancement." Consumer Electronics (ISCE), IEEE 16th International Symposium on. IEEE (2012): 1-4.
[9] Y. K. Chan and C. C. Chang. "Image matching using run-length feature." Pattern Recognition Letters 22.5 (2001): 447-455.
[10] U. T. Nguyen, A. Bhuiyan, L. A. Park, K. Ramamohanarao. "An effective retinal blood vessel segmentation method using multi-scale line detection." Pattern recognition 46.3 (2013): 703-715.
[11] N. Otsu. "A threshold selection method from gray-level histograms." IEEE transactions on systems, man, and cybernetics 9.1 (1979): 62-66.
[12] R. M. Haralick, S. R. Sternberg, and X. Zhuang. "Image analysis using mathematical morphology." IEEE transactions on pattern analysis and machine intelligence 4 (1987): 532-550.
[13] J. Crespo and R. Schafer. Mathematical morphology and its applications to image processing. Vol. 2. Springer Science & Business Media (2012).
[14] Y. K. Chan, D. C. Huang, K. C. Liu, R. T. Chen, and X. Jiang. "An automatic indirect immunofluorescence cell segmentation system." Mathematical Problems in Engineering (2014).
[15] A. Rosenfeld. "Connectivity in digital pictures." Journal of the ACM (JACM) 17.1 (1970): 146-160.
[16] S. Levialdi. "On shrinking binary picture patterns." Communications of the ACM 15.1 (1972): 7-10.
[17] U. Maulik. "Medical image segmentation using genetic algorithms." IEEE Transactions on information technology in biomedicine 13.2 (2009): 166-173.
[18] M. Sezgin and B. Sankur. "Survey over image thresholding techniques and quantitative performance evaluation." Journal of Electronic imaging 13.1 (2004): 146-168.
[19] M. Vlachos and E. Dermatas "Multi-scale retinal vessel segmentation using line tracking." Computerized Medical Imaging and Graphics, 34 (3) (2010): 213-227.
[20] R. C. Gonzalez and R. E. Woods. Digital Image Processing, Addison-Wesley Longman Publishing Co., Inc., Boston, MA (2002).
連結至畢業學校之論文網頁
點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
推文
當script無法執行時可按︰
推文
網路書籤
當script無法執行時可按︰
網路書籤
推薦
當script無法執行時可按︰
推薦
評分
當script無法執行時可按︰
評分
引用網址
當script無法執行時可按︰
引用網址
轉寄
當script無法執行時可按︰
轉寄
top
相關論文
相關期刊
熱門點閱論文
無相關論文
無相關期刊
1.
狗鼻孔影像切割
2.
狗鼻紋影像之鱗狀區塊切割
3.
狗鼻子部影像切割狗部位影割
4.
MRI影像為基礎之脊椎診斷系統
5.
基於紋理分析的狗鼻孔影像切割
6.
狗鼻紋理特徵擷取和犬隻身分識別
7.
以矢狀面的MRI為基礎新壓迫性骨折影像辨識系統
8.
應用電腦視覺方法於IC封裝製程之上片品質缺陷檢測
9.
基於紋理特徵之狗鼻紋影像比對
10.
租屋代管業服務所需的應用系統設計
11.
利用Log檔進行軟體問題追蹤
12.
混合型特徵為基礎之子宮頸癌液基抹片識別
13.
狗鼻偵測與基於鼻紋的寵物狗身份辨識
14.
基於卷積神經網路之狗鼻偵測與查詢
15.
以心電圖訊號為基礎之心源性猝死病徵診斷系統
簡易查詢
|
進階查詢
|
熱門排行
|
我的研究室