跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/08 02:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:翁霈軒
研究生(外文):Pei-Syuan Weng
論文名稱:情緒分析在餐飲業服務品質的驗證:以麥當勞為例
論文名稱(外文):Verification of Sentiment Analysis in Service Quality of Restaurant Industry: A Case of McDonald''s
指導教授:曹修源曹修源引用關係
指導教授(外文):Hsiu-Yuan Tsao
口試委員:林豪鏘王建富
口試日期:2017-05-26
學位類別:碩士
校院名稱:國立中興大學
系所名稱:行銷學系所
學門:商業及管理學門
學類:行銷與流通學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:48
中文關鍵詞:服務品質文字探勘情緒分析
外文關鍵詞:service qualitytext miningsentiment analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:427
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的是以麥當勞的服務品質來衡量情緒分析與傳統量表是否有相同的衡量效果。首先透過問卷設計來獲得量表中各個構面的分數以及受測者的意見,並且透過本研究所建置的餐飲業關鍵字詞庫以及AFINN情緒字典的轉置算出受測者意見的情緒分數,最後再透過成對樣本T檢定來驗證情緒分析與傳統量表是否有相同的衡量效果。
研究結果發現,情緒分析在有形性、可靠性、回應性、保證性以及同理性五個構面中皆與傳統量表沒有顯著差異,也就是情緒分析與傳統量表擁有相同的衡量效果。
The purpose of this study is to measure the quality of service by McDonald''s to determine whether the sentiment analysis and the questionnaire have the same effect. First of all, the questionnaire was designed to obtain the scores of the various dimension, and opinions of the subjects. Secondly, the sentiment scores of the subject''s opinion were calculated using the keyword dictionary of service quality in the restaurant industry and AFINN sentiment lexicon. Finally ,the paired sample T test was used to verify whether the sentiment analysis had the same effect as the questionnaire.
The results showed that the sentiment analysis was not significantly different from the questionnaire in the tangible, the reliability, the responsiveness, the assurance, and the empathy. The sentiment analysis had the same effect as the questionnaire.
摘要 i
Abstract ii
表目錄 iv
圖目錄 v
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 3
第三節 研究流程 4
第二章 文獻探討 5
第一節 服務品質 5
第二節 文字探勘 13
第三節 情緒分析 15
第三章 研究設計與方法 18
第一節 研究架構 18
第二節 建置關鍵字詞庫 20
第三節 網路問卷發放 23
第四節 文字探勘與情緒分析 25
第五節 成對樣本T檢定 27
第四章 研究結果 28
第一節 問卷資料分析 28
第二節 成對樣本T檢定 31
第五章 研究結論與建議 34
第一節 結論 34
第二節 管理意涵 35
第三節 研究限制與建議 36
參考文獻 37
附錄一 餐飲業服務品質關鍵字詞庫 42
附錄二 DINESERV原始之29個問項 45
附錄三網路發放問卷之29個問項 47
中文文獻參考
張育蓉.(2012).用情緒分析於圖書館使用者滿意度評估之研究.
吳明隆.(2009).SPSS操作與應用問卷統計分析實務. 五南圖書出版股份有限公司.
英文文獻參考
Andrew, J. D., Faubion, C. W., & Palmer, C. D. (2002). The relationship between
counselor satisfaction and extrinsic job factors in state rehabilitation agencies. Rehabilitation Counseling Bulletin, 45(4), 223-232.
Al-Hawari, M., Hartley, N., & Ward, T. (2005). Measuring banks’ automated service
quality: a confirmatory factor analysis approach. Marketing bulletin, 16(1), 1-19.
Anderson, E. W., Fornell, C., & Lehmann, D. R. (1994). Customer satisfaction,
market share, and profitability: Findings from Sweden. The Journal of Marketing, 53-66.
Ananiadou, S. (2008). National centre for text mining: Introduction to tools for
researchers. Retrieved February, 8, 2009.
Bitner, M. J. (1992). Servicescapes: The impact of physical surroundings on customers
and employees. The Journal of Marketing, 57-71.
Bickart, B., & Schindler, R. M. (2001). Internet forums as influential sources of
consumer information. Journal of interactive marketing, 15(3), 31-40
Bougoure, U. S., & Neu, M. K. (2010). Service quality in the Malaysian fast food
industry: An examination using DINESERV. Services Marketing Quarterly, 31(2), 194-212.
Baccianella, S., Esuli, A., & Sebastiani, F. (2010, May). SentiWordNet 3.0: An
Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining. In LREC (Vol. 10, pp. 2200-2204).
beloved. (n.d.). Roget''s 21st Century Thesaurus, Third Edition. Retrieved June 08,
2017 from Thesaurus.com website http://www.thesaurus.com/browse/beloved
Churchill Jr, G. A., & Surprenant, C. (1982). An investigation into the determinants of
customer satisfaction. Journal of marketing research, 491-504.


Clow, K. E., & Vorhies, D. W. (1993). Building a competitive advantage for service
firms: measurement of consumer expectations of service quality. Journal of services marketing, 7(1), 22-32.
Cronin Jr, J. J., & Taylor, S. A. (1992). Measuring service quality: a reexamination
and extension. The journal of marketing, 55-68.
Chiang, I. P., Wen, Y. F., Luo, Y. C., Li, M. C., & Hsu, C. Y. (2014). Using Text
Mining Techniques to Analyze How Movie Forums Affect the Box Office. International Journal of Electronic Commerce Studies, 5(1), 91.
Crosby, P. B. (1979). Quality is free: The art of marketing quality certain. New York:
New American Library.
Fisk, R., Gountas, S., Hume, M., Gountas, J., Grove, S., & John, J. (2007). Services
marketing (First Asia Pacific ed.). Milton, Australia: John Wiley & Sons.
Gunter, B., Koteyko, N., & Atanasova, D. (2014). Sentiment analysis: a market
relevant and reliable measure of public feeling?. International Journal of Market Research, 56(2), 231-247.
Garvin, D. A. (1984). What Does “hltoduct Quality” Really Mean?. Sloan management
review, 25.
Gilbert, G. R., & Veloutsou, C. (2006). A cross-industry comparison of customer
satisfaction. Journal of Services Marketing, 20(5), 298-308.
Grönroos, C. (1982). An applied service marketing theory. European journal of
marketing, 16(7), 30-41
Grönroos, C. (1984). A service quality model and its marketing
implications. European Journal of marketing, 18(4), 36-44
Hardey, M. (2011). Viewpoint: To spin straw into gold? New lessons from
-generated content. International Journal of Market Research, 53(1), 13-15.
Hearst, M. A. (1997, July). Text data mining: Issues, techniques, and the relationship
to information access. In Presentation notes for UW/MS workshop on data mining (pp. 112-117).
He, W., Zha, S., & Li, L. (2013). Social media competitive analysis and text mining: A
case study in the pizza industry. International Journal of Information Management, 33(3), 464-472
Hu, M., & Liu, B. (2004, August). Mining and summarizing customer reviews.
In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 168-177). ACM.
He, W. (2011). Using text mining to uncover students'' technology‐related problems in
live video streaming. British Journal of Educational Technology, 42(1), 40-49.

Hansen, L. K., Arvidsson, A., Nielsen, F. Å., Colleoni, E., & Etter, M. (2011). Good
friends, bad news-affect and virality in twitter. Future information technology, 34-43.
Ingvaldsen, J. E., & Gulla, J. A. (2012). Industrial application of semantic process
mining. Enterprise Information Systems, 6(2), 139-163.
Jain, S. K., & Gupta, G. (2004). Measuring service quality: SERVQUAL vs.
SERVPERF scales. Vikalpa, 29(2), 25-38.
Kim, H. J., McCahon, C., & Miller, J. (2003). Assessing service quality in Korean
casual-dining restaurants using DINESERV. Journal of Foodservice Business Research, 6(1), 67-86.
Keith, N. K., & Simmers, C. S. (2011). Measuring service quality perceptions of
restaurant experiences: The disparity between comment cards and DINESERV. Journal of Foodservice Business Research, 14(1), 20-32.
Kim, S. M., & Hovy, E. (2004, August). Determining the sentiment of opinions.
In Proceedings of the 20th international conference on Computational Linguistics (p. 1367). Association for Computational Linguistics.
Kang, H., Yoo, S. J., & Han, D. (2012). Senti-lexicon and improved Naïve Bayes
algorithms for sentiment analysis of restaurant reviews. Expert Systems with Applications, 39(5), 6000-6010
Lovelock, C. & Wirtz, J. (2007). Services marketing: People, technology and strategy
(6th ed.). Upper Saddle River, NY: Pearson Education.
Lee, J., Park, D. H., & Han, I. (2008). The effect of negative online consumer reviews
on product attitude: An information processing view. Electronic commerce research and applications, 7(3), 341-352.
Levitt, T. (1972). Production-line approach to service. Harvard business review, 50(5),
41-52.
Lehtinen, U., & Lehtinen, J. R. (1982). Service quality: a study of quality dimensions.
Service Management Institute.
Lewis, R. C., & Booms, B. H. (1983). The marketing aspects of service
quality. Emerging perspectives on services marketing, 65(4), 99-107.
Lock.C. H. .‘’Service Marketing , ‘’ 2th ed., Pretice-Hall International
Inc. ,1991,pp26-33
Liu, B., Cao, S. G., & He, W. (2011). Distributed data mining for e-business.
Information Technology and Management, 12(2), 67-79.
Lau, K. N., Lee, K. H., & Ho, Y. (2005). Text mining for the hotel industry. Cornell
Hotel and Restaurant Administration Quarterly, 46(3), 344-362.
Liu, B. (2012). Sentiment analysis and opinion mining. Synthesis lectures on human language
technologies, 5(1), 1-167.
Li, L., Ge, R. L., Zhou, S. M., & Valerdi, R. (2012). Guest EditorialIntegrated
Healthcare Information Systems. IEEE Transactions on Information Technology in Biomedicine, 16(4), 515-517.
Medhat, W., Hassan, A., & Korashy, H. (2014). Sentiment analysis algorithms and
applications: A survey. Ain Shams Engineering Journal, 5(4), 1093-1113.
Maynard, D., & Funk, A. (2011, May). Automatic detection of political opinions in
tweets. In Extended Semantic Web Conference (pp. 88-99). Springer Berlin Heidelberg.
Miller, G. A. (1995). WordNet: a lexical database for English. Communications of the
ACM, 38(11), 39-41.
Nasukawa, T., & Nagano, T. (2001). Text analysis and knowledge mining
system. IBM systems journal, 40(4), 967-984.
Oliver, R. L. (1981). Measurement and evaluation of satisfaction processes in retail
settings. Journal of retailing.
Parasuraman, A., Zeithaml, V. A., & Berry, L. L. (1988). Servqual: A multiple-item
scale for measuring consumer perc. Journal of retailing, 64(1), 12.
Patton, M., Stevens, P., & Knutson, B. J. (1994). Internationalizing LODGSERV as a
measurement tool: a pilot study. Journal of hospitality & leisure marketing, 2(2), 39-55
Pak, A., & Paroubek, P. (2010, May). Twitter as a Corpus for Sentiment Analysis and
Opinion Mining. In LREc (Vol. 10, No. 2010).
Park, S., Ko, M., Kim, J., Liu, Y., & Song, J. (2011, March). The politics of
comments: predicting political orientation of news stories with commenters'' sentiment patterns. In Proceedings of the ACM 2011 conference on Computer supported cooperative work (pp. 113-122). ACM.
Paolacci, G., Chandler, J., & Ipeirotis, P. G. (2010). Running experiments on amazon
mechanical turk.
Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and
Trends® in Information Retrieval, 2(1–2), 1-135.
Qin, H., & Prybutok, V. R. (2009). Service quality, customer satisfaction, and
behavioral intentions in fast-food restaurants. International Journal of Quality and Service Sciences, 1(1), 78-95
Roy, S. K., Lassar, W. M., Ganguli, S., Nguyen, B., & Yu, X. (2015). Measuring
service quality: a systematic review of literature. International Journal of Services, Economics and Management, 7(1), 24-52.
Romero, C., Ventura, S., & García, E. (2008). Data mining in course management
systems: Moodle case study and tutorial. Computers & Education, 51(1), 368-384.
Rabin, J. H. (1983). Accent is on quality in consumer services this decade. Marketing
News, 17(4), 12.marketing. Journal of marketing, 68(1), 1-17.
Sasser, W. E., Olsen, R. P., & Wyckoff, D. D. (1978). Management of service
operations: Text, cases, and readings. Allyn & Bacon.
Steven, P., Knutson, B., & Patton, M. (1995). DINESERV: A tool for measuring
service quality in restaurant. Cornell Hotel and Restaurant Administration Quarterly, April, 56-60.
Satisfaction, and Behavioral Intention. Journal of health care marketing, 9(4), 5-17.
Tsytsarau, M., & Palpanas, T. (2012). Survey on mining subjective data on the
web. Data Mining and Knowledge Discovery, 24(3), 478-514.
Taboada, M., Brooke, J., Tofiloski, M., Voll, K., & Stede, M. (2011). Lexicon-based
methods for sentiment analysis. Computational linguistics, 37(2), 267-307.
Thelwall, M., Buckley, K., Paltoglou, G., Cai, D., & Kappas, A. (2010). Sentiment
strength detection in short informal text. Journal of the American Society for Information Science and Technology, 61(12), 2544-2558.
Tan, A. H. (1999). Text Mining: promises and challenges. South East Asia Regional
Computer Confederation, Sigapore
Vargo, S. L., & Lusch, R. F. (2004). Evolving to a new dominant logic for
marketing. Journal of marketing, 68(1), 1-17.
Wakefield, R. L. (2001). Service quality. The CPA Journal, 71(8), 58.
Woodside, A. G., Frey, L. L., & Daly, R. T. (1989). Linking Sort/ice anlity, Customer
Satisfaction, and Behavioral Intention. Journal of health care marketing, 9(4), 5-17.
Witten, I. H., Don, K. J., Dewsnip, M., & Tablan, V. (2004). Text mining in a digital
library. International Journal on Digital Libraries, 4(1), 56-59
Xu, T., Peng, Q., & Cheng, Y. (2012). Identifying the semantic orientation of terms
using S-HAL for sentiment analysis. Knowledge-Based Systems, 35, 279-289.
Yu, L. C., Wu, J. L., Chang, P. C., & Chu, H. S. (2013). Using a contextual entropy
model to expand emotion words and their intensity for the sentiment classification of stock market news. Knowledge-Based Systems, 41, 89-97.
Zeng, L., Li, L., Duan, L., Lu, K., Shi, Z., Wang, M., ... & Luo, P. (2012). Distributed
data mining: a survey. Information Technology and Management, 13(4),
403-409.
Zeithaml, V. A. (1981). HOW CDNSUPER EVALUATION PROCESSES DlFfER
BETWEEN GOODS AND SERVECES.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊